Optimización de las condiciones de fermentación líquida en biorreactor para la producción de Lentinula edodes
ilustraciones, gráficas, tablas
- Autores:
-
Bello Forero, Robinson Augusto
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80126
- Palabra clave:
- 660 - Ingeniería química
620 - Ingeniería y operaciones afines
Antioxidantes
Biomasa
Biomass
Antioxidants
Fermentación en estado líquido (FEL)
Macromiceto
Lentinula edodes
Polisacáridos
Esteroles
Liquid State Fermentation
Macromicete
Lentinus edodes
Steroles
Polysaccharides
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_527bc2b9906da6d01c4c97505baf99d5 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80126 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Optimización de las condiciones de fermentación líquida en biorreactor para la producción de Lentinula edodes |
dc.title.translated.eng.fl_str_mv |
Optimization of culture conditions in a bioreactor for the production of biomass and metabolites of the macromycete Lentinus edodes |
title |
Optimización de las condiciones de fermentación líquida en biorreactor para la producción de Lentinula edodes |
spellingShingle |
Optimización de las condiciones de fermentación líquida en biorreactor para la producción de Lentinula edodes 660 - Ingeniería química 620 - Ingeniería y operaciones afines Antioxidantes Biomasa Biomass Antioxidants Fermentación en estado líquido (FEL) Macromiceto Lentinula edodes Polisacáridos Esteroles Liquid State Fermentation Macromicete Lentinus edodes Steroles Polysaccharides |
title_short |
Optimización de las condiciones de fermentación líquida en biorreactor para la producción de Lentinula edodes |
title_full |
Optimización de las condiciones de fermentación líquida en biorreactor para la producción de Lentinula edodes |
title_fullStr |
Optimización de las condiciones de fermentación líquida en biorreactor para la producción de Lentinula edodes |
title_full_unstemmed |
Optimización de las condiciones de fermentación líquida en biorreactor para la producción de Lentinula edodes |
title_sort |
Optimización de las condiciones de fermentación líquida en biorreactor para la producción de Lentinula edodes |
dc.creator.fl_str_mv |
Bello Forero, Robinson Augusto |
dc.contributor.advisor.none.fl_str_mv |
Serrato Bermudez, Juan Carlos Chegwin, Carolina |
dc.contributor.author.none.fl_str_mv |
Bello Forero, Robinson Augusto |
dc.contributor.researchgroup.spa.fl_str_mv |
Procesos Químicos y Bioquímicos Química de Hongos Macromicetos |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química 620 - Ingeniería y operaciones afines |
topic |
660 - Ingeniería química 620 - Ingeniería y operaciones afines Antioxidantes Biomasa Biomass Antioxidants Fermentación en estado líquido (FEL) Macromiceto Lentinula edodes Polisacáridos Esteroles Liquid State Fermentation Macromicete Lentinus edodes Steroles Polysaccharides |
dc.subject.armarc.spa.fl_str_mv |
Antioxidantes |
dc.subject.lemb.spa.fl_str_mv |
Biomasa |
dc.subject.lemb.eng.fl_str_mv |
Biomass Antioxidants |
dc.subject.proposal.spa.fl_str_mv |
Fermentación en estado líquido (FEL) Macromiceto Lentinula edodes Polisacáridos |
dc.subject.proposal.none.fl_str_mv |
Esteroles |
dc.subject.proposal.eng.fl_str_mv |
Liquid State Fermentation Macromicete Lentinus edodes Steroles Polysaccharides |
description |
ilustraciones, gráficas, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-08T04:06:53Z |
dc.date.available.none.fl_str_mv |
2021-09-08T04:06:53Z |
dc.date.issued.none.fl_str_mv |
2021-06 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80126 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80126 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
A Pandey, CR Soccol, JA Rodriguez-Leon, P. S.-N. N. (2001). Solid State Fermentation in Biotechnology: Fundamentals and Application. Asiatech Publishers, Inc. Abell, L. L., Levy, B. B., Brodie, B. B., & Kendall, F. E. (1951). Simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. Journal of Biological Chemistry, 195(1), 357–366. https://doi.org/10.1016/S0021-9258(19)50907-3 Adeeyo, A. O., Lateef, A., & Gueguim-kana, E. B. (2016). Optimization of the Production of Extracellular Polysaccharide from the Shiitake Medicinal Mushroom Lentinus edodes ( Agaricomycetes ) Using Mutation and a Genetic Algorithm–Coupled Artiicial Neural Network (GA-ANN). (September). https://doi.org/10.1615/IntJMedMushrooms.v18.i7.20 Agudelo-Escobar, L. M., Gutiérrez-López, Y., & Urrego-Restrepo, S. (2016). Efecto de la aireación, la agitación y el pH sobre la producción de biomasa micelial y exopolisacáridos del hongo filamentoso Ganoderma lucidum. DYNA (Colombia), 84(200), 73–79. https://doi.org/10.15446/dyna.v84n200.57126 Arora, S., Rani, R., & Ghosh, S. (2018). Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. Journal of Biotechnology, 269(February), 16–34. https://doi.org/10.1016/j.jbiotec.2018.01.010 Bajaj, I. B., Lele, S. S., & Singhal, R. S. (2009). A statistical approach to optimization of fermentative production of poly ( c -glutamic acid ) from Bacillus licheniformis NCIM 2324. Bioresource Technology, 100(2), 826–832. https://doi.org/10.1016/j.biortech.2008.06.047 Bak, W. C., Park, J. H., Park, Y. A., & Ka, K. H. (2014). Determination of glucan contents in the fruiting bodies and mycelia of Lentinula edodes cultivars. Mycobiology, 42(3), 301–304. https://doi.org/10.5941/MYCO.2014.42.3.301 Bellon-Maurel, V., Orliac, O., & Christen, P. (2003). Sensors and measurements in solid state fermentation: A review. Process Biochemistry, 38(6), 881–896. https://doi.org/10.1016/S0032-9592(02)00093-6 Berovic, M., & Podgornik, B. B. (2016). Cultivation of Medicinal Fungi in Bioreactors. Mushroom Biotechnology: Developments and Applications, 155–171. https://doi.org/10.1016/B978-0-12-802794-3.00009-6 Bisen, P. S., Baghel, R. K., Sanodiya, B. S., Thakur, G. S., & Prasad, G. B. K. S. (2010). Lentinus edodes: A Macrofungus with Pharmacological Activities. Current Medicinal Chemistry, 17(22), 2419–2430. https://doi.org/10.2174/092986710791698495 Borràs, E., Blánquez, P., Sarrà, M., Caminal, G., & Vicent, T. (2008). Trametes versicolor pellets production: Low-cost medium and scale-up. Biochemical Engineering Journal, 42(1), 61–66. https://doi.org/10.1016/j.bej.2008.05.014 Cepero de García, M.C., Restrepo Restrepo, S., Franco-Molano, A. E., Cárdenas Toquina, M., Vargas Estupiñan, N. (2012). Biología de hongos. Chang, S., & Miles, P. (2004). Philip G. Miles, Shu-Ting Chang-Mushrooms_ Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact-CRC Press (2004). Chegwin Angarita, C., & Nieto R., I. (2014). Effect of non-conventional carbon sources on the production of triterpenoids in submerged cultures of Pleurotus macrofungi. J. Chil. Chem. Soc, 59, 2287–2293. https://doi.org/10.1016/0006-2952(87)90680-0 Chemat, F., & Khan, M. K. (2011). Ultrasonics Sonochemistry Applications of ultrasound in food technology : Processing , preservation and extraction. Ultrasonics - Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023 Chen, H. P., & Liu, J. K. (2017). Secondary Metabolites from Higher Fungi. In Progress in the chemistry of organic natural products (Vol. 106). https://doi.org/10.1007/978-3-319-59542-9_1 Chen, W., Zhao, Z., Chen, S. F., & Li, Y. Q. (2008). Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresource Technology, 99(8), 3187–3194. https://doi.org/10.1016/j.biortech.2007.05.049 Cheung, L. M., Cheung, P. C. K., & Ooi, V. E. C. (2003). Antioxidant activity and total phenolics of edible mushroom extracts. 81, 249–255. Couto, S. R., & Toca-Herrera, J. L. (2007). Laccase production at reactor scale by filamentous fungi. Biotechnology Advances, 25(6), 558–569. https://doi.org/10.1016/j.biotechadv.2007.07.002 Cox, P. W., Paul, G. C., & Thomas, C. R. (1998). Image analysis of the morphology of filamentous micro-organisms. Microbiology, 144(4), 817–827. https://doi.org/10.1099/00221287-144-4-817 Crueger W.; Crueger A. (1993). Biotecnología : manual de microbiología industrial (Acribia, ed.). España. Cui, F. J., Li, Y., Xu, Z. H., Xu, H. Y., Sun, K., & Tao, W. Y. (2006). Optimization of the medium composition for production of mycelial biomass and exo-polymer by Grifola frondosa GF9801 using response surface methodology. Bioresource Technology, 97(10), 1209–1216. https://doi.org/10.1016/j.biortech.2005.05.005 Cui, Jian-dong, & Jia, S. (2010). Optimization of Medium on Exopolysaccharides Production in Submerged Culture of Cordyceps militaris. 19(6), 1567–1571. https://doi.org/10.1007/s10068-010-0222-8 Cui, Jian, & Chisti, Y. (2003). Polysaccharopeptides of Coriolus versicolor: Physiological activity, uses, and production. Biotechnology Advances, 21(2), 109–122. https://doi.org/10.1016/S0734-9750(03)00002-8 Cui, M., Yang, H., & He, G. (2015). Submerged fermentation production and characterization of intracellular triterpenoids from Ganoderma lucidum using HPLC-ESI-MS. Journal of Zhejiang University-SCIENCE B, 16(12), 998–1010. https://doi.org/10.1631/jzus.B1500147 Davitashvili, E., Kapanadze, E., Kachlishvili, E., Khardziani, T., & Elisashvili, V. (2008). Evaluation of higher basidiomycetes mushroom lectin activity in submerged and solid-state fermentation of agro-industrial residues. International Journal of Medicinal Mushrooms, 10(2), 171–179. https://doi.org/10.1615/IntJMedMushr.v10.i2.80 Domingos, M., Souza-Cruz, P. B. de, Ferraz, A., & Prata, A. M. R. (2017). A new bioreactor design for culturing basidiomycetes: Mycelial biomass production in submerged cultures of Ceriporiopsis subvermispora. Chemical Engineering Science, 170, 670–676. https://doi.org/10.1016/j.ces.2017.04.004 Donatini, B. (2010). Introduction à la mycothérapie: géné ralités sur l’intérêt des principaux mycelia. Phytotherapie, 8(3), 191–197. https://doi.org/10.1007/s10298-010-0549-6 Durand, A. (2003). Bioreactor designs for solid state fermentation. Biochemical Engineering Journal, 13, 113–125. https://doi.org/10.1299/kikaib.79.786 Duvnjak, D., Pantić, M., Pavlović, V., Nedović, V., Lević, S., Matijašević, D., … Nikšić, M. (2016). Advances in batch culture fermented Coriolus versicolor medicinal mushroom for the production of antibacterial compounds. Innovative Food Science and Emerging Technologies, 34, 1–8. https://doi.org/10.1016/j.ifset.2015.12.028 Elisashvili, V. (2012). Submerged cultivation of medicinal mushrooms: Bioprocesses and products (review). International Journal of Medicinal Mushrooms, 14(3), 211–239. https://doi.org/10.1615/IntJMedMushr.v14.i3.10 Elisashvili, V. I., Kachlishvili, E. T., & Wasser, S. P. (2009). Carbon and Nitrogen Source Effects on Basidiomycetes. 