Neurotoxicity of deoxysphingolipids in an in vitro model of taxane induced peripheral neuropathy

Ilustraciones

Autores:
Muñoz Gil, Susana
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86170
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86170
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::666 - Cerámica y tecnologías afines
1-deoxysphingolipids (deoxySL)
1-deoxysphingosine
1-deoxysphinganine
1-deoxyceramide
taxane-induced peripheral neuropathy (TIPN)
sphingosine-1-phosphate (S1P)
sphingosine-1-phosphate receptors (S1PRs)
FTY720
1-deoxiesfingolípidos
1-deoxiesfingosina
1- deoxiesfinganine
1-deoxiceramida
Neuropatía periférica inducida por taxanos (TIPN)
Receptores de esfingosina
1-fosfato (S1PR)
Neurotoxicidad
Neuroblastoma
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_4f81eec9564aed6ac1c3a19a1879c2fd
oai_identifier_str oai:repositorio.unal.edu.co:unal/86170
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Neurotoxicity of deoxysphingolipids in an in vitro model of taxane induced peripheral neuropathy
dc.title.translated.spa.fl_str_mv Neurotoxicidad de los deoxyesfingolipidos en un modelo in vitro de neuropatía periférica inducida por taxanos
title Neurotoxicity of deoxysphingolipids in an in vitro model of taxane induced peripheral neuropathy
spellingShingle Neurotoxicity of deoxysphingolipids in an in vitro model of taxane induced peripheral neuropathy
660 - Ingeniería química::666 - Cerámica y tecnologías afines
1-deoxysphingolipids (deoxySL)
1-deoxysphingosine
1-deoxysphinganine
1-deoxyceramide
taxane-induced peripheral neuropathy (TIPN)
sphingosine-1-phosphate (S1P)
sphingosine-1-phosphate receptors (S1PRs)
FTY720
1-deoxiesfingolípidos
1-deoxiesfingosina
1- deoxiesfinganine
1-deoxiceramida
Neuropatía periférica inducida por taxanos (TIPN)
Receptores de esfingosina
1-fosfato (S1PR)
Neurotoxicidad
Neuroblastoma
title_short Neurotoxicity of deoxysphingolipids in an in vitro model of taxane induced peripheral neuropathy
title_full Neurotoxicity of deoxysphingolipids in an in vitro model of taxane induced peripheral neuropathy
title_fullStr Neurotoxicity of deoxysphingolipids in an in vitro model of taxane induced peripheral neuropathy
title_full_unstemmed Neurotoxicity of deoxysphingolipids in an in vitro model of taxane induced peripheral neuropathy
title_sort Neurotoxicity of deoxysphingolipids in an in vitro model of taxane induced peripheral neuropathy
dc.creator.fl_str_mv Muñoz Gil, Susana
dc.contributor.advisor.none.fl_str_mv Spassieva, Stefanka
Vásquez Araque, Neil Aldrin
dc.contributor.author.none.fl_str_mv Muñoz Gil, Susana
dc.contributor.orcid.spa.fl_str_mv Muñoz Gil, Susana [0000000254305323]
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::666 - Cerámica y tecnologías afines
topic 660 - Ingeniería química::666 - Cerámica y tecnologías afines
1-deoxysphingolipids (deoxySL)
1-deoxysphingosine
1-deoxysphinganine
1-deoxyceramide
taxane-induced peripheral neuropathy (TIPN)
sphingosine-1-phosphate (S1P)
sphingosine-1-phosphate receptors (S1PRs)
FTY720
1-deoxiesfingolípidos
1-deoxiesfingosina
1- deoxiesfinganine
1-deoxiceramida
Neuropatía periférica inducida por taxanos (TIPN)
Receptores de esfingosina
1-fosfato (S1PR)
Neurotoxicidad
Neuroblastoma
dc.subject.proposal.eng.fl_str_mv 1-deoxysphingolipids (deoxySL)
1-deoxysphingosine
1-deoxysphinganine
1-deoxyceramide
taxane-induced peripheral neuropathy (TIPN)
sphingosine-1-phosphate (S1P)
sphingosine-1-phosphate receptors (S1PRs)
FTY720
dc.subject.proposal.spa.fl_str_mv 1-deoxiesfingolípidos
1-deoxiesfingosina
1- deoxiesfinganine
1-deoxiceramida
Neuropatía periférica inducida por taxanos (TIPN)
Receptores de esfingosina
1-fosfato (S1PR)
dc.subject.wikidata.none.fl_str_mv Neurotoxicidad
Neuroblastoma
description Ilustraciones
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-05-28T18:35:18Z
dc.date.available.none.fl_str_mv 2024-05-28T18:35:18Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86170
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86170
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Acevedo, J. C. (2009). Dolor y cáncer (Guadalupe SA, Ed.).
Alaamery, M., Albesher, N., Aljawini, N., Alsuwailm, M., Massadeh, S., Wheeler, M. A., Chao, C. C., & Quintana, F. J. (2021). Role of sphingolipid metabolism in neurodegeneration. Journal of Neurochemistry, 158(1), 25–35. https://doi.org/10.1111/JNC.15044
Alecu, I., Othman, A., Penno, A., Saied, E. M., Arenz, C., Von Eckardstein, A., & Hornemann, A. T. (2017). Cytotoxic 1-deoxysphingolipids are metabolized by a cytochrome P450-dependent pathway. Journal of Lipid Research, 58(1), 60–71. https://doi.org/10.1194/JLR.M072421/ATTACHMENT/CF587391-5E77-4C92-95E5-B112832A68F8/MMC1.PDF
Alecu, I., Tedeschi, A., Behler, N., Wunderling, K., Lamberz, C., Lauterbach, M. A. R., Gaebler, A., Ernst, D., Van Veldhoven, P. P., Al-Amoudi, A., Latz, E., Othman, A., Kuerschner, L., Hornemann, T., Bradke, F., Thiele, C., & Penno, A. A. (2017). Localization of 1-deoxysphingolipids to mitochondria induces mitochondrial dysfunction. Journal of Lipid Research, 58(1), 42. https://doi.org/10.1194/JLR.M068676
American Cancer Society. (2020, November 20). ¿Qué Es El Cáncer? https://www.cancer.org/es/tratamiento/como-comprender-su-diagnostico/que-es-el-cancer.html
Andersen Hammond, E., Pitz, M., & Shay, B. (2019). Neuropathic Pain in Taxane-Induced Peripheral Neuropathy: Evidence for Exercise in Treatment. Neurorehabilitation and Neural Repair, 33(10), 792–799. https://doi.org/10.1177/1545968319860486
Argyriou, A. A., Koltzenburg, M., Polychronopoulos, P., Papapetropoulos, S., & Kalofonos, H. P. (2008). Peripheral nerve damage associated with administration of taxanes in patients with cancer. Critical Reviews in Oncology/Hematology, 66(3), 218–228. https://doi.org/10.1016/J.CRITREVONC.2008.01.008
Becker, K. A., Uerschels, A. K., Goins, L., Doolen, S., McQuerry, K. J., Bielawski, J., Sure, U., Bieberich, E., Taylor, B. K., Gulbins, E., & Spassieva, S. D. (2020). Role of 1-Deoxysphingolipids in docetaxel neurotoxicity. Journal of Neurochemistry, 154(6), 662–672. https://doi.org/10.1111/JNC.14985
Bertea, M., Rütti, M. F., Othman, A., Marti-Jaun, J., Hersberger, M., von Eckardstein, A., & Hornemann, T. (2010). Deoxysphingoid bases as plasma markers in Diabetes mellitus. Lipids in Health and Disease, 9, 84. https://doi.org/10.1186/1476-511X-9-84
Blasco, A., & Caballero, C. (2019, December 16). Toxicidad de los tratamientos oncológicos - SEOM: Sociedad Española de Oncología Médica © 2019. https://seom.org/guia-actualizada-de-tratamientos/toxicidad-de-los-tratamientos-oncologicos?showall=1
Boso, F., Armirotti, A., Taioli, F., Ferrarini, M., Nobbio, L., Cavallaro, T., & Fabrizi, G. M. (2019). Deoxysphingolipids as candidate biomarkers for a novel SPTLC1 mutation associated with HSAN-I. Neurology Genetics, 5(6), e365. https://doi.org/10.1212/NXG.0000000000000365
Bouscary, A., Quessada, C., René, F., Spedding, M., Turner, B. J., Henriques, A., Ngo, S. T., & Loeffler, J. P. (2021). Sphingolipids metabolism alteration in the central nervous system: Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Seminars in Cell & Developmental Biology, 112, 82–91. https://doi.org/10.1016/J.SEMCDB.2020.10.008
Brewer, J. R., Morrison, G., Dolan, M. E., & Fleming, G. F. (2016). Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecologic Oncology, 140(1), 176–183. https://doi.org/10.1016/J.YGYNO.2015.11.011
Cancer Quest. (2022). Tablas de Tratamientos de Cáncer | CancerQuest. https://www.cancerquest.org/es/para-los-pacientes/tratamientos/tablas-de-tratamientos-de-cancer
Canta, A., Pozzi, E., & Carozzi, V. A. (2015). Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN). Toxics, 3(2), 198. https://doi.org/10.3390/TOXICS3020198
Cardona, A. F., Ortiz, L., Reveiz, L., Becerra, H., Arango, N., Santacruz, J., Otero, J., Carranza, H., Ojeda, K., Rojas, L., Vargas, C., Rodriguez, M., Castro, C., Camacho, M., Serrano, S., Torres, D., & Balaña, C. (2010). Neuropatía inducida por el tratamiento médico del cáncer. Médicas UIS. https://revistas.uis.edu.co/index.php/revistamedicasuis/article/view/1439
Carreira, A. C., Santos, T. C., Lone, M. A., Zupančič, E., Lloyd-Evans, E., de Almeida, R. F. M., Hornemann, T., & Silva, L. C. (2019). Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Progress in Lipid Research, 75, 100988. https://doi.org/10.1016/J.PLIPRES.2019.100988
CDC. (2021, May 12). Efectos secundarios del tratamiento contra el cáncer. Centro de Control y Prevención de Enfermedades.
