Embedded cmc hypersurfaces on hyperbolic spaces
In this paper we will prove that for every integer $n and gt;1$, there exists a real number $H_0-2\pi$, then, $H$ can be realized as the mean curvature of an embedding of $H^{n-1}\times S^1$ in the $(n+1)$-dimensional space $H^{n+1}$.
- Autores:
 - 
                   Perdomo, Oscar           
 
- Tipo de recurso:
 - Article of journal
 
- Fecha de publicación:
 - 2011
 
- Institución:
 - Universidad Nacional de Colombia
 
- Repositorio:
 - Universidad Nacional de Colombia
 
- Idioma:
 -           spa          
 - OAI Identifier:
 - oai:repositorio.unal.edu.co:unal/39450
 - Acceso en línea:
 -           https://repositorio.unal.edu.co/handle/unal/39450
          
http://bdigital.unal.edu.co/29547/
 - Palabra clave:
 -           Principal curvatures          
Hyperbolic spaces
Constant mean curvature
CMC
Embeddings
58A10
53C42
 - Rights
 - openAccess
 - License
 - Atribución-NoComercial 4.0 Internacional
 
| Summary: | In this paper we will prove that for every integer $n and gt;1$, there exists a real number $H_0-2\pi$, then, $H$ can be realized as the mean curvature of an embedding of $H^{n-1}\times S^1$ in the $(n+1)$-dimensional space $H^{n+1}$. | 
|---|