45(5), 592–596. https://doi.org/10.1134/S0003683809050135 Elsayed, E. A., Enshasy, H. El, Wadaan, M. A. M., & Aziz, R. (2014). Mushrooms : A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications. 2014. Emelyanova, E. V. (2005). Effects of cultivation conditions on the growth of the basidiomycete Coriolus hirsutus in a medium with pentose wood hydrolyzate. 40, 1119–1124. https://doi.org/10.1016/j.procbio.2004.03.016 Enman, J., Hodge, D., Berglund, K. A., & Rova, U. (2008). Production of the bioactive compound eritadenine by submerged cultivation of shiitake (Lentinus edodes) mycelia. Journal of Agricultural and Food Chemistry, 56(8), 2609–2612. https://doi.org/10.1021/jf800091a Enman, J., Hodge, D., Berglund, K. A., & Rova, U. (2012). Growth promotive conditions for enhanced eritadenine production during submerged cultivation of Lentinus edodes. Journal of Chemical Technology and Biotechnology, 87(7), 903–907. https://doi.org/10.1002/jctb.3697 Fang, Q. H., & Zhong, J. J. (2002). Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochemistry, 37(7), 769–774. https://doi.org/10.1016/S0032-9592(01)00278-3 Fazenda, M. L., Seviour, R., McNeil, B., & Harvey, L. M. (2008). Submerged Culture Fermentation of “Higher Fungi”: The Macrofungi. Advances in Applied Microbiology, 63(07), 33–103. https://doi.org/10.1016/S0065-2164(07)00002-0 Feng, Y. L., Li, W. Q., Wu, X. Q., Cheng, J. W., & Ma, S. Y. (2010). Statistical optimization of media for mycelial growth and exo-polysaccharide production by Lentinus edodes and a kinetic model study of two growth morphologies. Biochemical Engineering Journal, 49(1), 104–112. https://doi.org/10.1016/j.bej.2009.12.002 Ferrer-romero, J. C. (2019). Optimización del medio de cultivo para la producción de biomasa y compuestos fenólicos por Pleurotus ostreatus en fase sumergida utilizando la metodología de superficie de respuesta Optimization of medium composition for the production of Pleurotus ostrea. 1–16. Flórez Rubiano, D. (2018). Evaluación Del Efecto De La Variación De Ciertos Parámetros Del Cultivo Biotecnologico Sobre La Composición Y La Potencial Actividad Antioxidante De Un Macromiceto. Universidad Nacional de Colombia. Gaitán-Hernández, R., Esqueda, M., Gutiérrez, A., Sánchez, A., Beltrán-García, M., & Mata, G. (2006). Bioconversion of agrowastes by Lentinula edodes: The high potential of viticulture residues. Applied Microbiology and Biotechnology, 71(4), 432–439. https://doi.org/10.1007/s00253-005-0241-1 García-Cruz, F., Durán-Páramo, E., Garín-Aguilar, M. A., Valencia del Toro, G., & Chairez, I. (2020). Parametric characterization of the initial pH effect on the polysaccharides production by Lentinula edodes in submerged culture. Food and Bioproducts Processing, 119, 170–178. https://doi.org/10.1016/j.fbp.2019.10.016 Garcia-Ochoa, F., & Gomez, E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnology Advances, 27(2), 153–176. https://doi.org/10.1016/j.biotechadv.2008.10.006 Gardezi, S. M. S. ; I. H. ; S. D. A. (2003). Estimation of Sterols in Edible Fats and Oils. Pakistan Journal of Nutrition., 2(3), 178–181. Giovanni Giovannozzi Sermanni, Alessandro D’Annibale, Gabriella Di Lena, N., & Silvia Vitale, E. D. M. & V. M. (1994). The production of exo-enzymes by Lentinus edodes and pleurotus ostreatus and their use for upgrading corn straw. Bioresource Technology, 48, 173–178. Grimm, D., & Wösten, H. A. B. (2018). Mushroom cultivation in the circular economy. Applied Microbiology and Biotechnology, 102(18), 7795–7803. https://doi.org/10.1007/s00253-018-9226-8 Gyamerah, M. (1995). Factors affecting the growth form of Aspergillus terreus NRRL 1960 in relation to itaconic acid fermentation. Applied Microbiology and Biotechnology, 44(3–4), 356–361. https://doi.org/10.1007/BF00169929 H.G. Gong, J. J. Z. (2005). Hydrodynamic shear stress affects cell growth and metabolite production by medicinal mushroom Ganoderma lucidum. Chinese Journal of Chemical Engineering, 13, 426– 428. Hamedi, A., Ghanati, F., & Vahidi, H. (2012). Study on the effects of different culture conditions on the morphology of Agaricus blazei and the relationship between morphology and biomass or EPS production. 699–707. https://doi.org/10.1007/s13213-011-0309-3 Hatvani, Nora. (2001). Antibacterial effect of the culture fluid of Lentinus edodes mycelium grown in submerged liquid culture. In International Journal of Antimicrobial Agents (Vol. 17). Retrieved from www.ischemo.org Hatvani, Nóra, & Mécs, I. (2001). Production of laccase and manganese peroxidase by Lentinus edodes on malt-containing by-product of the brewing process. Process Biochemistry, 37(5), 491–496. https://doi.org/10.1016/S0032-9592(01)00236-9 He, P., Geng, L., Wang, Z., Mao, D., Wang, J., & Xu, C. (2012). Fermentation optimization, characterization and bioactivity of exopolysaccharides from Funalia trogii. Carbohydrate Polymers, 89(1), 17–23. https://doi.org/10.1016/j.carbpol.2012.01.093 Herbert, V. (1988). Vitamin requirements , and assay. Clinical Nutrition, 48(February), 852–858. Hölker, U., Höfer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64(2), 175–186. https://doi.org/10.1007/s00253-003-1504-3 Hsieh, C., Liu, C., Tseng, M., Lo, C., & Yang, Y. (2006). Effect of olive oil on the production of mycelial biomass and polysaccharides of Grifola frondosa under high oxygen concentration aeration. 39, 434–439. https://doi.org/10.1016/j.enzmictec.2005.11.033 Hsieh, C., Tseng, M. H., & Liu, C. J. (2006). Production of polysaccharides from Ganoderma lucidum (CCRC 36041) under limitations of nutrients. Enzyme and Microbial Technology, 38(1–2), 109–117. https://doi.org/10.1016/j.enzmictec.2005.05.004 J Sinha, J T Bae, J P Park, K H Kim, C H Song, J. W. Y. (2001). Changes in morphology of Paecilomyces japonica and their effect on broth rheology during production of exo-biopolymers. Appl Microbiol Biotechnol, 56(August), 88–92. https://doi.org/10.1007/s002530100606 John Smith, N. R. & R. S. (2002). Medicinal Mushrooms:Their therapeutic properties and current medicalusage with special emphasis on cancer treatments. University of Strathclyde. Jong, S. C., & Birmingham, J. M. (1993). Medicinal and Therapeutic Value of the Shiitake Mushroom. Advances in Applied Microbiology, 39(C), 153–184. https://doi.org/10.1016/S0065-2164(08)70595-1 K.U Zaidi, R. J., & Quereshi, and S. (2013). On the novel inhibitory action of mushroom extract of coriolus Versicolor and its bioactivity against drug resistant bacteria Salmonella typhimurium ( MTCC ON THE NOVEL INHIBITORY ACTION OF MUSHROOM EXTRACT OF CORIOLUS VERSICOLOR AND IT ’ S BIOACTIVITY AG. Nternational Journal of Applied Biology and Pharmaceutical Technology, 4(2). Kalač, P. (2013). A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture, 93(2), 209–218. https://doi.org/10.1002/jsfa.5960 Ke, L. (2014). Optimization of ultrasonic extraction of polysaccharides from Lentinus edodes based on enzymatic treatment. Journal of Food Processing and Preservation, 1–6. https://doi.org/10.1111/jfpp.12228 Kim, H. O., Lim, J. M., Joo, J. H., Kim, S. W., Hwang, H. J., Choi, J. W., & Yun, J. W. (2005). Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresource Technology, 96(10), 1175–1182. https://doi.org/10.1016/j.biortech.2004.09.021 Kozarski, M. S., Klaus, A. S., Nikši, M. P., Griensven, L. J. L. D. Van, Vrvi, M. M., & Jakovljevi, D. M. (2014). Polysaccharides of higher fungi : biological role , structure and antioxidative activity. Hem. Ind., 3, 305–320. https://doi.org/10.2298/HEMIND121114056K Krishna, C. (2005). Solid-state fermentation systems - An overview. Critical Reviews in Biotechnology, Vol. 25, pp. 1–30. https://doi.org/10.1080/07388550590925383 Krull, R., Wucherpfennig, T., Esfandabadi, M. E., Walisko, R., Melzer, G., Hempel, D. C., … Wittmann, C. (2013). Characterization and control of fungal morphology for improved production performance in biotechnology. Journal of Biotechnology, 163(2), 112–123. https://doi.org/10.1016/j.jbiotec.2012.06.024 Kumar, P. K. R., & Lonsane, B. K. (1987). Gibberellic acid by solid state fermentation: Consistent and improved yields. Biotechnology and Bioengineering, 30(2), 267–271. https://doi.org/10.1002/bit.260300217 Kumari, M., Survase, S. A., & Singhal, R. S. (2008). Production of schizophyllan using Schizophyllum commune NRCM. 99, 1036–1043. https://doi.org/10.1016/j.biortech.2007.02.029 Kwon, J. S., Lee, J. S., Shin, W. C., Lee, K. E., & Hong, E. K. (2009). Optimization of Culture Conditions and Medium Components for the Production of Mycelial Biomass and Exo-polysaccharides with Cordyceps militaris in Liquid Culture. Biotechnology and Bioprocess Engineering, 14, 756–762. https://doi.org/10.1007/s12257-009-0024-0 Lee, B. C., Bae, J. T., Pyo, H. B., Choe, T. B., Kim, S. W., Hwang, H. J., & Yun, J. W. (2004). Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible Basidiomycete Grifola frondosa. Enzyme and Microbial Technology, 35(5), 369–376. https://doi.org/10.1016/j.enzmictec.2003.12.015 Lee, W. Y., Park, Y., Ahn, J. K., Ka, K. H., & Park, S. Y. (2007). Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum. Enzyme and Microbial Technology, 40(2), 249–254. https://doi.org/10.1016/j.enzmictec.2006.04.009 Li, P., Xu, L., Mou, Y., Shan, T., Mao, Z., Lu, S., & Peng, Y. (2012). Medium Optimization for Exopolysaccharide Production in Liquid Culture of Endophytic Fungus Berkleasmium sp . Dzf12. International Journal of Molecular Sciences, 13, 11411–11426. https://doi.org/10.3390/ijms130911411 Li, Q., Lei, Y., Hu, G., Lei, Y., & Dan, D. (2018). Effects of Tween 80 on the liquid fermentation of Lentinus edodes. Food Science and Biotechnology, (July 2017). https://doi.org/10.1007/s10068-018-0339-8 Li, R., Chen, W. C., Wang, W. P., Tian, W. Y., & Zhang, X. G. (2010). Antioxidant activity of Astragalus polysaccharides and antitumour activity of the polysaccharides and siRNA. Carbohydrate Polymers, 82(2), 240–244. https://doi.org/10.1016/j.carbpol.2010.02.048 Liang, Y., Tang, C., Huang, B., & Sun, L. (2011). Effect of fermentation time on antioxidative activities of Ganoderma lucidum broth using leguminous plants as part of the liquid fermentation medium. Food Chemistry, 126(4), 1586–1592. https://doi.org/10.1016/j.foodchem.2010.12.024 Lim, J. M., Kim, S. W., Hwang, H. J., Joo, J. H., Kim, H. O., Choi, J. W., & Yun, J. W. (2004). Optimization of medium by orthogonal matrix method for submerged mycelial culture and exopolysaccharide production in Collybia maculata. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 119(2), 159–170. https://doi.org/10.1385/ABAB:119:2:159 Lin, E. S., & Sung, S. C. (2006). Cultivating conditions influence exopolysaccharide production by the edible Basidiomycete Antrodia cinnamomea in submerged culture. International Journal of Food Microbiology, 108(2), 182–187. https://doi.org/10.1016/j.ijfoodmicro.2005.11.010 Lin, S., Li, C., Lee, S., & Kan, L. (2003). Triterpene-enriched extracts from Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C , activating mitogen-activated protein kinases and G2-phase cell cycle arrest. 72(1), 2381–2390. https://doi.org/10.1016/S0024-3205(03)00124-3 Lindequist, U., Niedermeyer, T. H. J., & Jülich, W. D. (2005). The pharmacological potential of mushrooms. Evidence-Based Complementary and Alternative Medicine, 2(3), 285–299. https://doi.org/10.1093/ecam/neh107 Lopes, A., Sabaini, N. M., & Gomes-da-Costa, S. M. (2009). Produção de biomassa de cogumelo-do-sol e de shiitake em resíduos agroindústriais. Boletim Centro de Pesquisa de Processamento de Alimentos, 27(2), 183–190. https://doi.org/10.5380/cep.v27i2.21926 Lung, M., & Huang, P. (2010). Optimization of exopolysaccharide production from Armillaria mellea in submerged cultures. Applied Microbiology, 50, 198–204. https://doi.org/10.1111/j.1472-765X.2009.02777.x Ma, Y., Mao, D., Geng, L., Wang, Z., & Xu, C. (2013). Production , fractionation , characterization of extracellular polysaccharide from a newly isolated Trametes gibbosa and its hypoglycemic activity. Carbohydrate Polymers, 96(2), 460–465. https://doi.org/10.1016/j.carbpol.2013.04.019 Mahapatra, S., & Banerjee, D. (2013). Optimization of a bioactive exopolysaccharide production from endophytic Fusarium solani SD5. Carbohydrate Polymers, 97, 627–634. Malinowska, E., Krzyczkowski, W., Łapienis, G., & Herold, F. (2009). Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: Optimization using a central composite rotatable design (CCRD). Journal of Industrial Microbiology and Biotechnology, 36(12), 1513–1527. https://doi.org/10.1007/s10295-009-0640-x Márquez-Rocha, F. J., Guillén N., G. K., Sánchez V., J. E., & Vázquez-Duhalt, R. (1999). Growth characteristics of Pleurotus ostreatus in bioreactors. Biotechnology Techniques, 13(1), 29–32. https://doi.org/10.1023/A:1008861432337 Martinez Carrera, D., Sobal, M., Morales, P., Martínez, W., Martínez, M., Mayett, Y. (2004). Los hongos comestibles: propiedades nutricionales, medicinales y su contribción a la alimentación Mexicana. In Colegio Posgraduados. Mattila, P., Suonpa, K., & Piironen, V. (2000). Functional properties edible mushrooms Nutrition 2002. 16, 694–696. Michael J. Carlile, Graham W. Gooday, S. C. W. (2001). The Fungi (Second Edi; A. Press, Ed.). Great Britain. Mizuno, M., & Nishitani, Y. (2013). Immunomodulating compounds in Basidiomycetes. 52(3), 202–207. https://doi.org/10.3164/jcbn.13 Mizuno, T. (1999). The Extraction and Development of Antitumor Active Polysaccharides from Medicinal Mushrooms in Japan-Review. International Journal of Medicinal Mushrooms, 1, 9–30. Money, N. P. (2016). Fungi and Biotechnology. The Fungi: Third Edition, 401–424. https://doi.org/10.1016/B978-0-12-382034-1.00012-8 Montgomery, D. (2004). Diseño y análisis de experimentos.pdf (Segunda). México: Limusa. Mshandete, A. M., & Mgonja, J. R. (2009). Submerged Liquid Fermentation of Some Tanzanian Basidiomycetes for the Production of Mycelial Biomass, Exopolysaccharides and Mycelium Protein Using Wastes Peels Media. 4(6), 1–13. Retrieved from www.arpnjournals.com Nehad, E. A. and A. R. E.-S. (2010). Physiological studies on the production of exopolysaccharide by Fungi. Agriculture and Biology Journal of North AmericaNorth America, 1, 1303–1308. https://doi.org/10.5251/abjna.2010.1.6.1303.1308 Nieto R., I., & Cucaita V., E. del. (2007). ÁCIDOS GRASOS, ÉSTERES Y ESTEROLES DEL CUERPO FRUCTÍFERO DEL HONGO Laccaria laccata. Revista Colombiana de Química, 36(3), 277–284. Nikitina, V. E., Tsivileva, O. M., Pankratov, A. N., & Bychkov, N. A. (2007). Lentinula edodes biotechnology - From lentinan to lectins. Food Technology and Biotechnology, 45(3), 230–237. Oliveros, C. V. (2017). Proyecto de tesis : Diseño bioguiado apoyado con herramientas ómicas de un alimento funcional obtenido mediante la adición del hongo Lentinula edodes Estudiante de Doctorado en Bioquímica. Osman, M.E., Hassan, F.R.H., Khattab, O.H., Ahmed, W.A., El-Henawy, H. E. (2009). Physiological Studies on Growth of Two Different Strains of Lentinus edodes. Australian Journal of Basic and Applied Sciences, 3(4), 4094–4103. Oyola, F. L., & Barrera, J. B. (2004). Ecología química en hongos y líquenes. Revista Academica Colombiana de Ciencias, XXVIII (10, 509–528. Papagianni, M. (2004). Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances, 22(3), 189–259. https://doi.org/10.1016/j.biotechadv.2003.09.005 Papagianni, M., Mattey, M., & Kristiansen, B. (1994). Morphology and citric acid production of Aspergillus niger PM 1. Biotechnology Letters, 16(9), 929–934. https://doi.org/10.1007/BF00128627 Papaspyridi, L. M., Katapodis, P., Gonou-Zagou, Z., Kapsanaki-Gotsi, E., & Christakopoulos, P. (2011). Growth and biomass production with enhanced β-glucan and dietary fibre contents of Ganoderma australe ATHUM 4345 in a batch-stirred tank bioreactor. Engineering in Life Sciences, 11(1), 65–74. https://doi.org/10.1002/elsc.201000102 Pazouki, M., & Panda, T. (2000). Understanding the morphology of fungi. Bioprocess Engineering 22, 22, 127–143. Petre, M, Teodorescu, A., & Andronescu, A. (2012). Food biotechnology to produce high nutritive biomass by submerged fermentation of edible mushrooms. In Journal of Environmental Protection and Ecology (Vol. 13). Petre, Marian. (2010). Biotechnology of Mushroom Pellets Producing by Controlled Submerged Fermentation Biotechnology of Mushroom Pellets Producing by Controlled Submerged Fermentation Introduction The submerged cultivation of edible and medicinal mushrooms is a promising metho. (March), 49–55. Petre, Marian, & Petre, V. (2016). Biotechnology of mushroom growth throug submerged cultivation. In Mushroom Biotechnology (pp. 1–18). Pires Rincão, V., Aimi Yamamoto, K., Maria Pontes Silva Ricardo, N., Aguiar Soares, S., Doretto Paccola Meirelles, L., Nozawa, C., & Elisa Carvalho Linhares, R. (2012). Polysaccharide and extracts from Lentinula edodes: structural features and antiviral activity. Retrieved from http://www.virologyj.com/content/9/1/37 Prasad, S., Rathore, H., Sharma, S., & As, Y. (2015). Medicinal Mushrooms as a Source of Novel Functional Food. International Journal of Food Science , Nutrition and Dietetics ( IJFS ) ISSN 2326-3350, (January 2016), 221–225. https://doi.org/10.19070/2326-3350-1500040 Quang, D. N., Hashimoto, T., & Asakawa, Y. (2006). Inedible mushrooms: A good source of biologically active substances. Chemical Record, 6(2), 79–99. https://doi.org/10.1002/tcr.20074 Rajender Singh, & M.Chauhan. (2009). (PDF) Potential of Edible Fungal Mycelia, Individually and in Consortium Form for Bioremediation. In A. Rathoure (Ed.), BIOREMEDIATION-Current Research and Applications (pp. 293–310). I.K. International. Retrieved from https://www.researchgate.net/publication/318468903_Potential_of_Edible_Fungal_Mycelia_Individually_and_in_Consortium_Form_for_Bioremediation Ramona Ávila Núñez, Bernarda Rivas Pérez, R. H. M. y M. C. (2012). Contenido de azúcares totales, reductores y no reductores en Agave cocui Trelease. Multiciencias, 12(2), 129–135. Retrieved from https://www.redalyc.org/pdf/904/90424216002.pdf Rau, U., Gura, E., Olszewski, E., & Wagner, F. (1992). Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. 9, 19–25. Raux, E., Schubert, H. L., & Warren, M. J. (2000). Biosynthesis of cobalamin (vitamin B12): A bacterial conundrum. Cellular and Molecular Life Sciences, 57(13–14), 1880–1893. https://doi.org/10.1007/PL00000670 Regina, M., Broetto, F., Giovannozzi-Sermanni, G., Marabotini, R., & Peranni, C. (2008). Influence of stationary and bioreactor cultivation on Lentinula edodes (Berk) Pegler lignocellulolitic activity. Brazilian Archives of Biology and Technology, 51(2), 223–233. https://doi.org/10.1590/S1516-89132008000200001 Rendón, M. y P. D. V. (2004). Evaluación del crecimiento y producción de exoplisacáridos del Shiitake (Lentinula edodes) en cultivo sumergido. Universidad EAFIT. Reshetnikov, S. V., & Tan, K.