Childs, D. S., Le-Rademacher, J. G., McMurray, R., Bendel, M., O’Neill, C., Smith, T. J., & Loprinzi, C. L. (2021). Randomized Trial of Scrambler Therapy for Chemotherapy-Induced Peripheral Neuropathy: Crossover Analysis. Journal of Pain and Symptom Management, 61(6), 1247–1253. https://doi.org/10.1016/J.JPAINSYMMAN.2020.11.025
Clarke, C. J., D’Angelo, G., & Silva, L. C. (2020). Sphingolipid metabolism and signaling: embracing diversity. FEBS Letters, 594(22), 3579–3582. https://doi.org/10.1002/1873-3468.13979
Cohan, S., Lucassen, E., Smoot, K., Brink, J., & Chen, C. (2020). Sphingosine-1-Phosphate: Its Pharmacological Regulation and the Treatment of Multiple Sclerosis: A Review Article. Biomedicines, 8(7). https://doi.org/10.3390/BIOMEDICINES8070227
Colvin, L. A. (2019). Chemotherapy-induced peripheral neuropathy (CIPN): where are we now? Pain, 160(Suppl 1), S1. https://doi.org/10.1097/J.PAIN.0000000000001540
Cuadros, R., Montejo de Garcini, E., Wandosell, F., Faircloth, G., Fernández-Sousa, J. M., & Avila, J. (2000). The marine compound spisulosine, an inhibitor of cell proliferation, promotes the disassembly of actin stress fibers. Cancer Letters, 152(1), 23–29. https://doi.org/10.1016/S0304-3835(99)00428-0
Cuenta de Alto Costo. (2020, February 4). https://cuentadealtocosto.org/site/cancer/dia-mundial-contra-el-cancer-2020/
Fletcher, D. A., & Mullins, R. D. (2010). Cell mechanics and the cytoskeleton. Nature 2010 463:7280, 463(7280), 485–492. https://doi.org/10.1038/nature08908
Fridman, V., Zarini, S., Sillau, S., Harrison, K., Bergman, B. C., Feldman, E. L., Reusch, J. E. B., & Callaghan, B. C. (2021). Altered plasma serine and 1-deoxydihydroceramide profiles are associated with diabetic neuropathy in type 2 diabetes and obesity. Journal of Diabetes and Its Complications, 35(4), 107852. https://doi.org/10.1016/J.JDIACOMP.2021.107852
Galih Haribowo, A., Thomas Hannich, J., Michel, A. H., Megyeri, M., Schuldiner, M., Kornmann, B., & Riezman, H. (2019). Cytotoxicity of 1-deoxysphingolipid unraveled by genome-wide genetic screens and lipidomics in Saccharomyces cerevisiae. Molecular Biology of the Cell, 30(22), 2814. https://doi.org/10.1091/MBC.E19-07-0364
Goins, L., & Spassieva, S. (2018). Sphingoid bases and their involvement in neurodegenerative diseases. Advances in Biological Regulation, 70, 65–73. https://doi.org/10.1016/J.JBIOR.2018.10.004
Gomez-Larrauri, A., Presa, N., Dominguez-Herrera, A., Ouro, A., Trueba, M., & Gomez-Munoz, A. (2020). Role of bioactive sphingolipids in physiology and pathology. Essays in Biochemistry, 64(3), 579–589. https://doi.org/10.1042/EBC20190091
Gonzalez-Cabrera, P. J., Brown, S., Studer, S. M., & Rosen, H. (2014). S1P signaling: new therapies and opportunities. F1000Prime Reports, 6. https://doi.org/10.12703/P6-109
Gui, T., Li, Y., Zhang, S., Alecu, I., Chen, Q., Zhao, Y., Hornemann, T., Kullak-Ublick, G. A., & Gai, Z. (2021). Oxidative stress increases 1-deoxysphingolipid levels in chronic kidney disease. Free Radical Biology and Medicine, 164, 139–148. https://doi.org/10.1016/J.FREERADBIOMED.2021.01.011
Güntert, T., Hänggi, P., Othman, A., Suriyanarayanan, S., Sonda, S., Zuellig, R. A., Hornemann, T., & Ogunshola, O. O. (2016). 1-Deoxysphingolipid-induced neurotoxicity involves N-methyl-d-aspartate receptor signaling. Neuropharmacology, 110, 211–222. https://doi.org/10.1016/J.NEUROPHARM.2016.03.033
Hannun, Y. A., & Obeid, L. M. (2018). Sphingolipids and their metabolism in physiology and disease. Nature Reviews. Molecular Cell Biology, 19(3), 175. https://doi.org/10.1038/NRM.2017.107
Hernández-Coronado, C. G., Guzmán, A., Castillo-Juárez, H., Zamora-Gutiérrez, D., & Rosales-Torres, A. M. (2019). Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. Annales d’endocrinologie, 80(5–6), 263–272. https://doi.org/10.1016/J.ANDO.2019.06.003
Hertz, D. L., Tofthagen, C., & Faithfull, S. (2021). Predisposing Factors for the Development of Chemotherapy-Induced Peripheral Neuropathy (CIPN). Diagnosis, Management and Emerging Strategies for Chemotherapy-Induced Neuropathy, 19–51. https://doi.org/10.1007/978-3-030-78663-2_2
Holmes, F. A., Walters, R. S., Theriault, R. L., Buzdar, A. U., Frye, D. K., Hortobagyi, G. N., Forman, A. D., Newton, L. K., & Raber, M. N. (1991). Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer. Journal of the National Cancer Institute, 83(24), 1797–1805. https://doi.org/10.1093/JNCI/83.24.1797-A
Hopkins, B. (2019). Growth cone.
Hornemann, T. (2021). Mini review: Lipids in Peripheral Nerve Disorders. Neuroscience Letters, 740, 135455. https://doi.org/10.1016/J.NEULET.2020.135455
Hornemann, T., Alecu, I., Hagenbuch, N., Zhakupova, A., Cremonesi, A., Gautschi, M., Jung, H. H., Meienberg, F., Bilz, S., Christ, E., Baumgartner, M. R., & Hochuli, M. (2018). Disturbed sphingolipid metabolism with elevated 1-deoxysphingolipids in glycogen storage disease type I – A link to metabolic control. Molecular Genetics and Metabolism, 125(1–2), 73–78. https://doi.org/10.1016/J.YMGME.2018.07.003
Hube, L., Dohrn, M. F., Karsai, G., Hirshman, S., van Damme, P., Schulz, J. B., Weis, J., Hornemann, T., & Claeys, K. G. (2017). Metabolic Syndrome, Neurotoxic 1-Deoxysphingolipids and Nervous Tissue Inflammation in Chronic Idiopathic Axonal Polyneuropathy (CIAP). PLoS ONE, 12(1). https://doi.org/10.1371/JOURNAL.PONE.0170583
Huwiler, A., & Zangemeister-Wittke, U. (2018). The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: Recent findings and new perspectives. Pharmacology & Therapeutics, 185, 34–49. https://doi.org/10.1016/j.pharmthera.2017.11.001
Instituto Nacional del Cáncer. (2021). Qué Es El Cáncer. https://www.cancer.gov/espanol/cancer/naturaleza/que-es
Janes, K., Little, J. W., Li, C., Bryant, L., Chen, C., Chen, Z., . . . Salvemini, D. (2014). The Development and Maintenance of Paclitaxel-induced Neuropathic Pain Require Activation of the Sphingosine 1-Phosphate Receptor Subtype 1. Journal of Biological Chemistry, 289(30), 21082-21097. doi:10.1074/jbc.m114.569574
Javeed, S. F., Amir H; Dy, Christopher; Ray, Wilson Z; MacEwan, Matthew R. (2021). Application of electrical stimulation for peripheral nerve regeneration: Stimulation parameters and future horizons. Interdisciplinary Neurosurgery, 24. doi:https://doi.org/10.1016/j.inat.2021.101117
Jaggi, A. S., & Singh, N. (2012). Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology, 291(1–3), 1–9. https://doi.org/10.1016/J.TOX.2011.10.019
Jankovic, J. (2022). Disorders of Peripheral Nerves. https://www.clinicalkey.es/#!/content/book/3-s2.0-B9780323642613001066
Jung, Y. L.-B., Jonathan; Tognoni, Christina M; Carreras, Isabel; Dedeoglu, Alpaslan. (2023). Dysregulation of sphingosine-1-phosphate (S1P) and S1P receptor 1 signaling in the 5xFAD mouse model of Alzheimer's disease. Brain Research. doi:doi: 10.1016/j.brainres.2022.148171
Kandjani, O. J. Y., Shadi; Vahdati, Samad Shams; Borhannejad, Behnam; Dastmalchi, Siavoush; Alizadeh, Ali Akbar (2023). S1PR1 modulators in multiple sclerosis: Efficacy, safety, comparison, and chemical structure insights. European Journal of Medicinal Chemistry. doi: doi: 10.1016/j.ejmech.2023.115182
Kolter, T., & Sandhoff, K. (1999). Sphingolipids—Their Metabolic Pathways and the Pathobiochemistry of Neurodegenerative Diseases. Angewandte. https://doi.org/10.1002/(SICI)1521-3773(19990601)38:11<1532::AID-ANIE1532>3.0.CO;2-U
Kramer, R., Bielawski, J., Kistner-Griffin, E., Othman, A., Alecu, I., Ernst, D., Kornhauser, D., Hornemann, T., & Spassieva, S. (2015). Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. FASEB Journal, 29(11), 4461–4472. https://doi.org/10.1096/FJ.15-272567
