On the method of the steepest, descent

Let H be a Hilbert space over the reals and let f: H → R1 be a function of class C1.  We have shown in |1|  that the differential equationdu/dt= -T (u(t) ),u(0)= uo                                                                                                                                        ...

Full description

Autores:
Restrepo, Guillermo
Tipo de recurso:
Article of journal
Fecha de publicación:
1968
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/42043
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/42043
http://bdigital.unal.edu.co/32140/
Palabra clave:
Ecuaciones diferencias
números reales
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Let H be a Hilbert space over the reals and let f: H → R1 be a function of class C1.  We have shown in |1|  that the differential equationdu/dt= -T (u(t) ),u(0)= uo                                                                                                                                               (1)(T = grad f) has global solutions if i) ≥ c||x-y ||2 , c and gt; 0,ii) f is bounded from below;iii) T is locally Lipschitzian. To be precise, in [1;Th.3] we heve assumed f to be of class C2 and f" to be locally bounded. However, the hypothesis  f"  is locally bounded implies that  f'´ = T is locally Lipschitzian, and this is what matters to show existence and uniqueness.