-K. (2001). Higher Basidiomycota as a Source of Antitumor and Immunostimulating Polysaccharides (Review). International Journal of Medicinal Mushrooms, 3(4), 34. https://doi.org/10.1615/intjmedmushr.v3.i4.80 Rincão, V. P., Yamamoto, K. A., Silva Ricardo, N. M. P., Soares, S. A., Paccola Meirelles, L. D., Nozawa, C., & Carvalho Linhares, R. E. (2012). Polysaccharide and extracts from Lentinula edodes: Structural features and antiviral activity. Virology Journal, 9, 1–6. https://doi.org/10.1186/1743-422X-9-37 Rivera, A., Nieto, I. J., & Valencia, M. A. (2010). Composición y cuantificación por cromatografía de gases acoplada a espectrometría de masas de la fracción esterólica de once hongos colombianos. Revista Colombiana de Química, 31(2), 95–102. Roupas, P., Keogh, J., Noakes, M., Margetts, C., & Taylor, P. (2012, October). The role of edible mushrooms in health: Evaluation of the evidence. Journal of Functional Foods, Vol. 4, pp. 687–709. https://doi.org/10.1016/j.jff.2012.05.003 Royse, D. J., Baars, J., & Tan, Q. (2017). Current Overview of Mushroom Production in the World. Edible and Medicinal Mushrooms, 2010, 5–13. https://doi.org/10.1002/9781119149446.ch2 Rühl, M. (2009). Laccases and other ligninolytic enzymes of the basidiomycetes Coprinopsis cinerea and Pleurotus ostreatus - submerged and solid state fermentation, morphological studies of liquid cultures and characterization of new laccases. Georg-August-University Göttingen, 294. Retrieved from https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0006-B127-A Rzymski, P., Budka, A., Siwulski, M., Jasi, A., Kala, P., Poniedzia, B., & Monika, G. (2018). Elemental characteristics of mushroom species cultivated in China and Poland. Journal of Food Composition and Analysis, 66(December 2017), 168–178. https://doi.org/10.1016/j.jfca.2017.12.018 Saeki, N., Takeda, H., Tanesaka, E., & Yoshida, M. (2011). Induction of manganese peroxidase and laccase by Lentinula edodes under liquid culture conditions and their isozyme detection by enzymatic staining on native-PAGE. Mycoscience, 52(2), 132–136. https://doi.org/10.1007/s10267-010-0076-1 Sánchez, C. (2004). Modern aspects of mushroom culture technology. Biotechnol, Appl Microbiol, 756–762. https://doi.org/10.1007/s00253-004-1569-7 Sánchez O. J., Montoya S., and V. L. M. (2015). Polysaccharide production by submerged fermentation. Springer International Publishing, 452–470. https://doi.org/10.1007/978-3-319-16298-0 Savić, M., Anđelković, I., Duvnjak, D., Matijašević, D., Avramović, A., Pešić-Mikulec, D., & Nikšić, M. (2012). The fungistatic activity of organic selenium and its application to the production of cultivated mushrooms Agaricus bisporus and Pleurotus spp. Archive of Biological Science, 64(4), 1455–1463. https://doi.org/10.2298/ABS1204455S Shcherba, V. V, & Babitskaya, V. G. (2004). The Carbohydrates of Submerged Mycelium of Xylotrophic Basidiomycetes. 40(6), 551–554. Shenbhagaraman, R., Jagadish, L. K., & Premalatha, K. (2012). Optimization of extracellular glucan production from Pleurotus eryngii and its impact on angiogenesis. International Journal of Biological Macromolecules, 50, 957–964. https://doi.org/10.1016/j. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 109 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Química y Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80126/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80126/2/11275357.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80126/3/11275357.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 e70842f7e8f3c959a3e538b71566e7ef b6d718a9d09f8c6fcb116b003cc12730 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089478269042688 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Serrato Bermudez, Juan Carlos595155aadb20cd0440a67ad2b96ce2e4Chegwin, Carolinad68b4f79b8ee691437e6041b3b049ae6600Bello Forero, Robinson Augustobf1b3ee42cf42d433ae3ebe716ab870a600Procesos Químicos y BioquímicosQuímica de Hongos Macromicetos2021-09-08T04:06:53Z2021-09-08T04:06:53Z2021-06https://repositorio.unal.edu.co/handle/unal/80126Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasEsta investigación consistió en la determinación del efecto y la optimización de algunas de las condiciones de la fermentación en estado líquido en un biorreactor sobre la producción de biomasa y la composición del macromiceto Lentinula edodes. Inicialmente, se evalúo el efecto de la concentración de glucosa en el medio de cultivo, la aireación y la agitación mediante un diseño Box-Behnken, y se determinó que tanto la concentración de glucosa como la agitación tuvieron un efecto significativo sobre las variables de respuesta (biomasa, esteroles y polisacáridos). Así mismo se determinó que bajo las condiciones evaluadas, los valores de los variables que optimizaron la producción de biomasa fueron de 1.2 vvm, 60 rpm y 21.97 g/L de glucosa. Posteriormente, se cuantificaron los esteroles y carbohidratos totales extraídos de la biomasa a través de un análisis espectrofotométrico, encontrando que para optimizar estas dos variables de respuesta se requieren valores similares para la aireación (1.2 vvm) y la agitación (60 rpm), mientras que la concentración de glucosa fue de 16.32 g/L y 19.6 g/L para esteroles y polisacáridos totales respectivamente. Finalmente, se realizó un estudio del perfil de los extractos mediante HPLC-DAD y GC-MS, encontrando que la concentración de glucosa afecta el número de señales cromatográficas y la abundancia de los diferentes grupos de metabolitos de interés. (Texto tomado de la fuente)This research used an experimental design for optimizing and determining some of the submerged culture conditions effect over Lentinus edodes biomass production and its composition. To start with, glucose concentration, aeration and agitation effect were evaluated in the culture medium using a Box-Behnken design, which, allows concluding glucose concentration and agitation had a significant effect over the response variables (biomass, sterols and polysaccharides). Also, it was figured out that 1.2 vvm, 60 rpm and 21.97g / L were the values for aeration, agitation, and glucose concentration respectively for biomass production optimization. Subsequently, sterols and total carbohydrates were extracted from biomass and quantified through a spectrophotometric analysis, which, allows to determine that although these response variables were optimized using the same values for aeration and agitation obtained from the biomass production optimization, the glucose concentration was different (16.32 g / L for sterols and 19.6 g / L for total polysaccharides). Finally, the extracts profile was analyzed using HPLC-DAD and GC-MS. It was found that glucose affects the number of chromatographic signals and the quantity of different metabolites groups.MaestríaMagíster en Ingeniería - Ingeniería QuímicaBioprocesosxv, 109 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaDepartamento de Ingeniería Química y AmbientalFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química620 - Ingeniería y operaciones afinesAntioxidantesBiomasaBiomassAntioxidantsFermentación en estado líquido (FEL)MacromicetoLentinula edodesPolisacáridosEsterolesLiquid State FermentationMacromiceteLentinus edodesSterolesPolysaccharidesOptimización de las condiciones de fermentación líquida en biorreactor para la producción de Lentinula edodesOptimization of culture conditions in a bioreactor for the production of biomass and metabolites of the macromycete Lentinus edodesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMA Pandey, CR Soccol, JA Rodriguez-Leon, P. S.-N. N. (2001). Solid State Fermentation in Biotechnology: Fundamentals and Application. Asiatech Publishers, Inc. Abell, L. L., Levy, B. B., Brodie, B. B., & Kendall, F. E. (1951). Simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. Journal of Biological Chemistry, 195(1), 357–366. https://doi.org/10.1016/S0021-9258(19)50907-3 Adeeyo, A. O., Lateef, A., & Gueguim-kana, E. B. (2016). Optimization of the Production of Extracellular Polysaccharide from the Shiitake Medicinal Mushroom Lentinus edodes ( Agaricomycetes ) Using Mutation and a Genetic Algorithm–Coupled Artiicial Neural Network (GA-ANN). (September). https://doi.org/10.1615/IntJMedMushrooms.v18.i7.20 Agudelo-Escobar, L. M., Gutiérrez-López, Y., & Urrego-Restrepo, S. (2016). Efecto de la aireación, la agitación y el pH sobre la producción de biomasa micelial y exopolisacáridos del hongo filamentoso Ganoderma lucidum. DYNA (Colombia), 84(200), 73–79. https://doi.org/10.15446/dyna.v84n200.57126 Arora, S., Rani, R., & Ghosh, S. (2018). Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. Journal of Biotechnology, 269(February), 16–34. https://doi.org/10.1016/j.jbiotec.2018.01.010 Bajaj, I. B., Lele, S. S., & Singhal, R. S. (2009). A statistical approach to optimization of fermentative production of poly ( c -glutamic acid ) from Bacillus licheniformis NCIM 2324. Bioresource Technology, 100(2), 826–832. https://doi.org/10.1016/j.biortech.2008.06.047 Bak, W. C., Park, J. H., Park, Y. A., & Ka, K. H. (2014). Determination of glucan contents in the fruiting bodies and mycelia of Lentinula edodes cultivars. Mycobiology, 42(3), 301–304. https://doi.org/10.5941/MYCO.2014.42.3.301 Bellon-Maurel, V., Orliac, O., & Christen, P. (2003). Sensors and measurements in solid state fermentation: A review. Process Biochemistry, 38(6), 881–896. https://doi.org/10.1016/S0032-9592(02)00093-6 Berovic, M., & Podgornik, B. B. (2016). Cultivation of Medicinal Fungi in Bioreactors. Mushroom Biotechnology: Developments and Applications, 155–171. https://doi.org/10.1016/B978-0-12-802794-3.00009-6 Bisen, P. S., Baghel, R. K., Sanodiya, B. S., Thakur, G. S., & Prasad, G. B. K. S. (2010). Lentinus edodes: A Macrofungus with Pharmacological Activities. Current Medicinal Chemistry, 17(22), 2419–2430. https://doi.org/10.2174/092986710791698495 Borràs, E., Blánquez, P., Sarrà, M., Caminal, G., & Vicent, T. (2008). Trametes versicolor pellets production: Low-cost medium and scale-up. Biochemical Engineering Journal, 42(1), 61–66. https://doi.org/10.1016/j.bej.2008.05.014 Cepero de García, M.C., Restrepo Restrepo, S., Franco-Molano, A. E., Cárdenas Toquina, M., Vargas Estupiñan, N. (2012). Biología de hongos. Chang, S., & Miles, P. (2004). Philip G. Miles, Shu-Ting Chang-Mushrooms_ Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact-CRC Press (2004). Chegwin Angarita, C., & Nieto R., I. (2014). Effect of non-conventional carbon sources on the production of triterpenoids in submerged cultures of Pleurotus macrofungi. J. Chil. Chem. Soc, 59, 2287–2293. https://doi.org/10.1016/0006-2952(87)90680-0 Chemat, F., & Khan, M. K. (2011). Ultrasonics Sonochemistry Applications of ultrasound in food technology : Processing , preservation and extraction. Ultrasonics - Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023 Chen, H. P., & Liu, J. K. (2017). Secondary Metabolites from Higher Fungi. In Progress in the chemistry of organic natural products (Vol. 106). https://doi.org/10.1007/978-3-319-59542-9_1 Chen, W., Zhao, Z., Chen, S. F., & Li, Y. Q. (2008). Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresource Technology, 99(8), 3187–3194. https://doi.org/10.1016/j.biortech.2007.05.049 Cheung, L. M., Cheung, P. C. K., & Ooi, V. E. C. (2003). Antioxidant activity and total phenolics of edible mushroom extracts. 81, 249–255. Couto, S. R., & Toca-Herrera, J. L. (2007). Laccase production at reactor scale by filamentous fungi. Biotechnology Advances, 25(6), 558–569. https://doi.org/10.1016/j.biotechadv.2007.07.002 Cox, P. W., Paul, G. C., & Thomas, C. R. (1998). Image analysis of the morphology of filamentous micro-organisms. Microbiology, 144(4), 817–827. https://doi.org/10.1099/00221287-144-4-817 Crueger W.; Crueger A. (1993). Biotecnología : manual de microbiología industrial (Acribia, ed.). España. Cui, F. J., Li, Y., Xu, Z. H., Xu, H. Y., Sun, K., & Tao, W. Y. (2006). Optimization of the medium composition for production of mycelial biomass and exo-polymer by Grifola frondosa GF9801 using response surface methodology. Bioresource Technology, 97(10), 1209–1216. https://doi.org/10.1016/j.biortech.2005.05.005 Cui, Jian-dong, & Jia, S. (2010). Optimization of Medium on Exopolysaccharides Production in Submerged Culture of Cordyceps militaris. 19(6), 1567–1571. https://doi.org/10.1007/s10068-010-0222-8 Cui, Jian, & Chisti, Y. (2003). Polysaccharopeptides of Coriolus versicolor: Physiological activity, uses, and production. Biotechnology Advances, 21(2), 109–122. https://doi.org/10.1016/S0734-9750(03)00002-8 Cui, M., Yang, H., & He, G. (2015). Submerged fermentation production and characterization of intracellular triterpenoids from Ganoderma lucidum using HPLC-ESI-MS. Journal of Zhejiang University-SCIENCE B, 16(12), 998–1010. https://doi.org/10.1631/jzus.B1500147 Davitashvili, E., Kapanadze, E., Kachlishvili, E., Khardziani, T., & Elisashvili, V. (2008). Evaluation of higher basidiomycetes mushroom lectin activity in submerged and solid-state fermentation of agro-industrial residues. International Journal of Medicinal Mushrooms, 10(2), 171–179. https://doi.org/10.1615/IntJMedMushr.v10.i2.80 Domingos, M., Souza-Cruz, P. B. de, Ferraz, A., & Prata, A. M. R. (2017). A new bioreactor design for culturing basidiomycetes: Mycelial biomass production in submerged cultures of Ceriporiopsis subvermispora. Chemical Engineering Science, 170, 670–676. https://doi.org/10.1016/j.ces.2017.04.004 Donatini, B. (2010). Introduction à la mycothérapie: géné ralités sur l’intérêt des principaux mycelia. Phytotherapie, 8(3), 191–197. https://doi.org/10.1007/s10298-010-0549-6 Durand, A. (2003). Bioreactor designs for solid state fermentation. Biochemical Engineering Journal, 13, 113–125. https://doi.org/10.1299/kikaib.79.786 Duvnjak, D., Pantić, M., Pavlović, V., Nedović, V., Lević, S., Matijašević, D., … Nikšić, M. (2016). Advances in batch culture fermented Coriolus versicolor medicinal mushroom for the production of antibacterial compounds. Innovative Food Science and Emerging Technologies, 34, 1–8. https://doi.org/10.1016/j.ifset.2015.12.028 Elisashvili, V. (2012). Submerged cultivation of medicinal mushrooms: Bioprocesses and products (review). International Journal of Medicinal Mushrooms, 14(3), 211–239. https://doi.org/10.1615/IntJMedMushr.v14.i3.10 Elisashvili, V. I., Kachlishvili, E. T., & Wasser, S. P. (2009). Carbon and Nitrogen Source Effects on Basidiomycetes. 45(5), 592–596. https://doi.org/10.1134/S0003683809050135 Elsayed, E. A., Enshasy, H. El, Wadaan, M. A. M., & Aziz, R. (2014). Mushrooms : A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications. 2014. Emelyanova, E. V. (2005). Effects of cultivation conditions on the growth of the basidiomycete Coriolus hirsutus in a medium with pentose wood hydrolyzate. 40, 1119–1124. https://doi.org/10.1016/j.procbio.2004.03.016 Enman, J., Hodge, D., Berglund, K. A., & Rova, U. (2008). Production of the bioactive compound eritadenine by submerged cultivation of shiitake (Lentinus edodes) mycelia. Journal of Agricultural and Food Chemistry, 56(8), 2609–2612. https://doi.org/10.1021/jf800091a Enman, J., Hodge, D., Berglund, K. A., & Rova, U. (2012). Growth promotive conditions for enhanced eritadenine production during submerged cultivation of Lentinus edodes. Journal of Chemical Technology and Biotechnology, 87(7), 903–907. https://doi.org/10.1002/jctb.3697 Fang, Q. H., & Zhong, J. J. (2002). Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochemistry, 37(7), 769–774. https://doi.org/10.1016/S0032-9592(01)00278-3 Fazenda, M. L., Seviour, R., McNeil, B., & Harvey, L. M. (2008). Submerged Culture Fermentation of “Higher Fungi”: The Macrofungi. Advances in Applied Microbiology, 63(07), 33–103. https://doi.org/10.1016/S0065-2164(07)00002-0 Feng, Y. L., Li, W. Q., Wu, X. Q., Cheng, J. W., & Ma, S. Y. (2010). Statistical optimization of media for mycelial growth and exo-polysaccharide production by Lentinus edodes and a kinetic model study of two growth morphologies. Biochemical Engineering Journal, 49(1), 104–112. https://doi.org/10.1016/j.bej.2009.12.002 Ferrer-romero, J. C. (2019). Optimización del medio de cultivo para la producción de biomasa y compuestos fenólicos por Pleurotus ostreatus en fase sumergida utilizando la metodología de superficie de respuesta Optimization of medium composition for the production of Pleurotus ostrea. 1–16. Flórez Rubiano, D. (2018). Evaluación Del Efecto De La Variación De Ciertos Parámetros Del Cultivo Biotecnologico Sobre La Composición Y La Potencial Actividad Antioxidante De Un Macromiceto. Universidad Nacional de Colombia. Gaitán-Hernández, R., Esqueda, M., Gutiérrez, A., Sánchez, A., Beltrán-García, M., & Mata, G. (2006). Bioconversion of agrowastes by Lentinula edodes: The high potential of viticulture residues. Applied Microbiology and Biotechnology, 71(4), 432–439. https://doi.org/10.1007/s00253-005-0241-1 García-Cruz, F., Durán-Páramo, E., Garín-Aguilar, M. A., Valencia del Toro, G., & Chairez, I. (2020). Parametric characterization of the initial pH effect on the polysaccharides production by Lentinula edodes in submerged culture. Food and Bioproducts Processing, 119, 170–178. https://doi.org/10.1016/j.fbp.2019.10.016 Garcia-Ochoa, F., & Gomez, E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnology Advances, 27(2), 153–176. https://doi.org/10.1016/j.biotechadv.2008.10.006 Gardezi, S. M. S. ; I. H. ; S. D. A. (2003). Estimation of Sterols in Edible Fats and Oils. Pakistan Journal of Nutrition., 2(3), 178–181. Giovanni Giovannozzi Sermanni, Alessandro D’Annibale, Gabriella Di Lena, N., & Silvia Vitale, E. D. M. & V. M. (1994). The production of exo-enzymes by Lentinus edodes and pleurotus ostreatus and their use for upgrading corn straw. Bioresource Technology, 48, 173–178. Grimm, D., & Wösten, H. A. B. (2018). Mushroom cultivation in the circular economy. Applied Microbiology and Biotechnology, 102(18), 7795–7803. https://doi.org/10.1007/s00253-018-9226-8 Gyamerah, M. (1995). Factors affecting the growth form of Aspergillus terreus NRRL 1960 in relation to itaconic acid fermentation. Applied Microbiology and Biotechnology, 44(3–4), 356–361. https://doi.org/10.1007/BF00169929 H.G. Gong, J. J. Z. (2005). Hydrodynamic shear stress affects cell growth and metabolite production by medicinal mushroom Ganoderma lucidum. Chinese Journal of Chemical Engineering, 13, 426– 428. Hamedi, A., Ghanati, F., & Vahidi, H. (2012). Study on the effects of different culture conditions on the morphology of Agaricus blazei and the relationship between morphology and biomass or EPS production. 699–707. https://doi.org/10.1007/s13213-011-0309-3 Hatvani, Nora. (2001). Antibacterial effect of the culture fluid of Lentinus edodes mycelium grown in submerged liquid culture. In International Journal of Antimicrobial Agents (Vol. 17). Retrieved from www.ischemo.org Hatvani, Nóra, & Mécs, I. (2001). Production of laccase and manganese peroxidase by Lentinus edodes on malt-containing by-product of the brewing process. Process Biochemistry, 37(5), 491–496. https://doi.org/10.1016/S0032-9592(01)00236-9 He, P., Geng, L., Wang, Z., Mao, D., Wang, J., & Xu, C. (2012). Fermentation optimization, characterization and bioactivity of exopolysaccharides from Funalia trogii. Carbohydrate Polymers, 89(1), 17–23. https://doi.org/10.1016/j.carbpol.2012.01.093 Herbert, V. (1988). Vitamin requirements , and assay. Clinical Nutrition, 48(February), 852–858. Hölker, U., Höfer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Applied Microbiology and Biotechnology, 64(2), 175–186. https://doi.org/10.1007/s00253-003-1504-3 Hsieh, C., Liu, C., Tseng, M., Lo, C., & Yang, Y. (2006). Effect of olive oil on the production of mycelial biomass and polysaccharides of Grifola frondosa under high oxygen concentration aeration. 