Leßmann, V. K., Georgia-Ioanna; Endres, Thomas; Pawlitzki, Marc; Gottmann, Kurt. (2023). Repurposing drugs against Alzheimer’s disease: can the anti-multiple sclerosis drug fingolimod (FTY720) effectively tackle inflammation processes in AD? Journal of Neural Transmission. doi:10.1007/s00702-023-02618-5
Loewith, R., Riezman, H., & Winssinger, N. (2019). Sphingolipids and membrane targets for therapeutics. Current Opinion in Chemical Biology, 50, 19–28. https://doi.org/10.1016/J.CBPA.2019.02.015
Lone, M. A., Hülsmeier, A. J., Saied, E. M., Karsai, G., Arenz, C., von Eckardstein, A., & Hornemann, T. (2020). Subunit composition of the mammalian serine-palmitoyltransferase defines the spectrum of straight and methyl-branched long-chain bases. Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15591–15598. https://doi.org/10.1073/PNAS.2002391117/-/DCSUPPLEMENTAL
Lone, M. A., Santos, T., Alecu, I., Silva, L. C., & Hornemann, T. (2019). 1-Deoxysphingolipids. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1864(4), 512–521. https://doi.org/10.1016/J.BBALIP.2018.12.013
Loprinzi, C. L., Lacchetti, C., Bleeker, J., Cavaletti, G., Chauhan, C., Hertz, D. L., Kelley, M. R., Lavino, A., Lustberg, M. B., Paice, J. A., Schneider, B. P., Lavoie Smith, E. M., Smith, M. Lou, Smith, T. J., Wagner-Johnston, N., & Hershman, D. L. (2020). Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 38(28), 3325–3348. https://doi.org/10.1200/JCO.20.01399
Maceyka, M., Harikumar, K. B., Milstien, S., & Spiegel, S. (2012). Sphingosine-1-phosphate signaling and its role in disease. Trends in Cell Biology, 22(1), 50–60. https://doi.org/10.1016/J.TCB.2011.09.003
Maihöfner, C., Diel, I., Tesch, H., Quandel, T., & Baron, R. (2021). Chemotherapy-induced peripheral neuropathy (CIPN): current therapies and topical treatment option with high-concentration capsaicin. Supportive Care in Cancer, 29(8), 4223–4238. https://doi.org/10.1007/S00520-021-06042-X/FIGURES/4
Malin, S. A. D., Brian M; Molliver, Derek C. (2007). Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nature Protocols, 2, 152-160. doi:https://doi.org/10.1038/nprot.2006.461
Mandala, S., Hajdu, R., Bergstrom, J., Quackenbush, E., Xie, J., Milligan, J., Thornton, R., Shei, G.-J., Card, D., Keohane, C., Rosenbach, M., Hale, J., Lynch, C. L., Rupprecht, K., Parsons, W., & Rosen, H. (2002). Alteration of Lymphocyte Trafficking by Sphingosine-1-Phosphate Receptor Agonists. Science, 296(5566), 346–349. https://doi.org/10.1126/science.1070238
Martínez, J. W., Sánchez-Naranjo, J. C., Londoño-De Los Ríos, P. A., Isaza-Mejía, C. A., Sosa-Urrea, J. D., Martínez-Muñoz, M. A., López-Osorio, J. J., Marín-Medina, D. S., Machado-Duque, M. E., & Machado-Alba, J. E. (2019). Prevalence of peripheral neuropathy associated with chemotherapy in four oncology centers of colombia. Revista de Neurologia, 69(3), 94–98. https://doi.org/10.33588/rn.6903.2019035
Martinez, T. N., Chen, X., Bandyopadhyay, S., Merrill, A. H., & Tansey, M. G. (2012). Ceramide sphingolipid signaling mediates Tumor Necrosis Factor (TNF)-dependent toxicity via caspase signaling in dopaminergic neurons. Molecular Neurodegeneration, 7(1). https://doi.org/10.1186/1750-1326-7-45
Mayo Clinic. (2019, February 5). https://www.mayoclinic.org/es-es/diseases-conditions/cancer/symptoms-causes/syc-20370588
McGinley, M. P., & Cohen, J. A. (2021). Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. The Lancet, 398(10306), 1184–1194. https://doi.org/10.1016/S0140-6736(21)00244-0
Mendelson, K. E., Todd; Hla, Timothy. (2014). Sphingosine 1-phosphate signalling. Development, 141(1), 5-9. doi:10.1242/dev.094805
Merrill, A. H. (2002). De Novo Sphingolipid Biosynthesis: A Necessary, but Dangerous, Pathway*. https://doi.org/10.1074/jbc.R200009200
Merrill, A. H. (2011). Sphingolipid and Glycosphingolipid Metabolic Pathways in the Era of Sphingolipidomics. Chemical Reviews, 111(10), 6387–6422. https://doi.org/10.1021/CR2002917
Ministerio de salud. (2021, February 4). Incidencia Del Cáncer Se Redujo En Los Últimos 3 Años. https://www.minsalud.gov.co/Paginas/Incidencia-del-cancer-se-redujo-en-los-ultimos-3-anos.aspx
Molassiotis, A., Cheng, H. L., Lopez, V., Au, J. S. K., Chan, A., Bandla, A., Leung, K. T., Li, Y. C., Wong, K. H., Suen, L. K. P., Chan, C. W., Yorke, J., Farrell, C., & Sundar, R. (2019). Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer, 19(1), 1–19. https://doi.org/10.1186/S12885-019-5302-4/FIGURES/7
Much, J. (2017). MD Anderson Cancer Center, University of Texas. Tratamiento de La Neuropatía Inducida Por La Quimioterapia. https://www.mdanderson.org/es/publicaciones/oncolog/noviembre-diciembre-2017/tratamiento-de-la-neuropatia-inducida-por-la-quimioterapia.html
Mwinyi, J., Boström, A., Fehrer, I., Othman, A., Waeber, G., Marti-Soler, H., Vollenweider, P., Marques-Vidal, P., Schiöth, H. B., Von Eckardstein, A., & Hornemann, T. (2017). Plasma 1-deoxysphingolipids are early predictors of incident type 2 diabetes mellitus. PLoS ONE, 12(5). https://doi.org/10.1371/JOURNAL.PONE.0175776
National Institutes of Health. (2015). NIH. Tipos de Tratamiento. https://www.cancer.gov/espanol/cancer/tratamiento/tipos
Ni, L. Y., Zhao; Zhao, Yifan; Zhang, Tianfang; Wang, Jie; Li, Siyue; Chen, Zuobing. (2023). Electrical stimulation therapy for peripheral nerve injury. Frontiers in Neurology. doi:doi: 10.3389/fneur.2023.1081458
NIH. (2023, March 13, 2023). Peripheral Neuropathy. Retrieved from https://www.ninds.nih.gov/health-information/disorders/peripheral-neuropathy
NIH. (n.d.). Efectos secundarios del tratamiento del cáncer - Instituto Nacional del Cáncer. Retrieved April 15, 2022, from https://www.cancer.gov/espanol/cancer/tratamiento/efectos-secundarios
Obinata, H., & Hla, T. (2019). Sphingosine 1-phosphate and inflammation. International Immunology, 31(9), 617. https://doi.org/10.1093/INTIMM/DXZ037
Organización Panamericana de la Salud. (2020). https://www.paho.org/es/temas/cancer
O’Sullivan, C., & Dev, K. K. (2013). The structure and function of the S1P1 receptor. Trends in Pharmacological Sciences, 34(7), 401–412. https://doi.org/10.1016/J.TIPS.2013.05.002
Patel, F., & Spassieva, S. D. (2018). Side Effects in Cancer Therapy: Are Sphingolipids to Blame? Advances in Cancer Research, 140, 367–388. https://doi.org/10.1016/BS.ACR.2018.04.017
Penno, A., Reilly, M. M., Houlden, H., Laurá, M., Rentsch, K., Niederkofler, V., Stoeckli, E. T., Nicholson, G., Eichler, F., Brown, R. H., Von Eckardstein, A., & Hornemann, T. (2010). Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. Journal of Biological Chemistry, 285(15), 11178–11187. https://doi.org/10.1074/JBC.M109.092973
Pike, C. T. B., Howard G; Muehlenbein, Catherine E; Pohl, Gerhardt M; Natale, Ronald B. (2012). Healthcare Costs and Workloss Burden of Patients with Chemotherapy-Associated Peripheral Neuropathy in Breast, Ovarian, Head and Neck, and Nonsmall Cell Lung Cancer. Chemotherapy Research and Practice, 2012, 1-10. doi:10.1155/2012/913848
Pyne, N. J., & Pyne, S. (2010). Sphingosine 1-phosphate and cancer. Nature Reviews Cancer, 10(7), 489–503. https://doi.org/10.1038/nrc2875
Quinville, B. M., Deschenes, N. M., Ryckman, A. E., & Walia, J. S. (2021). A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. International Journal of Molecular Sciences 2021, Vol. 22, Page 5793, 22(11), 5793. https://doi.org/10.3390/IJMS22115793
Regula Steiner, E. M. S., Alaa Othman, Christoph Arenz, Alan T Maccarone, Berwyck L J Poad, Stephen J Blanksby, Arnold von Eckardstein, Thorsten Hornemann (2016). Elucidating the chemical structure of native 1-deoxysphingosine. Journal Lipid Research, 57(1), 1194-1203. doi:doi: 10.1194/jlr.M067033
Santos, T. d. C. B. d. (2021). Biophysical and biological properties of atypical sphingolipids: implications to physiology and pathophysiology. Universidade de Lisboa.
