The stekloff problem for rotationally invariant metrics on the ball
Let (Br,g) be a ball of radius r and gt;0 in Rn (n≥ 2) endowed with a rotationally invariant metricds2+f2(s)dw2, where dw2 represents the standard metric on Sn-1, the (n-1)--dimensional unit sphere. Assume that Br has non--negative sectional curvature. In this paper we prove that ifh(r) and gt;0 is...
- Autores:
 - 
                   Montaño Carreño, Óscar Andrés           
 
- Tipo de recurso:
 - Article of journal
 
- Fecha de publicación:
 - 2013
 
- Institución:
 - Universidad Nacional de Colombia
 
- Repositorio:
 - Universidad Nacional de Colombia
 
- Idioma:
 -           spa          
 - OAI Identifier:
 - oai:repositorio.unal.edu.co:unal/49342
 - Acceso en línea:
 -           https://repositorio.unal.edu.co/handle/unal/49342
          
http://bdigital.unal.edu.co/42799/
 - Palabra clave:
 -           Valor propio de Stekloff          
métrica rotacionalmente invariante
curvatura seccional no negativa
35P15
53C20
53C42
53C43
Stekloff eigenvalue
Rotationally invariant metric
Non-negative sectional curvature
 - Rights
 - openAccess
 - License
 - Atribución-NoComercial 4.0 Internacional
 
| Summary: | Let (Br,g) be a ball of radius r and gt;0 in Rn (n≥ 2) endowed with a rotationally invariant metricds2+f2(s)dw2, where dw2 represents the standard metric on Sn-1, the (n-1)--dimensional unit sphere. Assume that Br has non--negative sectional curvature. In this paper we prove that ifh(r) and gt;0 is the mean curvature on ∂ Br and ν1 is the first eigenvalue of the Stekloff problem, thenν1 ≥ h(r). Equality (ν 1 = h(r)) holds only for the standard metric of Rn. | 
|---|