39, 434–439. https://doi.org/10.1016/j.enzmictec.2005.11.033 Hsieh, C., Tseng, M. H., & Liu, C. J. (2006). Production of polysaccharides from Ganoderma lucidum (CCRC 36041) under limitations of nutrients. Enzyme and Microbial Technology, 38(1–2), 109–117. https://doi.org/10.1016/j.enzmictec.2005.05.004 J Sinha, J T Bae, J P Park, K H Kim, C H Song, J. W. Y. (2001). Changes in morphology of Paecilomyces japonica and their effect on broth rheology during production of exo-biopolymers. Appl Microbiol Biotechnol, 56(August), 88–92. https://doi.org/10.1007/s002530100606 John Smith, N. R. & R. S. (2002). Medicinal Mushrooms:Their therapeutic properties and current medicalusage with special emphasis on cancer treatments. University of Strathclyde. Jong, S. C., & Birmingham, J. M. (1993). Medicinal and Therapeutic Value of the Shiitake Mushroom. Advances in Applied Microbiology, 39(C), 153–184. https://doi.org/10.1016/S0065-2164(08)70595-1 K.U Zaidi, R. J., & Quereshi, and S. (2013). On the novel inhibitory action of mushroom extract of coriolus Versicolor and its bioactivity against drug resistant bacteria Salmonella typhimurium ( MTCC ON THE NOVEL INHIBITORY ACTION OF MUSHROOM EXTRACT OF CORIOLUS VERSICOLOR AND IT ’ S BIOACTIVITY AG. Nternational Journal of Applied Biology and Pharmaceutical Technology, 4(2). Kalač, P. (2013). A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture, 93(2), 209–218. https://doi.org/10.1002/jsfa.5960 Ke, L. (2014). Optimization of ultrasonic extraction of polysaccharides from Lentinus edodes based on enzymatic treatment. Journal of Food Processing and Preservation, 1–6. https://doi.org/10.1111/jfpp.12228 Kim, H. O., Lim, J. M., Joo, J. H., Kim, S. W., Hwang, H. J., Choi, J. W., & Yun, J. W. (2005). Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresource Technology, 96(10), 1175–1182. https://doi.org/10.1016/j.biortech.2004.09.021 Kozarski, M. S., Klaus, A. S., Nikši, M. P., Griensven, L. J. L. D. Van, Vrvi, M. M., & Jakovljevi, D. M. (2014). Polysaccharides of higher fungi : biological role , structure and antioxidative activity. Hem. Ind., 3, 305–320. https://doi.org/10.2298/HEMIND121114056K Krishna, C. (2005). Solid-state fermentation systems - An overview. Critical Reviews in Biotechnology, Vol. 25, pp. 1–30. https://doi.org/10.1080/07388550590925383 Krull, R., Wucherpfennig, T., Esfandabadi, M. E., Walisko, R., Melzer, G., Hempel, D. C., … Wittmann, C. (2013). Characterization and control of fungal morphology for improved production performance in biotechnology. Journal of Biotechnology, 163(2), 112–123. https://doi.org/10.1016/j.jbiotec.2012.06.024 Kumar, P. K. R., & Lonsane, B. K. (1987). Gibberellic acid by solid state fermentation: Consistent and improved yields. Biotechnology and Bioengineering, 30(2), 267–271. https://doi.org/10.1002/bit.260300217 Kumari, M., Survase, S. A., & Singhal, R. S. (2008). Production of schizophyllan using Schizophyllum commune NRCM. 99, 1036–1043. https://doi.org/10.1016/j.biortech.2007.02.029 Kwon, J. S., Lee, J. S., Shin, W. C., Lee, K. E., & Hong, E. K. (2009). Optimization of Culture Conditions and Medium Components for the Production of Mycelial Biomass and Exo-polysaccharides with Cordyceps militaris in Liquid Culture. Biotechnology and Bioprocess Engineering, 14, 756–762. https://doi.org/10.1007/s12257-009-0024-0 Lee, B. C., Bae, J. T., Pyo, H. B., Choe, T. B., Kim, S. W., Hwang, H. J., & Yun, J. W. (2004). Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible Basidiomycete Grifola frondosa. Enzyme and Microbial Technology, 35(5), 369–376. https://doi.org/10.1016/j.enzmictec.2003.12.015 Lee, W. Y., Park, Y., Ahn, J. K., Ka, K. H., & Park, S. Y. (2007). Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum. Enzyme and Microbial Technology, 40(2), 249–254. https://doi.org/10.1016/j.enzmictec.2006.04.009 Li, P., Xu, L., Mou, Y., Shan, T., Mao, Z., Lu, S., & Peng, Y. (2012). Medium Optimization for Exopolysaccharide Production in Liquid Culture of Endophytic Fungus Berkleasmium sp . Dzf12. International Journal of Molecular Sciences, 13, 11411–11426. https://doi.org/10.3390/ijms130911411 Li, Q., Lei, Y., Hu, G., Lei, Y., & Dan, D. (2018). Effects of Tween 80 on the liquid fermentation of Lentinus edodes. Food Science and Biotechnology, (July 2017). https://doi.org/10.1007/s10068-018-0339-8 Li, R., Chen, W. C., Wang, W. P., Tian, W. Y., & Zhang, X. G. (2010). Antioxidant activity of Astragalus polysaccharides and antitumour activity of the polysaccharides and siRNA. Carbohydrate Polymers, 82(2), 240–244. https://doi.org/10.1016/j.carbpol.2010.02.048 Liang, Y., Tang, C., Huang, B., & Sun, L. (2011). Effect of fermentation time on antioxidative activities of Ganoderma lucidum broth using leguminous plants as part of the liquid fermentation medium. Food Chemistry, 126(4), 1586–1592. https://doi.org/10.1016/j.foodchem.2010.12.024 Lim, J. M., Kim, S. W., Hwang, H. J., Joo, J. H., Kim, H. O., Choi, J. W., & Yun, J. W. (2004). Optimization of medium by orthogonal matrix method for submerged mycelial culture and exopolysaccharide production in Collybia maculata. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 119(2), 159–170. https://doi.org/10.1385/ABAB:119:2:159 Lin, E. S., & Sung, S. C. (2006). Cultivating conditions influence exopolysaccharide production by the edible Basidiomycete Antrodia cinnamomea in submerged culture. International Journal of Food Microbiology, 108(2), 182–187. https://doi.org/10.1016/j.ijfoodmicro.2005.11.010 Lin, S., Li, C., Lee, S., & Kan, L. (2003). Triterpene-enriched extracts from Ganoderma lucidum inhibit growth of hepatoma cells via suppressing protein kinase C , activating mitogen-activated protein kinases and G2-phase cell cycle arrest. 72(1), 2381–2390. https://doi.org/10.1016/S0024-3205(03)00124-3 Lindequist, U., Niedermeyer, T. H. J., & Jülich, W. D. (2005). The pharmacological potential of mushrooms. Evidence-Based Complementary and Alternative Medicine, 2(3), 285–299. https://doi.org/10.1093/ecam/neh107 Lopes, A., Sabaini, N. M., & Gomes-da-Costa, S. M. (2009). Produção de biomassa de cogumelo-do-sol e de shiitake em resíduos agroindústriais. Boletim Centro de Pesquisa de Processamento de Alimentos, 27(2), 183–190. https://doi.org/10.5380/cep.v27i2.21926 Lung, M., & Huang, P. (2010). Optimization of exopolysaccharide production from Armillaria mellea in submerged cultures. Applied Microbiology, 50, 198–204. https://doi.org/10.1111/j.1472-765X.2009.02777.x Ma, Y., Mao, D., Geng, L., Wang, Z., & Xu, C. (2013). Production , fractionation , characterization of extracellular polysaccharide from a newly isolated Trametes gibbosa and its hypoglycemic activity. Carbohydrate Polymers, 96(2), 460–465. https://doi.org/10.1016/j.carbpol.2013.04.019 Mahapatra, S., & Banerjee, D. (2013). Optimization of a bioactive exopolysaccharide production from endophytic Fusarium solani SD5. Carbohydrate Polymers, 97, 627–634. Malinowska, E., Krzyczkowski, W., Łapienis, G., & Herold, F. (2009). Improved simultaneous production of mycelial biomass and polysaccharides by submerged culture of Hericium erinaceum: Optimization using a central composite rotatable design (CCRD). Journal of Industrial Microbiology and Biotechnology, 36(12), 1513–1527. https://doi.org/10.1007/s10295-009-0640-x Márquez-Rocha, F. J., Guillén N., G. K., Sánchez V., J. E., & Vázquez-Duhalt, R. (1999). Growth characteristics of Pleurotus ostreatus in bioreactors. Biotechnology Techniques, 13(1), 29–32. https://doi.org/10.1023/A:1008861432337 Martinez Carrera, D., Sobal, M., Morales, P., Martínez, W., Martínez, M., Mayett, Y. (2004). Los hongos comestibles: propiedades nutricionales, medicinales y su contribción a la alimentación Mexicana. In Colegio Posgraduados. Mattila, P., Suonpa, K., & Piironen, V. (2000). Functional properties edible mushrooms Nutrition 2002. 16, 694–696. Michael J. Carlile, Graham W. Gooday, S. C. W. (2001). The Fungi (Second Edi; A. Press, Ed.). Great Britain. Mizuno, M., & Nishitani, Y. (2013). Immunomodulating compounds in Basidiomycetes. 52(3), 202–207. https://doi.org/10.3164/jcbn.13 Mizuno, T. (1999). The Extraction and Development of Antitumor Active Polysaccharides from Medicinal Mushrooms in Japan-Review. International Journal of Medicinal Mushrooms, 1, 9–30. Money, N. P. (2016). Fungi and Biotechnology. The Fungi: Third Edition, 401–424. https://doi.org/10.1016/B978-0-12-382034-1.00012-8 Montgomery, D. (2004). Diseño y análisis de experimentos.pdf (Segunda). México: Limusa. Mshandete, A. M., & Mgonja, J. R. (2009). Submerged Liquid Fermentation of Some Tanzanian Basidiomycetes for the Production of Mycelial Biomass, Exopolysaccharides and Mycelium Protein Using Wastes Peels Media. 4(6), 1–13. Retrieved from www.arpnjournals.com Nehad, E. A. and A. R. E.