Saba, J. D. (2019). Fifty years of lyase and a moment of truth: sphingosine phosphate lyase from discovery to disease. Journal of Lipid Research, 60(3), 456. https://doi.org/10.1194/JLR.S091181
Schwartz, N. U., Mileva, I., Gurevich, M., Snider, J., Hannun, Y. A., & Obeid, L. M. (2019). Quantifying 1-deoxydihydroceramides and 1-deoxyceramides in mouse nervous system tissue. Prostaglandins & Other Lipid Mediators, 141, 40–48. https://doi.org/10.1016/J.PROSTAGLANDINS.2019.02.005
Shahpar, S., Mhatre, P. V., & Oza, S. (2018). Rehabilitation. The Breast: Comprehensive Management of Benign and Malignant Diseases, 1031-1038.e3. https://doi.org/10.1016/B978-0-323-35955-9.00083-0
Singh, S. K., & Spiegel, S. (2020). Sphingosine-1-phosphate signaling: A novel target for simultaneous adjuvant treatment of triple negative breast cancer and chemotherapy-induced neuropathic pain. Advances in Biological Regulation, 75, 100670. https://doi.org/10.1016/J.JBIOR.2019.100670
Smith, T. J., Razzak, A. R., Blackford, A. L., Ensminger, J., Saiki, C., Longo-Schoberlein, D., & Loprinzi, C. L. (2020). A Pilot Randomized Sham-Controlled Trial of MC5-A Scrambler Therapy in the Treatment of Chronic Chemotherapy-Induced Peripheral Neuropathy (CIPN). Journal of Palliative Care, 35(1), 53–58. https://doi.org/10.1177/0825859719827589
Stepanovska, B., & Huwiler, A. (2020). Targeting the S1P receptor signaling pathways as a promising approach for treatment of autoimmune and inflammatory diseases. Pharmacological Research, 154, 104170. https://doi.org/10.1016/J.PHRS.2019.02.009
Stoffel, W. (1970). Studies on the biosynthesis and degradation of sphingosine bases. Chemistry and Physics of Lipids, 5(1), 139–158. https://doi.org/10.1016/0009-3084(70)90014-9
Stockstill, K., Doyle, T. M., Yan, X., Chen, Z., Janes, K., Little, J. W., . . . Salvemini, D. (2018). Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain. Journal of Experimental Medicine, 215(5), 1301-1313. doi:10.1084/jem.20170584
Subei, A. M., & Cohen, J. A. (2015). Sphingosine 1-Phosphate Receptor Modulators in Multiple Sclerosis. CNS Drugs, 29, 565–575.
Sun, Y., Liu, Y., Ma, X., & Hu, H. (2021). The Influence of Cell Cycle Regulation on Chemotherapy. International Journal of Molecular Sciences, 22(13). https://doi.org/10.3390/IJMS22136923
Tidhar, R., & Futerman, A. H. (2013). The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1833(11), 2511–2518. https://doi.org/10.1016/J.BBAMCR.2013.04.010
Timmins, H. C., Mizrahi, D., Li, T., Kiernan, M. C., Goldstein, D., & Park, S. B. (2021). Metabolic and lifestyle risk factors for chemotherapy-induced peripheral neuropathy in taxane and platinum-treated patients: a systematic review. Journal of Cancer Survivorship. https://doi.org/10.1007/S11764-021-00988-X
Tong, J., Zou, Q., Chen, Y., Liao, X., Chen, R., Ma, L., Zhang, D., & Li, Q. (2021). Efficacy and acceptability of the S1P receptor in the treatment of multiple sclerosis: a meta-analysis. Neurological Sciences : Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 42(5), 1687–1695. https://doi.org/10.1007/S10072-021-05049-W
Tsai, H. C., & Han, M. H. (2016). Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway: Therapeutic Targets in Autoimmunity and Inflammation. Drugs, 76(11), 1067–1079. https://doi.org/10.1007/S40265-016-0603-2
Velasco, R., & Bruna, J. (2010). Neuropatía inducida por quimioterapia: un problema no resuelto. Neurología, 25(2), 116–131. https://doi.org/10.1016/S0213-4853(10)70036-0
Wang, W., Xiang, P., Chew, W. S., Torta, F., Bandla, A., Lopez, V., Seow, W. L., Wan, B., Lam, S., Chang, J. K., Wong, P., Chayaburakul, K., Ong, W.-Y., Wenk, M. R., Sundar, R., Deron, X., & Herr, R. (2019). Activation of sphingosine 1-phosphate receptor 2 attenuates chemotherapy-induced neuropathy. https://doi.org/10.1074/jbc.RA119.011699
Wigger, D., Gulbins, E., Kleuser, B., & Schumacher, F. (2019). Monitoring the Sphingolipid de novo Synthesis by Stable-Isotope Labeling and Liquid Chromatography-Mass Spectrometry. Frontiers in Cell and Developmental Biology, 7, 210. https://doi.org/10.3389/FCELL.2019.00210/BIBTEX
Wilson, E. R., Kugathasan, U., Abramov, A. Y., Clark, A. J., Bennett, D. L. H., Reilly, M. M., Greensmith, L., & Kalmar, B. (2018). Hereditary sensory neuropathy type 1-associated deoxysphingolipids cause neurotoxicity, acute calcium handling abnormalities and mitochondrial dysfunction in vitro. Neurobiology of Disease, 117, 1. https://doi.org/10.1016/J.NBD.2018.05.008
World Health Organization. (2022, February 2). Cancer.
Zaimy, M. A., Saffarzadeh, N., Mohammadi, A., Pourghadamyari, H., Izadi, P., Sarli, A., Moghaddam, L. K., Paschepari, S. R., Azizi, H., Torkamandi, S., & Tavakkoly-Bazzaz, J. (2017). New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Therapy, 24(6), 233–243. https://doi.org/10.1038/CGT.2017.16
Zhang, L., Dong, Y., Wang, Y., Hu, W., Dong, S., & Chen, Y. (2020). Sphingosine-1-phosphate (S1P) receptors: Promising drug targets for treating bone-related diseases. Journal of Cellular and Molecular Medicine, 24(8), 4389–4401. https://doi.org/10.1111/JCMM.15155
Zuellig, R. A., Hornemann, T., Othman, A., Hehl, A. B., Bode, H., Güntert, T., Ogunshola, O. O., Saponara, E., Grabliauskaite, K., Jang, J. H., Ungethuem, U., Wei, Y., Von Eckardstein, A., Graf, R., & Sonda, S. (2014). Deoxysphingolipids, Novel Biomarkers for Type 2 Diabetes, Are Cytotoxic for Insulin-Producing Cells. Diabetes, 63(4), 1326–1339. https://doi.org/10.2337/DB13-1042
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 75 páginas
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86170/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86170/2/1037652261.20241.pdf
https://repositorio.unal.edu.co/bitstream/unal/86170/3/1037652261.20241.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
7f48fb462ebc93acc5ea49dcbc3f95c1
326f637b38c24ffe6b8f2e52518fc56c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090033744838656
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Spassieva, Stefanka2c9f7ee8a3d942a7699c481d7e5addd5Vásquez Araque, Neil Aldrinb738c93743b300229ba7dce362dc8bc0Muñoz Gil, Susanab4597bbf07f4d06d34228bbb95d25d25Muñoz Gil, Susana [0000000254305323]2024-05-28T18:35:18Z2024-05-28T18:35:18Z2023https://repositorio.unal.edu.co/handle/unal/86170Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesThe use of chemotherapeutic agents such as taxanes, paclitaxel, and docetaxel, can cause neurotoxicity leading to Taxane-Induced Peripheral Neuropathy (TIPN) side effect. Previous research showed that sphingolipid (SL) metabolism was deregulated in TIPN. Specifically, the research showed an overproduction of atypical SL called 1-deoxysphingolipids (deoxySL) as a result of taxane treatment. The deoxySL have a slower degradation compared to the canonical SL, and when produced in excess, tend to accumulate, leading to neurotoxicity. The first goal of this research aimed at evaluating the neurotoxicity of individual deoxySL. We tested the toxicity of the individual deoxySL, in two neuroblastoma cell model, KCNR and Neuro2a by LDH cytotoxicity assay and by measuring morphological changes such as neurite swellings and cell rounding. Our results showed that 1-deoxysphinganine was the most cytotoxic of the 1-deoxysphingoid bases for both neuroblastoma cell lines, KCNR and N2a. DeoxySL treatment showed morphological changes. In differentiated N2a cells, the individual deoxySL induced neurite swellings at different time points or concentrations, suggesting that neurite swellings are likely a transient neurotoxic effect of deoxySL treatment. In KCNR neuroblastoma cells, the neurotoxic effects of deoxySL manifested in rounding of the cells’ bodies. Differences in cytotoxicity and neurite swellings were evidenced in the neurotoxic effects of the 1-deoxysphingoid bases and the 1-deoxyceramides, also in the double bond isomers 4E and 14Z 1-deoxysphingosines