-S. (2010). Physiological studies on the production of exopolysaccharide by Fungi. Agriculture and Biology Journal of North AmericaNorth America, 1, 1303–1308. https://doi.org/10.5251/abjna.2010.1.6.1303.1308 Nieto R., I., & Cucaita V., E. del. (2007). ÁCIDOS GRASOS, ÉSTERES Y ESTEROLES DEL CUERPO FRUCTÍFERO DEL HONGO Laccaria laccata. Revista Colombiana de Química, 36(3), 277–284. Nikitina, V. E., Tsivileva, O. M., Pankratov, A. N., & Bychkov, N. A. (2007). Lentinula edodes biotechnology - From lentinan to lectins. Food Technology and Biotechnology, 45(3), 230–237. Oliveros, C. V. (2017). Proyecto de tesis : Diseño bioguiado apoyado con herramientas ómicas de un alimento funcional obtenido mediante la adición del hongo Lentinula edodes Estudiante de Doctorado en Bioquímica. Osman, M.E., Hassan, F.R.H., Khattab, O.H., Ahmed, W.A., El-Henawy, H. E. (2009). Physiological Studies on Growth of Two Different Strains of Lentinus edodes. Australian Journal of Basic and Applied Sciences, 3(4), 4094–4103. Oyola, F. L., & Barrera, J. B. (2004). Ecología química en hongos y líquenes. Revista Academica Colombiana de Ciencias, XXVIII (10, 509–528. Papagianni, M. (2004). Fungal morphology and metabolite production in submerged mycelial processes. Biotechnology Advances, 22(3), 189–259. https://doi.org/10.1016/j.biotechadv.2003.09.005 Papagianni, M., Mattey, M., & Kristiansen, B. (1994). Morphology and citric acid production of Aspergillus niger PM 1. Biotechnology Letters, 16(9), 929–934. https://doi.org/10.1007/BF00128627 Papaspyridi, L. M., Katapodis, P., Gonou-Zagou, Z., Kapsanaki-Gotsi, E., & Christakopoulos, P. (2011). Growth and biomass production with enhanced β-glucan and dietary fibre contents of Ganoderma australe ATHUM 4345 in a batch-stirred tank bioreactor. Engineering in Life Sciences, 11(1), 65–74. https://doi.org/10.1002/elsc.201000102 Pazouki, M., & Panda, T. (2000). Understanding the morphology of fungi. Bioprocess Engineering 22, 22, 127–143. Petre, M, Teodorescu, A., & Andronescu, A. (2012). Food biotechnology to produce high nutritive biomass by submerged fermentation of edible mushrooms. In Journal of Environmental Protection and Ecology (Vol. 13). Petre, Marian. (2010). Biotechnology of Mushroom Pellets Producing by Controlled Submerged Fermentation Biotechnology of Mushroom Pellets Producing by Controlled Submerged Fermentation Introduction The submerged cultivation of edible and medicinal mushrooms is a promising metho. (March), 49–55. Petre, Marian, & Petre, V. (2016). Biotechnology of mushroom growth throug submerged cultivation. In Mushroom Biotechnology (pp. 1–18). Pires Rincão, V., Aimi Yamamoto, K., Maria Pontes Silva Ricardo, N., Aguiar Soares, S., Doretto Paccola Meirelles, L., Nozawa, C., & Elisa Carvalho Linhares, R. (2012). Polysaccharide and extracts from Lentinula edodes: structural features and antiviral activity. Retrieved from http://www.virologyj.com/content/9/1/37 Prasad, S., Rathore, H., Sharma, S., & As, Y. (2015). Medicinal Mushrooms as a Source of Novel Functional Food. International Journal of Food Science , Nutrition and Dietetics ( IJFS ) ISSN 2326-3350, (January 2016), 221–225. https://doi.org/10.19070/2326-3350-1500040 Quang, D. N., Hashimoto, T., & Asakawa, Y. (2006). Inedible mushrooms: A good source of biologically active substances. Chemical Record, 6(2), 79–99. https://doi.org/10.1002/tcr.20074 Rajender Singh, & M.Chauhan. (2009). (PDF) Potential of Edible Fungal Mycelia, Individually and in Consortium Form for Bioremediation. In A. Rathoure (Ed.), BIOREMEDIATION-Current Research and Applications (pp. 293–310). I.K. International. Retrieved from https://www.researchgate.net/publication/318468903_Potential_of_Edible_Fungal_Mycelia_Individually_and_in_Consortium_Form_for_Bioremediation Ramona Ávila Núñez, Bernarda Rivas Pérez, R. H. M. y M. C. (2012). Contenido de azúcares totales, reductores y no reductores en Agave cocui Trelease. Multiciencias, 12(2), 129–135. Retrieved from https://www.redalyc.org/pdf/904/90424216002.pdf Rau, U., Gura, E., Olszewski, E., & Wagner, F. (1992). Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. 9, 19–25. Raux, E., Schubert, H. L., & Warren, M. J. (2000). Biosynthesis of cobalamin (vitamin B12): A bacterial conundrum. Cellular and Molecular Life Sciences, 57(13–14), 1880–1893. https://doi.org/10.1007/PL00000670 Regina, M., Broetto, F., Giovannozzi-Sermanni, G., Marabotini, R., & Peranni, C. (2008). Influence of stationary and bioreactor cultivation on Lentinula edodes (Berk) Pegler lignocellulolitic activity. Brazilian Archives of Biology and Technology, 51(2), 223–233. https://doi.org/10.1590/S1516-89132008000200001 Rendón, M. y P. D. V. (2004). Evaluación del crecimiento y producción de exoplisacáridos del Shiitake (Lentinula edodes) en cultivo sumergido. Universidad EAFIT. Reshetnikov, S. V., & Tan, K.-K. (2001). Higher Basidiomycota as a Source of Antitumor and Immunostimulating Polysaccharides (Review). International Journal of Medicinal Mushrooms, 3(4), 34. https://doi.org/10.1615/intjmedmushr.v3.i4.80 Rincão, V. P., Yamamoto, K. A., Silva Ricardo, N. M. P., Soares, S. A., Paccola Meirelles, L. D., Nozawa, C., & Carvalho Linhares, R. E. (2012). Polysaccharide and extracts from Lentinula edodes: Structural features and antiviral activity. Virology Journal, 9, 1–6. https://doi.org/10.1186/1743-422X-9-37 Rivera, A., Nieto, I. J., & Valencia, M. A. (2010). Composición y cuantificación por cromatografía de gases acoplada a espectrometría de masas de la fracción esterólica de once hongos colombianos. Revista Colombiana de Química, 31(2), 95–102. Roupas, P., Keogh, J., Noakes, M., Margetts, C., & Taylor, P. (2012, October). The role of edible mushrooms in health: Evaluation of the evidence. Journal of Functional Foods, Vol. 4, pp. 687–709. https://doi.org/10.1016/j.jff.2012.05.003 Royse, D. J., Baars, J., & Tan, Q. (2017). Current Overview of Mushroom Production in the World. Edible and Medicinal Mushrooms, 2010, 5–13. https://doi.org/10.1002/9781119149446.ch2 Rühl, M. (2009). Laccases and other ligninolytic enzymes of the basidiomycetes Coprinopsis cinerea and Pleurotus ostreatus - submerged and solid state fermentation, morphological studies of liquid cultures and characterization of new laccases. Georg-August-University Göttingen, 294. Retrieved from https://ediss.uni-goettingen.de/handle/11858/00-1735-0000-0006-B127-A Rzymski, P., Budka, A., Siwulski, M., Jasi, A., Kala, P., Poniedzia, B., & Monika, G. (2018). Elemental characteristics of mushroom species cultivated in China and Poland. Journal of Food Composition and Analysis, 66(December 2017), 168–178. https://doi.org/10.1016/j.jfca.2017.12.018 Saeki, N., Takeda, H., Tanesaka, E., & Yoshida, M. (2011). Induction of manganese peroxidase and laccase by Lentinula edodes under liquid culture conditions and their isozyme detection by enzymatic staining on native-PAGE. Mycoscience, 52(2), 132–136. https://doi.org/10.1007/s10267-010-0076-1 Sánchez, C. (2004). Modern aspects of mushroom culture technology. Biotechnol, Appl Microbiol, 756–762. https://doi.org/10.1007/s00253-004-1569-7 Sánchez O. J., Montoya S., and V. L. M. (2015). Polysaccharide production by submerged fermentation. Springer International Publishing, 452–470. https://doi.org/10.1007/978-3-319-16298-0 Savić, M., Anđelković, I., Duvnjak, D., Matijašević, D., Avramović, A., Pešić-Mikulec, D., & Nikšić, M. (2012). The fungistatic activity of organic selenium and its application to the production of cultivated mushrooms Agaricus bisporus and Pleurotus spp. Archive of Biological Science, 64(4), 1455–1463. https://doi.org/10.2298/ABS1204455S Shcherba, V. V, & Babitskaya, V. G. (2004). The Carbohydrates of Submerged Mycelium of Xylotrophic Basidiomycetes. 40(6), 551–554. Shenbhagaraman, R., Jagadish, L. K., & Premalatha, K. (2012). Optimization of extracellular glucan production from Pleurotus eryngii and its impact on angiogenesis. International Journal of Biological Macromolecules, 50, 957–964. https://doi.org/10.1016/j.ijbiomac.2012.02.008 Sheng, L., Zhu, G., & Tong, Q. (2014). Effect of uracil on pullulan production by Aureobasidium pullulans CGMCC1234. Carbohydrate Polymers, 101(1), 435–437. https://doi.org/10.1016/j.carbpol.2013.09.063 Shu, C. H., & Lung, M. Y. (2004). Effect of pH on the production and molecular weight distribution of exopolysaccharide by Antrodia camphorata in batch cultures. Process Biochemistry, 39(8), 931–937. https://doi.org/10.1016/S0032-9592(03)00220-6 Simonić, J., Stajić, M., Glamočlija, J., Vukojević, J., Duletić-Laušević, S., & Brčeski, I. (2008). Optimization of submerged cultivation conditions for extra- and intracellular polysaccharide production by medicinal Ling Zhi or Reishi mushroom Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Aphyllophoromycetideae). International Journal of Medicinal Mushrooms, 10(4), 351–360. https://doi.org/10.1615/IntJMedMushr.v10.i4.80 Singhania, R. R., Patel, A. K., Soccol, C. R., & Pandey, A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44(1), 13–18. https://doi.org/10.1016/j.bej.2008.10.019 Smania, E. F. A., Monache, F. D., Jr, A. S., Yunes, R. A., & Cuneo, R. S. (2003). Antifungal activity of sterols and triterpenes isolated from Ganoderma annulare. Fitoterapia, 74(03), 375–377. https://doi.org/10.1016/S0367-326X(03)00064-9 Smith, G. M., & Calam, C. T. (1980). Variations in inocula and their influence on the productivity of antibiotic fermentations. Biotechnology Letters, 2(6), 261–266. https://doi.org/10.1007/BF00239854 Smith, J. E., Rowan, N. J., & Sullivan, R. (2002). Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. In Biotechnology Letters (Vol. 24). Song, C. H., Cho, K. Y., & Nair, N. G. (1987). A Synthetic Medium for the Production of Submerged Cultures of Lentinus Edodes . Mycologia, 79(6), 866–876. https://doi.org/10.1080/00275514.1987.12025475 Song, M., Kim, N., Lee, S., & Hwang, S. (2007). Use of whey permeate for cultivating Ganoderma lucidum mycelia. Journal of Dairy Science, 90(5), 2141–2146. https://doi.org/10.3168/jds.2006-690 Stamets, P. (2000). Growing Gourmet and Medicinal Mushrooms. Potter/TenSpeed/Harmony. Suárez Arango, C., & Nieto, I. J. (2013). Cultivo biotecnológico de macrohongos comestibles: Una alternativa en la obtención de nutracéuticos. Revista Iberoamericana de Micologia, 30(1), 1–8. https://doi.org/10.1016/j.riam.2012.03.011 Suárez, C. (2012). Utilización de la fermentación líquida de Lentinula edodes (shiitake), para la producción de metabolitos secundarios bioactivos y evaluación de su potencial empleo en la producción de un alimento funcional. Universidad Nacional de Colombia. Subramaniyam, R. and Vimala, R. (2012). Solid State and Submerged Fermentation for the Production of Bioactive Substances : a Comparative Study. 