and 1-deoxyceramides. In addition, to test if the neurotoxic effects of deoxySL include effects on actin organization we used immunocytochemistry and live cell fluorescent imaging to visualize cellular actin architecture. Our results showed that in KCRN cells, deoxySL caused actin stress fibers disruption and re-organization to cell cortex. In primary dorsal root ganglia (DRG) neurons, neurite swellings were also evidenced, and neurite actin distribution. Additionally, we addressed the question if deoxySLs’ neurotoxicity is mediated by the sphingosine-1-phosphate receptors (S1PRs) We utilized a broader functional antagonist of S1PRs, FTY720, in combination with deoxySL to identify if there is attenuation of neuritic damage caused by deoxySL. Results for the FTY720 treatment did not show attenuation of neuritic damage due to deoxySL, suggesting that other mechanisms than S1P signaling, might interact or modulate deoxySL toxicity. In conclusion, neurotoxicity of deoxySL resulted in cytotoxicity, and morphological changes such as neurite swellings and rounding cells, in neuroblastoma cell lines, including actin re-organization in KCNR cells and DRG neurons. S1P signaling and other mechanisms that might be implicated in deoxySL neurotoxicity must continue to be studied.El uso de agentes quimioterapéuticos como taxanos, paclitaxel y docetaxel, puede causar neurotoxicidad que conlleva a un efecto secundario de neuropatía periférica inducida por taxanos (TIPN). Investigaciones anteriores mostraron que el metabolismo de los esfingolípidos (SL) estaba desregulado en la TIPN. Esta investigación mostró una sobreproducción de SL atípico llamado 1-deoxiesfingolípidos (deoxySL) como resultado del tratamiento con taxanos. Los deoxySL tienen una degradación más lenta en comparación con los SL canónicos y, cuando se producen en exceso, tienden a acumularse, lo que lleva a la neurotoxicidad. El primer objetivo de esta investigación consistía en evaluar la neurotoxicidad de los deoxySL individuales. Probamos la toxicidad de los deoxySL individuales, en dos modelos de células de neuroblastoma, KCNR y Neuro2a mediante el ensayo de citotoxicidad LDH y midiendo los cambios morfológicos, como las hinchazones de neuritas y el redondeo celular. Nuestros resultados mostraron que la 1-deoxiesfinganina fue la más citotóxica de las bases 1-deoxiesfingoide para ambas líneas celulares de neuroblastoma, KCNR y N2a. El tratamiento con DeoxySL mostró cambios morfológicos. En células N2a diferenciadas, los deoxySL individuales indujeron a hinchazones de neuritas en diferentes momentos o concentraciones, lo que sugiere que las hinchazones de neuritas son probablemente un efecto neurotóxico transitorio del tratamiento con deoxySL. En las células de neuroblastoma KCNR, los efectos neurotóxicos de deoxySL se manifestaron en el redondeo de los cuerpos de las células. Las diferencias en la citotoxicidad y la hinchazón de las neuritas se evidenciaron en los efectos neurotóxicos de las bases 1-deoxiesfingoide y las 1-deoxiceramidas, también en los isómeros de doble enlace 4E y 14Z 1-deoxiesfingosinas y 1-deoxiceramidas. Además, para probar si los efectos neurotóxicos de deoxySL incluyen efectos sobre la organización de actina, utilizamos inmunocitoquímica e imágenes fluorescentes de células vivas para visualizar la arquitectura de actina celular. Nuestros resultados mostraron que en las células KCRN, deoxySL provocó la disrupción y reorganización de las fibras de estrés de actina en la corteza celular. En las neuronas DRG por sus siglas en inglés (Dorsal Root Ganglia), también se evidenciaron hinchazones de neuritas y distribución de actina de neuritas. Además, abordamos la cuestión de si la neurotoxicidad de deoxySL está mediada por los receptores de esfingosina-1-fosfato (S1PR). Utilizamos un antagonista funcional más amplio de S1PR, FTY720, en combinación con los deoxySL para identificar si hay atenuación del daño neurítico causado por los deoxySL. Los resultados del tratamiento con FTY720 no mostraron atenuación del daño neurítico causado por los deoxySL, lo que sugiere que otros mecanismos, además de la señalización de S1P podrían interactuar o modular la toxicidad de los deoxySL. En conclusión, la neurotoxicidad de los deoxySL resultó en citotoxicidad y cambios morfológicos tales como hinchazones de neuritas y células redondeadas en líneas celulares de neuroblastoma, incluida la reorganización de actina en células KCNR y neuronas DRG. La señalización de S1P y otros mecanismos que podrían estar implicados en la neurotoxicidad de los deoxySL deben continuar estudiándose.MaestríaMagister en Ciencias- BiotecnologíaÁrea curricular Biotecnología75 páginasengUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - BiotecnologíaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería química::666 - Cerámica y tecnologías afines1-deoxysphingolipids (deoxySL)1-deoxysphingosine1-deoxysphinganine1-deoxyceramidetaxane-induced peripheral neuropathy (TIPN)sphingosine-1-phosphate (S1P)sphingosine-1-phosphate receptors (S1PRs)FTY7201-deoxiesfingolípidos1-deoxiesfingosina1- deoxiesfinganine1-deoxiceramidaNeuropatía periférica inducida por taxanos (TIPN)Receptores de esfingosina1-fosfato (S1PR)NeurotoxicidadNeuroblastomaNeurotoxicity of deoxysphingolipids in an in vitro model of taxane induced peripheral neuropathyNeurotoxicidad de los deoxyesfingolipidos en un modelo in vitro de neuropatía periférica inducida por taxanosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaAcevedo, J. C. (2009). Dolor y cáncer (Guadalupe SA, Ed.).Alaamery, M., Albesher, N., Aljawini, N., Alsuwailm, M., Massadeh, S., Wheeler, M. A., Chao, C. C., & Quintana, F. J. (2021). Role of sphingolipid metabolism in neurodegeneration. Journal of Neurochemistry, 158(1), 25–35. https://doi.org/10.1111/JNC.15044Alecu, I., Othman, A., Penno, A., Saied, E. M., Arenz, C., Von Eckardstein, A., & Hornemann, A. T. (2017). Cytotoxic 1-deoxysphingolipids are metabolized by a cytochrome P450-dependent pathway. Journal of Lipid Research, 58(1), 60–71. https://doi.org/10.1194/JLR.M072421/ATTACHMENT/CF587391-5E77-4C92-95E5-B112832A68F8/MMC1.PDFAlecu, I., Tedeschi, A., Behler, N., Wunderling, K., Lamberz, C., Lauterbach, M. A. R., Gaebler, A., Ernst, D., Van Veldhoven, P. P., Al-Amoudi, A., Latz, E., Othman, A., Kuerschner, L., Hornemann, T., Bradke, F., Thiele, C., & Penno, A. A. (2017). Localization of 1-deoxysphingolipids to mitochondria induces mitochondrial dysfunction. Journal of Lipid Research, 58(1), 42. https://doi.org/10.1194/JLR.M068676American Cancer Society. (2020, November 20). ¿Qué Es El Cáncer? https://www.cancer.org/es/tratamiento/como-comprender-su-diagnostico/que-es-el-cancer.htmlAndersen Hammond, E., Pitz, M., & Shay, B. (2019). Neuropathic Pain in Taxane-Induced Peripheral Neuropathy: Evidence for Exercise in Treatment. Neurorehabilitation and Neural Repair, 33(10), 792–799. https://doi.org/10.1177/1545968319860486Argyriou, A. A., Koltzenburg, M., Polychronopoulos, P., Papapetropoulos, S., & Kalofonos, H. P. (2008). Peripheral nerve damage associated with administration of taxanes in patients with cancer. Critical Reviews in Oncology/Hematology, 66(3), 218–228. https://doi.org/10.1016/J.CRITREVONC.2008.01.008Becker, K. A., Uerschels, A. K., Goins, L., Doolen, S., McQuerry, K. J., Bielawski, J., Sure, U., Bieberich, E., Taylor, B. K., Gulbins, E., & Spassieva, S. D. (2020). Role of 1-Deoxysphingolipids in docetaxel neurotoxicity. Journal of Neurochemistry, 154(6), 662–672. https://doi.org/10.1111/JNC.14985Bertea, M., Rütti, M. F., Othman, A., Marti-Jaun, J., Hersberger, M., von Eckardstein, A., & Hornemann, T. (2010). Deoxysphingoid bases as plasma markers in Diabetes mellitus. Lipids in Health and Disease, 9, 84. https://doi.org/10.1186/1476-511X-9-84Blasco, A., & Caballero, C. (2019, December 16). Toxicidad de los tratamientos oncológicos - SEOM: Sociedad Española de Oncología Médica © 2019. https://seom.org/guia-actualizada-de-tratamientos/toxicidad-de-los-tratamientos-oncologicos?showall=1Boso, F., Armirotti, A., Taioli, F., Ferrarini, M., Nobbio, L., Cavallaro, T., & Fabrizi, G. M. (2019). Deoxysphingolipids as candidate biomarkers for a novel SPTLC1 mutation associated with HSAN-I. Neurology Genetics, 5(6), e365. https://doi.org/10.1212/NXG.0000000000000365Bouscary, A., Quessada, C., René, F., Spedding, M., Turner, B. J., Henriques, A., Ngo, S. T., & Loeffler, J. P. (2021). Sphingolipids metabolism alteration in the central nervous system: Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Seminars in Cell & Developmental Biology, 112, 82–91. https://doi.org/10.1016/J.SEMCDB.2020.10.008Brewer, J. R., Morrison, G., Dolan, M. E., & Fleming, G. F. (2016). Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecologic Oncology, 140(1), 176–183. https://doi.org/10.1016/J.YGYNO.2015.11.011Cancer Quest. (2022). Tablas de Tratamientos de Cáncer | CancerQuest. https://www.cancerquest.org/es/para-los-pacientes/tratamientos/tablas-de-tratamientos-de-cancerCanta, A., Pozzi, E., & Carozzi, V. A. (2015). Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN). Toxics, 3(2), 198. https://doi.org/10.3390/TOXICS3020198Cardona, A. F., Ortiz, L., Reveiz, L., Becerra, H., Arango, N., Santacruz, J., Otero, J., Carranza, H., Ojeda, K., Rojas, L., Vargas, C., Rodriguez, M., Castro, C., Camacho, M., Serrano, S., Torres, D., & Balaña, C. (2010). Neuropatía inducida por el tratamiento médico del cáncer. Médicas UIS. https://revistas.uis.edu.co/index.php/revistamedicasuis/article/view/1439Carreira, A. C., Santos, T. C., Lone, M. A., Zupančič, E., Lloyd-Evans, E., de Almeida, R. F. M., Hornemann, T., & Silva, L. C. (2019). Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Progress in Lipid Research, 75, 100988. https://doi.org/10.1016/J.PLIPRES.2019.100988CDC. (2021, May 12). Efectos secundarios del tratamiento contra el cáncer. Centro de Control y Prevención de Enfermedades.Childs, D. S., Le-Rademacher, J. G., McMurray, R., Bendel, M., O’Neill, C., Smith, T. J., & Loprinzi, C. L. (2021). Randomized Trial of Scrambler Therapy for Chemotherapy-Induced Peripheral Neuropathy: Crossover Analysis. Journal of Pain and Symptom Management, 61(6), 1247–1253. https://doi.org/10.1016/J.JPAINSYMMAN.2020.11.025Clarke, C. J., D’Angelo, G., & Silva, L. C. (2020). Sphingolipid metabolism and signaling: embracing diversity. FEBS Letters, 594(22), 3579–3582. https://doi.org/10.1002/1873-3468.13979Cohan, S., Lucassen, E., Smoot, K., Brink, J., & Chen, C. (2020). Sphingosine-1-Phosphate: Its Pharmacological Regulation and the Treatment of Multiple Sclerosis: A Review Article. Biomedicines, 8(7). https://doi.org/10.3390/BIOMEDICINES8070227Colvin, L. A. (2019). Chemotherapy-induced peripheral neuropathy (CIPN): where are we now? Pain, 160(Suppl 1), S1. https://doi.org/10.1097/J.PAIN.0000000000001540Cuadros, R., Montejo de Garcini, E., Wandosell, F., Faircloth, G., Fernández-Sousa, J. M., & Avila, J. (2000). The marine compound spisulosine, an inhibitor of cell proliferation, promotes the disassembly of actin stress fibers. Cancer Letters, 152(1), 23–29. https://doi.org/10.1016/S0304-3835(99)00428-0Cuenta de Alto Costo. (2020, February 4). https://cuentadealtocosto.org/site/cancer/dia-mundial-contra-el-cancer-2020/Fletcher, D. A., & Mullins, R. D. (2010). Cell mechanics and the cytoskeleton. Nature 2010 463:7280, 463(7280), 485–492. https://doi.org/10.1038/nature08908Fridman, V., Zarini, S., Sillau, S., Harrison, K., Bergman, B. C., Feldman, E. L., Reusch, J. E. B., & Callaghan, B. C. (2021). Altered plasma serine and 1-deoxydihydroceramide profiles are associated with diabetic neuropathy in type 2 diabetes and obesity. Journal of Diabetes and Its Complications, 35(4), 107852. https://doi.org/10.1016/J.JDIACOMP.2021.107852Galih Haribowo, A., Thomas Hannich, J., Michel, A. H., Megyeri, M., Schuldiner, M., Kornmann, B., & Riezman, H. (2019). Cytotoxicity of 1-deoxysphingolipid unraveled by genome-wide genetic screens and lipidomics in Saccharomyces cerevisiae. Molecular Biology of the Cell, 30(22), 2814. https://doi.org/10.1091/MBC.E19-07-0364Goins, L., & Spassieva, S. (2018). Sphingoid bases and their involvement in neurodegenerative diseases. Advances in Biological Regulation, 70, 65–73. https://doi.org/10.1016/J.JBIOR.2018.10.004Gomez-Larrauri, A., Presa, N., Dominguez-Herrera, A., Ouro, A., Trueba, M., & Gomez-Munoz, A. (2020). Role of bioactive sphingolipids in physiology and pathology. Essays in Biochemistry, 64(3), 579–589. https://doi.org/10.1042/EBC20190091Gonzalez-Cabrera, P. J., Brown, S., Studer, S. M., & Rosen, H. (2014). S1P signaling: new therapies and opportunities. F1000Prime Reports, 6. https://doi.org/10.12703/P6-109Gui, T., Li, Y., Zhang, S., Alecu, I., Chen, Q., Zhao, Y., Hornemann, T., Kullak-Ublick, G. A., & Gai, Z. (2021). Oxidative stress increases 1-deoxysphingolipid levels in chronic kidney disease. Free Radical Biology and Medicine, 164, 139–148. https://doi.org/10.1016/J.FREERADBIOMED.2021.01.011Güntert, T., Hänggi, P., Othman, A., Suriyanarayanan, S., Sonda, S., Zuellig, R. A., Hornemann, T., & Ogunshola, O. O. (2016). 1-Deoxysphingolipid-induced neurotoxicity involves N-methyl-d-aspartate receptor signaling. Neuropharmacology, 110, 211–222. https://doi.org/10.1016/J.NEUROPHARM.2016.03.033Hannun, Y. A., & Obeid, L. M. (2018). Sphingolipids and their metabolism in physiology and disease. Nature Reviews. Molecular Cell Biology, 19(3), 175. https://doi.org/10.1038/NRM.2017.107Hernández-Coronado, C. G., Guzmán, A., Castillo-Juárez, H., Zamora-Gutiérrez, D., & Rosales-Torres, A. M. (2019). Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. Annales d’endocrinologie, 80(5–6), 263–272. https://doi.org/10.1016/J.ANDO.2019.06.003Hertz, D. L., Tofthagen, C., & Faithfull, S. (2021). Predisposing Factors for the Development of Chemotherapy-Induced Peripheral Neuropathy (CIPN). Diagnosis, Management and Emerging Strategies for Chemotherapy-Induced Neuropathy, 19–51. https://doi.org/10.1007/978-3-030-78663-2_2Holmes, F. A., Walters, R. S., Theriault, R. L., Buzdar, A. U., Frye, D. K., Hortobagyi, G. N., Forman, A. D., Newton, L. K., & Raber, M. N. (1991). Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer. Journal of the National Cancer Institute, 83(24), 1797–1805. https://doi.org/10.1093/JNCI/83.24.1797-AHopkins, B. (2019). Growth cone.Hornemann, T. (2021). Mini review: Lipids in Peripheral Nerve Disorders. Neuroscience Letters, 740, 135455. https://doi.org/10.1016/J.NEULET.2020.135455Hornemann, T., Alecu, I., Hagenbuch, N., Zhakupova, A., Cremonesi, A., Gautschi, M., Jung, H. H., Meienberg, F., Bilz, S., Christ, E., Baumgartner, M. R., & Hochuli, M. (2018). Disturbed sphingolipid metabolism with elevated 1-deoxysphingolipids in glycogen storage disease type I – A link to metabolic control. Molecular Genetics and Metabolism, 125(1–2), 73–78. https://doi.org/10.1016/J.YMGME.2018.07.003Hube, L., Dohrn, M. F., Karsai, G., Hirshman, S., van Damme, P., Schulz, J. B., Weis, J., Hornemann, T., & Claeys, K. G. (2017). Metabolic Syndrome, Neurotoxic 1-Deoxysphingolipids and Nervous Tissue Inflammation in Chronic Idiopathic Axonal Polyneuropathy (CIAP). PLoS ONE, 12(1). https://doi.org/10.1371/JOURNAL.PONE.0170583Huwiler, A., & Zangemeister-Wittke, U. (2018). The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: Recent findings and new perspectives. Pharmacology & Therapeutics, 185, 34–49. https://doi.org/10.1016/j.pharmthera.2017.11.001Instituto Nacional del Cáncer. (2021). Qué Es El Cáncer. https://www.cancer.gov/espanol/cancer/naturaleza/que-esJanes, K., Little, J. W., Li, C., Bryant, L., Chen, C., Chen, Z., . . . Salvemini, D. (2014). The Development and Maintenance of Paclitaxel-induced Neuropathic Pain Require Activation of the Sphingosine 1-Phosphate Receptor Subtype 1. Journal of Biological Chemistry, 289(30), 21082-21097. doi:10.1074/jbc.m114.569574Javeed, S. F., Amir H; Dy, Christopher; Ray, Wilson Z; MacEwan, Matthew R. (2021). Application of electrical stimulation for peripheral nerve regeneration: Stimulation parameters and future horizons. Interdisciplinary Neurosurgery, 24. doi:https://doi.org/10.1016/j.inat.2021.101117Jaggi, A. S., & Singh, N. (2012). Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology, 291(1–3), 1–9. https://doi.org/10.1016/J.TOX.2011.10.019Jankovic, J. (2022). Disorders of Peripheral Nerves. https://www.clinicalkey.es/#!/content/book/3-s2.0-B9780323642613001066Jung, Y. L.-B., Jonathan; Tognoni, Christina M; Carreras, Isabel; Dedeoglu, Alpaslan. (2023). Dysregulation of sphingosine-1-phosphate (S1P) and S1P receptor 1 signaling in the 5xFAD mouse model of Alzheimer's disease. Brain Research. doi:doi: 10.1016/j.brainres.2022.148171Kandjani, O. J. Y., Shadi; Vahdati, Samad Shams; Borhannejad, Behnam; Dastmalchi, Siavoush; Alizadeh, Ali Akbar (2023). S1PR1 modulators in multiple sclerosis: Efficacy, safety, comparison, and chemical structure insights. European Journal of Medicinal Chemistry. doi: doi: 10.1016/j.ejmech.2023.115182Kolter, T., & Sandhoff, K. (1999). Sphingolipids—Their Metabolic Pathways and the Pathobiochemistry of Neurodegenerative Diseases. Angewandte. https://doi.org/10.1002/(SICI)1521-3773(19990601)38:11<1532::AID-ANIE1532>3.0.CO;2-UKramer, R., Bielawski, J., Kistner-Griffin, E., Othman, A., Alecu, I., Ernst, D., Kornhauser, D., Hornemann, T., & Spassieva, S. (2015). Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. FASEB Journal, 29(11), 4461–4472. https://doi.org/10.1096/FJ.15-272567Leßmann, V. K., Georgia-Ioanna; Endres, Thomas; Pawlitzki, Marc; Gottmann, Kurt. (2023). Repurposing drugs against Alzheimer’s disease: can the anti-multiple sclerosis drug fingolimod (FTY720) effectively tackle inflammation processes in AD? Journal of Neural Transmission. doi:10.1007/s00702-023-02618-5Loewith, R., Riezman, H., & Winssinger, N. (2019). Sphingolipids and membrane targets for therapeutics. Current Opinion in Chemical Biology, 50, 19–28. https://doi.org/10.1016/J.CBPA.2019.02.015Lone, M. A., Hülsmeier, A. J., Saied, E. M., Karsai, G., Arenz, C., von Eckardstein, A., & Hornemann, T. (2020). Subunit composition of the mammalian serine-palmitoyltransferase defines the spectrum of straight and methyl-branched long-chain bases. Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15591–15598. https://doi.org/10.1073/PNAS.2002391117/-/DCSUPPLEMENTALLone, M. A., Santos, T., Alecu, I., Silva, L. C., & Hornemann, T. (2019). 1-Deoxysphingolipids. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1864(4), 512–521. https://doi.org/10.1016/J.BBALIP.2018.12.013Loprinzi, C. L., Lacchetti, C., Bleeker, J., Cavaletti, G., Chauhan, C., Hertz, D. L., Kelley, M. R., Lavino, A., Lustberg, M. B., Paice, J. A., Schneider, B. P., Lavoie Smith, E. M., Smith, M. Lou, Smith, T. J., Wagner-Johnston, N., & Hershman, D. L. (2020). Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 38(28), 3325–3348. https://doi.org/10.1200/JCO.20.01399Maceyka, M., Harikumar, K. B., Milstien, S., & Spiegel, S. (2012). Sphingosine-1-phosphate signaling and its role in disease. Trends in Cell Biology, 22(1), 50–60. https://doi.org/10.1016/J.TCB.2011.09.003Maihöfner, C., Diel, I., Tesch, H., Quandel, T., & Baron, R. (2021). Chemotherapy-induced peripheral neuropathy (CIPN): current therapies and topical treatment option with high-concentration capsaicin. Supportive Care in Cancer, 29(8), 4223–4238. https://doi.org/10.1007/S00520-021-06042-X/FIGURES/4Malin, S. A. D., Brian M; Molliver, Derek C. (2007). Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nature Protocols, 2, 152-160. doi:https://doi.org/10.1038/nprot.2006.461Mandala, S., Hajdu, R., Bergstrom, J., Quackenbush, E., Xie, J., Milligan, J., Thornton, R., Shei, G.-J., Card, D., Keohane, C., Rosenbach, M., Hale, J., Lynch, C. L., Rupprecht, K., Parsons, W., & Rosen, H. (2002). Alteration of Lymphocyte Trafficking by Sphingosine-1-Phosphate Receptor Agonists. Science, 296(5566), 346–349. https://doi.org/10.1126/science.1070238Martínez, J. W., Sánchez-Naranjo, J. C., Londoño-De Los Ríos, P. A., Isaza-Mejía, C. A., Sosa-Urrea, J. D., Martínez-Muñoz, M. A., López-Osorio, J. J., Marín-Medina, D. S., Machado-Duque, M. E., & Machado-Alba, J. E. (2019). Prevalence of peripheral neuropathy associated with chemotherapy in four oncology centers of colombia. Revista de Neurologia, 69(3), 94–98. https://doi.org/10.33588/rn.6903.2019035Martinez, T. N., Chen, X., Bandyopadhyay, S., Merrill, A. H., & Tansey, M. G. (2012). Ceramide sphingolipid signaling mediates Tumor Necrosis Factor (TNF)-dependent toxicity via caspase signaling in dopaminergic neurons. Molecular Neurodegeneration, 7(1). https://doi.org/10.1186/1750-1326-7-45Mayo Clinic. (2019, February 5). https://www.mayoclinic.org/es-es/diseases-conditions/cancer/symptoms-causes/syc-20370588McGinley, M. P., & Cohen, J. A. (2021). Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. The Lancet, 398(10306), 1184–1194. https://doi.org/10.1016/S0140-6736(21)00244-0Mendelson, K. E., Todd; Hla, Timothy. (2014). Sphingosine 1-phosphate signalling. Development, 141(1), 5-9. doi:10.1242/dev.094805Merrill, A. H. (2002). De Novo Sphingolipid Biosynthesis: A Necessary, but Dangerous, Pathway*. https://doi.org/10.1074/jbc.R200009200Merrill, A. H. (2011). Sphingolipid and Glycosphingolipid Metabolic Pathways in the Era of Sphingolipidomics. Chemical Reviews, 111(10), 6387–6422. https://doi.org/10.1021/CR2002917Ministerio de salud. (2021, February 4). Incidencia Del Cáncer Se Redujo En Los Últimos 3 Años. https://www.minsalud.gov.co/Paginas/Incidencia-del-cancer-se-redujo-en-los-ultimos-3-anos.aspxMolassiotis, A., Cheng, H. L., Lopez, V., Au, J. S. K., Chan, A., Bandla, A., Leung, K. T., Li, Y. C., Wong, K. H., Suen, L. K. P., Chan, C. W., Yorke, J., Farrell, C., & Sundar, R. (2019). Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer, 19(1), 1–19. https://doi.org/10.1186/S12885-019-5302-4/FIGURES/7Much, J. (2017). MD Anderson Cancer Center, University of Texas. Tratamiento de La Neuropatía Inducida Por La Quimioterapia. https://www.mdanderson.org/es/publicaciones/oncolog/noviembre-diciembre-2017/tratamiento-de-la-neuropatia-inducida-por-la-quimioterapia.htmlMwinyi, J., Boström, A., Fehrer, I., Othman, A., Waeber, G., Marti-Soler, H., Vollenweider, P., Marques-Vidal, P., Schiöth, H. B., Von Eckardstein, A., & Hornemann, T. (2017). Plasma 1-deoxysphingolipids are early predictors of incident type 2 diabetes mellitus. PLoS ONE, 12(5). https://doi.org/10.1371/JOURNAL.PONE.0175776National Institutes of Health. (2015). NIH. Tipos de Tratamiento. https://www.cancer.gov/espanol/cancer/tratamiento/tiposNi, L. Y., Zhao; Zhao, Yifan; Zhang, Tianfang; Wang, Jie; Li, Siyue; Chen, Zuobing. (2023). Electrical stimulation therapy for peripheral nerve injury. Frontiers in Neurology. doi:doi: 10.3389/fneur.2023.1081458NIH. (2023, March 13, 2023). Peripheral Neuropathy. Retrieved from https://www.ninds.nih.gov/health-information/disorders/peripheral-neuropathyNIH. (n.d.). Efectos secundarios del tratamiento del cáncer - Instituto Nacional del Cáncer. Retrieved April 15, 2022, from https://www.cancer.gov/espanol/cancer/tratamiento/efectos-secundariosObinata, H., & Hla, T. (2019). Sphingosine 1-phosphate and inflammation. International Immunology, 31(9), 617. https://doi.org/10.1093/INTIMM/DXZ037Organización Panamericana de la Salud. (2020). https://www.paho.org/es/temas/cancerO’Sullivan, C., & Dev, K. K. (2013). The structure and function of the S1P1 receptor. Trends in Pharmacological Sciences, 34(7), 401–412. https://doi.org/10.1016/J.TIPS.2013.05.002Patel, F., & Spassieva, S. D. (2018). Side Effects in Cancer Therapy: Are Sphingolipids to Blame? Advances in Cancer Research, 140, 367–388. https://doi.org/10.1016/BS.ACR.2018.04.017Penno, A., Reilly, M. M., Houlden, H., Laurá, M., Rentsch, K., Niederkofler, V., Stoeckli, E. T., Nicholson, G., Eichler, F., Brown, R. H., Von Eckardstein, A., & Hornemann, T. (2010). Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. Journal of Biological Chemistry, 285(15), 11178–11187. https://doi.org/10.1074/JBC.M109.092973Pike, C. T. B., Howard G; Muehlenbein, Catherine E; Pohl, Gerhardt M; Natale, Ronald B. (2012). Healthcare Costs and Workloss Burden of Patients with Chemotherapy-Associated Peripheral Neuropathy in Breast, Ovarian, Head and Neck, and Nonsmall Cell Lung Cancer. Chemotherapy Research and Practice, 2012, 1-10. doi:10.1155/2012/913848Pyne, N. J., & Pyne, S. (2010). Sphingosine 1-phosphate and cancer. Nature Reviews Cancer, 10(7), 489–503. https://doi.org/10.1038/nrc2875Quinville, B. M., Deschenes, N. M., Ryckman, A. E., & Walia, J. S. (2021). A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. International Journal of Molecular Sciences 2021, Vol. 22, Page 5793, 22(11), 5793. https://doi.org/10.3390/IJMS22115793Regula Steiner, E. M. S., Alaa Othman, Christoph Arenz, Alan T Maccarone, Berwyck L J Poad, Stephen J Blanksby, Arnold von Eckardstein, Thorsten Hornemann (2016). Elucidating the chemical structure of native 1-deoxysphingosine. Journal Lipid Research, 57(1), 1194-1203. doi:doi: 10.1194/jlr.M067033Santos, T. d. C. B. d. (2021). Biophysical and biological properties of atypical sphingolipids: implications to physiology and pathophysiology. Universidade de Lisboa.Saba, J. D. (2019). Fifty years of lyase and a moment of truth: sphingosine phosphate lyase from discovery to disease. Journal of Lipid Research, 60(3), 456. https://doi.org/10.1194/JLR.S091181Schwartz, N. U., Mileva, I., Gurevich, M., Snider, J., Hannun, Y. A., & Obeid, L. M. (2019). Quantifying 1-deoxydihydroceramides and 1-deoxyceramides in mouse nervous system tissue. Prostaglandins & Other Lipid Mediators, 141, 40–48. https://doi.org/10.1016/J.PROSTAGLANDINS.2019.02.005Shahpar, S., Mhatre, P. V., & Oza, S. (2018). Rehabilitation. The Breast: Comprehensive Management of Benign and Malignant Diseases, 1031-1038.e3. https://doi.org/10.1016/B978-0-323-35955-9.00083-0Singh, S. K., & Spiegel, S. (2020). Sphingosine-1-phosphate signaling: A novel target for simultaneous adjuvant treatment of triple negative breast cancer and chemotherapy-induced neuropathic pain. Advances in Biological Regulation, 75, 100670. https://doi.org/10.1016/J.JBIOR.2019.100670Smith, T. J., Razzak, A. R., Blackford, A. L., Ensminger, J., Saiki, C., Longo-Schoberlein, D., & Loprinzi, C. L. (2020). A Pilot Randomized Sham-Controlled Trial of MC5-A Scrambler Therapy in the Treatment of Chronic Chemotherapy-Induced Peripheral Neuropathy (CIPN). Journal of Palliative Care, 35(1), 53–58. https://doi.org/10.1177/0825859719827589Stepanovska, B., & Huwiler, A. (2020). Targeting the S1P receptor signaling pathways as a promising approach for treatment of autoimmune and inflammatory diseases. Pharmacological Research, 154, 104170. https://doi.org/10.1016/J.PHRS.2019.02.009Stoffel, W. (1970). Studies on the biosynthesis and degradation of sphingosine bases. Chemistry and Physics of Lipids, 5(1), 139–158. https://doi.org/10.1016/0009-3084(70)90014-9Stockstill, K., Doyle, T. M., Yan, X., Chen, Z., Janes, K., Little, J. W., . . . Salvemini, D. (2018). Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain. Journal of Experimental Medicine, 215(5), 1301-1313. doi:10.1084/jem.20170584Subei, A. M., & Cohen, J. A. (2015). Sphingosine 1-Phosphate Receptor Modulators in Multiple Sclerosis. CNS Drugs, 29, 565–575.Sun, Y., Liu, Y., Ma, X., & Hu, H. (2021). The Influence of Cell Cycle Regulation on Chemotherapy. International Journal of Molecular Sciences, 22(13). https://doi.org/10.3390/IJMS22136923Tidhar, R., & Futerman, A. H. (2013). The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1833(11), 2511–2518. https://doi.org/10.1016/J.BBAMCR.2013.04.010Timmins, H. C., Mizrahi, D., Li, T., Kiernan, M. C., Goldstein, D., & Park, S. B. (2021). Metabolic and lifestyle risk factors for chemotherapy-induced peripheral neuropathy in taxane and platinum-treated patients: a systematic review. Journal of Cancer Survivorship. https://doi.org/10.1007/S11764-021-00988-XTong, J., Zou, Q., Chen, Y., Liao, X., Chen, R., Ma, L., Zhang, D., & Li, Q. (2021). Efficacy and acceptability of the S1P receptor in the treatment of multiple sclerosis: a meta-analysis. Neurological Sciences : Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 42(5), 1687–1695. https://doi.org/10.1007/S10072-021-05049-WTsai, H. C., & Han, M. H. (2016). Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway: Therapeutic Targets in Autoimmunity and Inflammation. Drugs, 76(11), 1067–1079. https://doi.org/10.1007/S40265-016-0603-2Velasco, R., & Bruna, J. (2010). Neuropatía inducida por quimioterapia: un problema no resuelto. Neurología, 25(2), 116–131. https://doi.org/10.1016/S0213-4853(10)70036-0Wang, W., Xiang, P., Chew, W. S., Torta, F., Bandla, A., Lopez, V., Seow, W. L., Wan, B., Lam, S., Chang, J. K., Wong, P., Chayaburakul, K., Ong, W.-Y., Wenk, M. R., Sundar, R., Deron, X., & Herr, R. (2019). Activation of sphingosine 1-phosphate receptor 2 attenuates chemotherapy-induced neuropathy. https://doi.org/10.1074/jbc.RA119.011699Wigger, D., Gulbins, E., Kleuser, B., & Schumacher, F. (2019). Monitoring the Sphingolipid de novo Synthesis by Stable-Isotope Labeling and Liquid Chromatography-Mass Spectrometry. Frontiers in Cell and Developmental Biology, 7, 210. https://doi.org/10.3389/FCELL.2019.00210/BIBTEXWilson, E. R., Kugathasan, U., Abramov, A. Y., Clark, A. J., Bennett, D. L. H., Reilly, M. M., Greensmith, L., & Kalmar, B. (2018). Hereditary sensory neuropathy type 1-associated deoxysphingolipids cause neurotoxicity, acute calcium handling abnormalities and mitochondrial dysfunction in vitro. Neurobiology of Disease, 117, 1. https://doi.org/10.1016/J.NBD.2018.05.008World Health Organization. (2022, February 2). Cancer.Zaimy, M. A., Saffarzadeh, N., Mohammadi, A., Pourghadamyari, H., Izadi, P., Sarli, A., Moghaddam, L. K., Paschepari, S. R., Azizi, H., Torkamandi, S., & Tavakkoly-Bazzaz, J. (2017). New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Therapy, 24(6), 233–243. https://doi.org/10.1038/CGT.2017.16Zhang, L., Dong, Y., Wang, Y., Hu, W., Dong, S., & Chen, Y. (2020). Sphingosine-1-phosphate (S1P) receptors: Promising drug targets for treating bone-related diseases. Journal of Cellular and Molecular Medicine, 24(8), 4389–4401. https://doi.org/10.1111/JCMM.15155Zuellig, R. A., Hornemann, T., Othman, A., Hehl, A. B., Bode, H., Güntert, T., Ogunshola, O. O., Saponara, E., Grabliauskaite, K., Jang, J. H., Ungethuem, U., Wei, Y., Von Eckardstein, A., Graf, R., & Sonda, S. (2014). Deoxysphingolipids, Novel Biomarkers for Type 2 Diabetes, Are Cytotoxic for Insulin-Producing Cells. Diabetes, 63(4), 1326–1339. https://doi.org/10.2337/DB13-1042Neurotoxicity of deoxysphingolipids in an in vitro model of taxane induced peripheral neuropathyInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86170/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1037652261.20241.pdf1037652261.20241.pdfTesis de Maestría en Ciencias - Biotecnologíaapplication/pdf1439149https://repositorio.unal.edu.co/bitstream/unal/86170/2/1037652261.20241.pdf7f48fb462ebc93acc5ea49dcbc3f95c1MD52THUMBNAIL1037652261.20241.pdf.jpg1037652261.20241.pdf.jpgGenerated Thumbnailimage/jpeg4760https://repositorio.unal.edu.co/bitstream/unal/86170/3/1037652261.20241.pdf.jpg326f637b38c24ffe6b8f2e52518fc56cMD53unal/86170oai:repositorio.unal.edu.co:unal/861702024-08-23 23:11:33.786Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=