3(3), 480–486. Sun, L., Zhang, Z., Xin, G., Sun, B., Bao, X., Wei, Y., … Xu, H. (2020). Advances in umami taste and aroma of edible mushrooms. Trends in Food Science & Technology, 96(December 2019), 176–187. https://doi.org/10.1016/j.tifs.2019.12.018 Tang, Y. J., & Zhong, J. J. (2004). Modeling the kinetics of cell growth and ganoderic acid production in liquid static cultures of the medicinal mushroom Ganoderma lucidum. Biochemical Engineering Journal, 21(3), 259–264. https://doi.org/10.1016/j.bej.2004.06.008 Tang, Y. J., Zhu, L. W., Li, H. M., & Li, D. S. (2007). Submerged culture of mushrooms in bioreactors - Challenges, current state-of-the-art, and future prospects. Food Technology and Biotechnology, 45(3), 221–229. Tang, Y., & Zhong, J. (2002). Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. 31, 20–28. Tavares, A. P. M., Agapito, M. S. M., Coelho, M. A. Z., Silva, J. A. L., & Coutinho, J. A. P. (2005). Selection and optimization of culture medium for exopolysaccharide production by Coriolus ( Trametes ) versicolor. 1499–1507. https://doi.org/10.1007/s11274-005-7370-7 Tepwong, P., Giri, A., & Ohshima, T. (2012). Effect of mycelial morphology on ergothioneine production during liquid fermentation of Lentinula edodes. Mycoscience, 53(2), 102–112. https://doi.org/10.1007/s10267-011-0145-0 Tepwong, P., & Ohshima, T. (2009). Biosynthesis of ergothioneine during different stages of submerged fermentation of “Shiitake” (Lentinus edodes) mushroom and their bioactive properties. Journal of Bioscience and Bioengineering, 108, S4–S5. https://doi.org/10.1016/j.jbiosc.2009.08.021 Thomas, L., Larroche, C., & Pandey, A. (2013). Current developments in solid-state fermentation. Biochemical Engineering Journal, 81, 146–161. https://doi.org/10.1016/j.bej.2013.10.013 Tsivileva, O. M., Nikitina, V. E., & Garibova, L. V. (2005). Effect of culture medium composition on the activity of extracellular lectins of Lentinus edodes. Prikladnaia Biokhimiia i Mikrobiologiia, 41(2), 200–203. Turło, J., Gutkowska, B., Herold, F., Krzyczkowski, W., Błazewicz, A., & Kocjan, R. (2008). Optimizing vitamin B12 biosynthesis by mycelial cultures of Lentinula edodes (Berk.) Pegl. Enzyme and Microbial Technology, 43(4–5), 369–374. https://doi.org/10.1016/j.enzmictec.2008.05.005 Turło, Jadwiga. (2014). The biotechnology of higher fungi - current state and perspectives. Folia Biologica et Oecologica, 10, 49–65. https://doi.org/10.2478/fobio-2014-0010 Turło, Jadwiga, Gutkowska, B., & Herold, F. (2010). Effect of selenium enrichment on antioxidant activities and chemical composition of Lentinula edodes (Berk.) Pegl. mycelial extracts. Food and Chemical Toxicology, 48(4), 1085–1091. https://doi.org/10.1016/j.fct.2010.01.030 Vega-Oliveros, C. ; (2016). Comparación de la producción de metabolitos secundarios bioactivos con dos fuentes de carbono en la fermentación líquida de una especie de Pleurotus y su uso potencial en un alimento de tipo funcional. Vetchinkina, E. P., Pozdnyakova, N. N., & Nikitina, V. E. (2008). Enzymes of the xylotrophic basidiomycete Lentinus edodes F-249 in the course of morphogenesis. Microbiology, 77(2), 144–150. https://doi.org/10.1134/S0026261708020045 Viccini, G., Mitchell, D. A., Boit, S. D., Gern, J. C., Da Rosa, A. S., Costa, R. M., … Krieger, N. (2001). Analysis of Growth Kinetic Profiles in Solid-State Fermentation. Food Technology and Biotechnology, 39(4), 271–294. Vinokurov, V. A., Barkov, A. V, Krasnopol, L. M., & Mortikov, E. S. (2010). CURRENT PROBLEMS . Alternative Fuels Technology RENEWABLE FEEDSTOCK SOURCES. 46(2), 9–11. Wagner, R., Mitchell, D. A., Sassaki, G. L., & Amazonas, M. A. L. D. A. (2004). Links between morphology and physiology of Ganoderma lucidum in submerged culture for the production of exopolysaccharide. Journal of Biotechnology, 114(1–2), 153–164. https://doi.org/10.1016/j.jbiotec.2004.06.013 Wagner, R., Mitchell, D. A., Sassaki, G. L., De Almeida Amazonas, M. A. L., & Berovič, M. (2003). Current Techniques for the Cultivation of Ganoderma lucidum for the Production of Biomass, Ganoderic Acid and Polysaccharides. Food Technology and Biotechnology, 41(4), 371–382. Wang, Y., & Lu, Z. (2004). Statistical optimization of media for extracellular polysaccharide by Pholiota squarrosa ( Pers . ex Fr .) Quel . AS 5 . 245 under submerged cultivation. 20, 39–47. https://doi.org/10.1016/j.bej.2004.04.004 Wasser, S P. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol, 258–274. https://doi.org/10.1007/s00253-002-1076-7 Wasser, Solomon P., & Weis, A. L. (1999). Medicinal Properties of Substances Occurring in Higher Basidiomycetes Mushrooms: Current Perspectives (Review). International Journal of Medicinal Mushrooms, 1(1), 31–62. https://doi.org/10.1615/intjmedmushrooms.v1.i1.30 Wasser, Solomon P. (2010). Medicinal Mushroom Science : History , Current Status , Future Trends , and Unsolved Problems. 12(1), 1–16. Wasser, Solomon P. (2014). Medicinal Mushroom Science: Current Perspectives, Advances, Evidences, and Challenges. https://doi.org/10.4103/2319-4170.138318 Wolters, M., Ströhle, A., & Hahn, A. (2004). Cobalamin: A critical vitamin in the elderly. Preventive Medicine, 39(6), 1256–1266. https://doi.org/10.1016/j.ypmed.2004.04.047 Wu, X. J., & Hansen, C. (2008). Antioxidant capacity, phenolic content, and polysaccharide content of Lentinus edodes grown in whey permeate-based submerged culture. Journal of Food Science, 73(1). https://doi.org/10.1111/j.1750-3841.2007.00595.x Xiao, J. H., Chen, D. X., Liu, J. W., Liu, Z. L., Wan, W. H., Fang, N., … Liang, Z. Q. (2004). Optimization of submerged culture requirements for the production of mycelial growth and exopolysaccharide by Cordyceps jiangxiensis JXPJ 0109. 1105–1116. https://doi.org/10.1111/j.1365-2672.2004.02235.x Xiong, Q., Wilson, W. K., & Pang, J. (2007). The Liebermann-Burchard reaction: Sulfonation, desaturation, and rearrangment of cholesterol in acid. Lipids, 42(1), 87–96. https://doi.org/10.1007/s11745-006-3013-5 Xu, C., Kim, S., Hwang, H., Choi, J., & Yun, J. (2003). Optimization of submerged culture conditions for mycelial growth and exo-biopolymer production by Paecilomyces tenuipes C240. 38. Xu, X., Yan, H., Chen, J., & Zhang, X. (2011). Bioactive proteins from mushrooms. Biotechnology Advances, 29(6), 667–674. https://doi.org/10.1016/j.biotechadv.2011.05.003 Xu, X., Yan, H., Tang, J., Chen, J., & Zhang, X. (2014a). Polysaccharides in Lentinus edodes: Isolation, Structure, Immunomodulating Activity and Future Prospective. Critical Reviews in Food Science and Nutrition, 54(4), 474–487. https://doi.org/10.1080/10408398.2011.587616 Xu, X., Yan, H., Tang, J., Chen, J., & Zhang, X. (2014b, January). Polysaccharides in Lentinus edodes: Isolation, Structure, Immunomodulating Activity and Future Prospective. Critical Reviews in Food Science and Nutrition, Vol. 54, pp. 474–487. https://doi.org/10.1080/10408398.2011.587616 Yang, F.-C., & Liau, C.-B. (1998). The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures. In Process Biochemist O (Vol. 33). Yang, J. P., Hsu, T., Lin, F., Hsu, W., & Chen, Y. (2012). Potential antidiabetic activity of extracellular polysaccharides in submerged fermentation culture of Coriolus versicolor LH1. Carbohydrate Polymers, 90(1), 174–180. https://doi.org/10.1016/j.carbpol.2012.05.011 Zárate-Chaves, C. A., Romero-Rodríguez, M. C., Niño-Arias, F. C., Robles-Camargo, J., Linares-Linares, M., Rodríguez-Bocanegra, M. X., & Gutiérrez-Rojas, I. (2013). Optimizing a culture medium for biomass and phenolic compounds production using Ganoderma lucidum. Brazilian Journal of Microbiology, 44(1), 215–223. https://doi.org/10.1590/S1517-83822013005000032 Zhang, Y., Li, S., Wang, X., Zhang, L., & Cheung, P. C. K. (2011). Advances in lentinan: Isolation, structure, chain conformation and bioactivities. Food Hydrocolloids, 25(2), 196–206. https://doi.org/10.1016/j.foodhyd.2010.02.001 Zhong, J. J., & Tang, Y. J. (2004). Submerged cultivation of medicinal mushrooms for production of valuable bioactive metabolites. Advances in Biochemical Engineering/Biotechnology, Vol. 87, pp. 25–59. https://doi.org/10.1007/b94367 Zou, X. (2005). Optimization of nutritional factors for exopolysaccharide production by submerged cultivation of the medicinal mushroom Oudemansiella radicata. World Journal of Microbiology and Biotechnology, 21(6–7), 1267–1271. https://doi.org/10.1007/s11274-005-1941-5Optimización de las condiciones de fermentación líquida en biorreactor para la producción de Lentinula edodesOptimization of the submerged culture conditions in a bioreactor for the production of Lentinus edodesPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80126/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL11275357.2021.pdf11275357.2021.pdfTesis de Magister en Ingeniería - Ingeniería Químicaapplication/pdf3538902https://repositorio.unal.edu.co/bitstream/unal/80126/2/11275357.2021.pdfe70842f7e8f3c959a3e538b71566e7efMD52THUMBNAIL11275357.2021.pdf.jpg11275357.2021.pdf.jpgGenerated Thumbnailimage/jpeg5224https://repositorio.unal.edu.co/bitstream/unal/80126/3/11275357.2021.pdf.jpgb6d718a9d09f8c6fcb116b003cc12730MD53unal/80126oai:repositorio.unal.edu.co:unal/801262023-07-27 23:03:47.035Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |