Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia
ilustraciones, fotografías, graficas
- Autores:
-
Méndez Galeano, Miguel Ángel
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82224
- Palabra clave:
- 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
DEMOGRAFIA
CARACTERISTICAS DEMOGRAFICAS
BIOLOGIA EVOLUTIVA
Demography
Demographic characteristics
Developmental biology
Reptiles escamados
Congruencia filogeográfica
patrones atemporales
hipótesis de geodiversidad de montaña
Squamate reptiles
phylogeographic congruence
atemporal patterns
Mountain-geobiodiversity hypothesis
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_45dbf7e145c49ead3e956ae7c31a2bd3 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82224 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia |
dc.title.translated.eng.fl_str_mv |
Comparative phylogeography of four squamate reptile species from Cundiboyacense high plateau, eastern cordillera of Colombia |
title |
Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia |
spellingShingle |
Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales DEMOGRAFIA CARACTERISTICAS DEMOGRAFICAS BIOLOGIA EVOLUTIVA Demography Demographic characteristics Developmental biology Reptiles escamados Congruencia filogeográfica patrones atemporales hipótesis de geodiversidad de montaña Squamate reptiles phylogeographic congruence atemporal patterns Mountain-geobiodiversity hypothesis |
title_short |
Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia |
title_full |
Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia |
title_fullStr |
Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia |
title_full_unstemmed |
Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia |
title_sort |
Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia |
dc.creator.fl_str_mv |
Méndez Galeano, Miguel Ángel |
dc.contributor.advisor.none.fl_str_mv |
Vargas Ramírez, Mario |
dc.contributor.author.none.fl_str_mv |
Méndez Galeano, Miguel Ángel |
dc.contributor.researchgroup.spa.fl_str_mv |
Biodiversidad y Conservación Genética |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales |
topic |
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales DEMOGRAFIA CARACTERISTICAS DEMOGRAFICAS BIOLOGIA EVOLUTIVA Demography Demographic characteristics Developmental biology Reptiles escamados Congruencia filogeográfica patrones atemporales hipótesis de geodiversidad de montaña Squamate reptiles phylogeographic congruence atemporal patterns Mountain-geobiodiversity hypothesis |
dc.subject.lemb.spa.fl_str_mv |
DEMOGRAFIA CARACTERISTICAS DEMOGRAFICAS BIOLOGIA EVOLUTIVA |
dc.subject.lemb.eng.fl_str_mv |
Demography Demographic characteristics Developmental biology |
dc.subject.proposal.spa.fl_str_mv |
Reptiles escamados Congruencia filogeográfica patrones atemporales hipótesis de geodiversidad de montaña |
dc.subject.proposal.eng.fl_str_mv |
Squamate reptiles phylogeographic congruence atemporal patterns Mountain-geobiodiversity hypothesis |
description |
ilustraciones, fotografías, graficas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-08-31T19:02:35Z |
dc.date.available.none.fl_str_mv |
2022-08-31T19:02:35Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82224 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82224 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
Araujo-Carrillo, G. A., Varón-Ramírez, V. M., Jaramillo-Barrios, C. I., Estupiñan-Casallas, J. M., Silva-Arero, E. A., Gómez-Latorre, D. A., & Martínez-Maldonado, F. E. (2021). IRAKA: The first Colombian soil information system with digital soil mapping products. Catena, 196, 104940 Arbelaez-Cortes, E. (2012). Filogeografía comparada: conceptos, métodos y patrones generales en aves Neotropicales. Acta Biológica Colombiana, 17(1), 19-38 Arevalo, E., Davis, S. K., & Sites Jr, J. W. (1994). Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Systematic Biology, 43(3), 387-418 Arteaga, A., Pyron, R. A., Peñafiel, N., Romero-Barreto, P., Culebras, J., Bustamante, L., Yanez-Muñoz, M. H., & Guayasamin, J. M. (2016). Comparative phylogeography reveals cryptic diversity and repeated patterns of cladogenesis for amphibians and reptiles in northwestern Ecuador. PloS one, 11(4), e0151746 Avise, J. C. (1995). Mitochondrial DNA polymorphism and a connection between genetics and demography of relevance to conservation. Conservation Biology, 9(3), 686-690 Avise, J. C. (1998). The history and purview of phylogeography: a personal reflection. Molecular Ecology, 7(4), 371-379 Avise, J. C. (2000). Phylogeography: the history and formation of species. Harvard university press Avise, J. C. (2009). Phylogeography: retrospect and prospect. Journal of biogeography, 36(1), 3-15 Avise, J. C., & Walker, D. E. (1998). Pleistocene phylogeographic effects on avian populations and the speciation process. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1395), 457-463 Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A. & Saunders, N. C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual review of ecology and systematics, 18(1), 489-522 Avise, J. C., Walker, D., & Johns, G. C. (1998). Speciation durations and Pleistocene effects on vertebrate phylogeography. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1407), 1707-1712 Barrow, L. N., Soto‐Centeno, J. A., Warwick, A. R., Lemmon, A. R., & Moriarty Lemmon, E. (2017). Evaluating hypotheses of expansion from refugia through comparative phylogeography of south‐eastern Coastal Plain amphibians. Journal of Biogeography, 44(12), 2692-2705 Beaumont, M. A., & Panchal, M. (2008). On the validity of nested clade phylogeographical analysis. Molecular Ecology 17, 2563–2565 Beaumont, M. A., Zhang, W., & Balding, D. J. (2002). Approximate Bayesian computation in population genetics. Genetics, 162(4), 2025-2035 Beheregaray, L. B. (2008). Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Molecular Ecology, 17(17), 3754-3774 Behling, H. (1998). Late Quaternary vegetational and climatic changes in Brazil. Review of palaeobotany and palynology, 99(2), 143-156 Benavides, E., Baum, R., McClellan, D., & Sites, J. W. (2007). Molecular phylogenetics of the lizard genus Microlophus (Squamata: Tropiduridae): aligning and retrieving indel signal from nuclear introns. Systematic biology, 56(5), 776-797 Brito, P. H., & Edwards, S. V. (2009). Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica, 135(3), 439-455 Calderón, M., Caicedo, J., Ines Hladki, A., Renjifo, J. & Urbina, N. 2017. Anadia bogotensis. In The IUCN Red List of Threatened Species 2017: e.T44578148A44578157. https://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T44578148A44578157.en Camargo, A., Sinervo, B., & Sites Jr, J. W. (2010). Lizards as model organisms for linking phylogeographic and speciation studies. Molecular Ecology, 19(16), 3250-3270 Castaño-Mora, O.V, Hernández, E. & Cárdenas, G. (2000). Reptiles. En Colombia Diversidad Biótica III La región de vida paramuna. Bogotá D.C. Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M., & Corander, J. (2013). Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Molecular biology and evolution, 30(5), 1224-1228 Clement, M., Posada, D. C. K. A., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular ecology, 9(10), 1657-1659 Crnobrnja-Isailovic, J. (2007). Cross-section of a refugium: genetic diversity of amphibian and reptile populations in the Balkans. In Phylogeography of southern European refugia (pp. 327-337). Springer, Dordrecht Csilléry, K., Blum, M. G., Gaggiotti, O. E., & François, O. (2010). Approximate Bayesian computation (ABC) in practice. Trends in ecology & evolution, 25(7), 410-418 Da Silva, M. N. F., & Patton, J. L. (1998). Molecular phylogeography and the evolution and conservation of Amazonian mammals. Molecular Ecology, 7(4), 475-486 De Bermoudes, O., & Velandia, F. (2010). Hidrogeología regional de la Sabana de Bogotá. Universidad de Antioquia, Hidrogeología para la gestión del recurso Hídrico Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Pp. 159-168 De Queiroz, K. (2007). Species concepts and species delimitation. Systematic biology, 56(6), 879-886 Drummond A.J., Suchard M.A., Xie D., Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973. doi:10.1093/molbev/mss075 Flantua, S. G., Hooghiemstra, H., & Hoorn, C. (2018). Historical connectivity and mountain biodiversity. In Mountains, climate and biodiversity, 171-185 Flantua, S. G., O'Dea, A., Onstein, R. E., Giraldo, C., & Hooghiemstra, H. (2019). The flickering connectivity system of the north Andean páramos. Journal of Biogeography, 46(8), 1808-1825 García-R, J. C., Crawford, A. J., Mendoza, Á. M., Ospina, O., Cardenas, H., & Castro, F. (2012). Comparative phylogeography of direct-developing frogs (Anura: Craugastoridae: Pristimantis) in the southern Andes of Colombia. PLoS One, 7(9), e46077 Garrick, R. C., Hyseni, C., Arantes, Í. C., Zachos, L. G., Zee, P. C., & Oliver, J. C. (2021). Is Phylogeographic Congruence Predicted by Historical Habitat Stability, or Ecological Co-associations?. Insect Systematics and Diversity, 5(5), 1-7 Gehara, M., Garda, A. A., Werneck, F. P., Oliveira, E. F., da Fonseca, E. M., Camurugi, F., Magalhães, F. de M., Lanna, F. M., Sites Jr, J. W. Marques, R., Silveira-Filho, R., São Pedro, V. A., Colli, G. R., Costa, G. C., & Burbrink, F. T. (2017). Estimating synchronous demographic changes across populations using hABC and its application for a herpetological community from northeastern Brazil. Molecular Ecology, 26(18), 4756-4771 González, B. A., Vásquez, J. P., Gómez-Uchida, D., Cortés, J., Rivera, R., Aravena, N., Chero, A. M., Agapito, A. M., Varas, V, Wheeler, J. C., Orozco-terWengel, P., & Marín, J. C. (2019). Phylogeography and population genetics of Vicugna vicugna: Evolution in the arid Andean high plateau. Frontiers in genetics, 10, 445 Grazziotin, F. G., Zaher, H., Murphy, R. W., Scrocchi, G., Benavides, M. A., Zhang, Y. P., & Bonatto, S. L. (2012). Molecular phylogeny of the new world Dipsadidae (Serpentes: Colubroidea): a reappraisal. Cladistics, 28(5), 437-459 Green, M. R., & Sambrook, J. (2017). Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harbor Protocols, 2017(4), pdb-prot093450 Gregory-Wodzicki, K. M. (2000). Uplift history of the Central and Northern Andes: a review. Geological Society of America Bulletin, 112(7), 1091-1105 Guarnizo, C. E., Amézquita, A., & Bermingham, E. (2009). The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution, 50(1), 84-92 Guarnizo, C. E., Escallón, C., Cannatella, D., & Amézquita, A. (2012). Congruence between acoustic traits and genealogical history reveals a new species of Dendropsophus (Anura: Hylidae) in the high Andes of Colombia. Herpetologica, 68(4), 523-540 Guarnizo, C. E., Paz, A., Muñoz-Ortiz, A., Flechas, S. V., Méndez-Narváez, J., & Crawford, A. J. (2015). DNA barcoding survey of anurans across the Eastern Cordillera of Colombia and the impact of the Andes on cryptic diversity. PloS one, 10(5), e0127312 Guicking, D., Joger, U., & Wink, M. (2009). Cryptic diversity in a Eurasian water snake (Natrix tessellata, Serpentes: Colubridae): Evidence from mitochondrial sequence data and nuclear ISSR-PCR fingerprinting. Organisms Diversity & Evolution, 9(3), 201-214 Hall, T. A. (1999, January). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series (Vol. 41, No. 41, pp. 95-98). [London]: Information Retrieval Ltd., c1979-c2000 Heled, J. (2015). Extended Bayesian Skyline Plot tutorial for BEAST 2. Disponible en http://evomicsorg.wpengine.netdna-cdn.com/wpcontent/uploads/2015/11/ebsp2-tut1.pdf Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological journal of the Linnean Society, 58(3), 247-276 Hewitt, G. M. (1999). Post-glacial re-colonization of European biota. Biological journal of the Linnean Society, 68(1-2), 87-112 Hickerson, M. J., Carstens, B. C., Cavender-Bares, J., Crandall, K. A., Graham, C. H., Johnson, J. B., Rissler, L., Victoriano, P. F. & Yoder, A. D. (2010). Phylogeography’s past, present, and future: 10 years after. Molecular phylogenetics and evolution, 54(1), 291-301 Ho, S. Y., & Shapiro, B. (2011). Skyline‐plot methods for estimating demographic history from nucleotide sequences. Molecular ecology resources, 11(3), 423-434 Hofmann, S., Kraus, S., Dorge, T., Nothnagel, M., Fritzsche, P., & Miehe, G. (2014). Effects of Pleistocene climatic fluctuations on the phylogeography, demography and population structure of a high‐elevation snake species, Thermophis baileyi, on the Tibetan Plateau. Journal of biogeography, 41(11), 2162-2172 Hooghiemstra, H., & Van der Hammen, T. (2004). Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1442), 173-181 Hoscheit, P., & Pybus, O. G. (2019). The multifurcating skyline plot. Virus evolution, 5(2), vez031 Hudson, R. R. (1990). Gene genealogies and the coalescent process. Oxford surveys in evolutionary biology, 7(1), 1-44 Jerez, A., & Calderón-Espinosa, M. L. (2014). Anadia bogotensis (Peters, 1862). Catálogo de Anfibios y Reptiles de Colombia, 2(1), 30-35 Jin, Y., Liu, N., & Brown, R. P. (2017). The geography and timing of genetic divergence in the lizard Phrynocephalus theobaldi on the Qinghai-Tibetan plateau. Scientific reports, 7(1), 1-8 Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods, 14(6), 587-589 Klunzinger, M. W., Lopes-Lima, M., Gomes-dos-Santos, A., Froufe, E., Lymbery, A. J., & Kirkendale, L. (2021). Phylogeographic study of the West Australian freshwater mussel, Westralunio carteri, uncovers evolutionarily significant units that raise new conservation concerns. Hydrobiologia, 848(12), 2951-2964 Knowles, L. L. (2004). The burgeoning field of statistical phylogeography. Journal of evolutionary biology, 17(1), 1-10 Knowles, L. L., & Maddison, W. P. (2002). Statistical phylogeography. Molecular Ecology, 11(12), 2623-2635 Leigh, J. W., & Bryant, D. (2015). PoPArt: full‐feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116 Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452 Macey, J. R., Schulte II, J. A., Ananjeva, N. B., Larson, A., Rastegar-Pouyani, N., Shammakov, S. M., & Papenfuss, T. J. (1998). Phylogenetic Relationships among Agamid Lizards of the Laudakia caucasia species Group: Testing Hypotheses of Biogeographic Fragmentation and an Area Cladogram for the Iranian Plateau. Molecular Phylogenetics and Evolution, 10(1), 118-131 Macey, J. R., Schulte II, J. A., Larson, A., Tuniyev, B. S., Orlov, N., & Papenfuss, T. J. (1999). Molecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families. Molecular phylogenetics and evolution, 12(3), 250-272 Manolopoulou, I., Hille, A., & Emerson, B. (2020). BPEC: An R package for Bayesian phylogeographic and ecological clustering. Journal of Statistical Software, 92, 1-32 Mao, K., Wang, Y., & Liu, J. (2021). Evolutionary origin of species diversity on the Qinghai‐Tibet Plateau. Journal of Systematics and Evolution. Pp. 1-17 Marin, J. C., González, B. A., Poulin, E., Casey, C. S., & Johnson, W. E. (2013). The influence of the arid Andean high plateau on the phylogeography and population genetics of guanaco (Lama guanicoe) in South America. Molecular ecology, 22(2), 463-482 Martins, L. F., Choueri, E. L., Oliveira, A. F., Domingos, F. M., Caetano, G. H., Cavalcante, V. H., Leite R. N., Fouquet, A., Rodrigues, M. T., Carnaval, A. C., Colli, G. R., & Werneck, F. P. (2021). Whiptail lizard lineage delimitation and population expansion as windows into the history of Amazonian open ecosystems. Systematics and Biodiversity, 1-19 Masta, S. E. (2000). Phylogeography of the jumping spider Habronattus pugillis (Araneae: Salticidae): recent vicariance of sky island populations?. Evolution, 54(5), 1699-1711 Méndez-Galeano, M. A., & Pinto-Erazo, M. A. (2018). Riama striata (Peters, 1862). Catálogo de Anfibios y Reptiles de Colombia, 4 (2), 61-67 Morales-Betancourt, M. A., Lasso, C. A., Páez, V. P., & Bock, B. C. (2015). Libro rojo de reptiles de Colombia (2015) Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Universidad de Antioquia. Bogotá, DC, Colombia Moritz, C. (1994). Defining ‘evolutionarily significant units’ for conservation. Trends in ecology & evolution, 9(10), 373-375 Moritz, C., & Faith, D. P. (1998). Comparative phylogeography and the identification of genetically divergent areas for conservation. Molecular ecology, 7(4), 419-429 Mosbrugger, V., Favre, A., Muellner-Riehl, A. N., Päckert, M., & Mulch, A. (2018). Cenozoic evolution of geo-biodiversity in the Tibeto-Himalayan region. Mountains, climate, and biodiversity, 429, 448 Muellner-Riehl, A. N. (2019). Mountains as evolutionary arenas: patterns, emerging approaches, paradigm shifts, and their implications for plant phylogeographic research in the Tibeto-Himalayan region. Frontiers in Plant Science, 10, 195 Muñoz‐Ortiz, A., Velásquez‐Álvarez, Á. A., Guarnizo, C. E., & Crawford, A. J. (2015). Of peaks and valleys: testing the roles of orogeny and habitat heterogeneity in driving allopatry in mid‐elevation frogs (Aromobatidae: Rheobates) of the northern Andes. Journal of Biogeography, 42(1), 193-205 Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution, 32(1), 268-274 Palacios, C., García-R, S., Parra, J. L., Cuervo, A. M., Stiles, F. G., McCormack, J. E., & Cadena, C. D. (2019). Shallow genetic divergence and distinct phenotypic differences between two Andean hummingbirds: Speciation with gene flow?. The Auk, 136(4), ukz046 Palumbi, S.R. (1996) Nucleic acids II: the polymerase chain reaction. In D.M. Hillis, B.K. Mable & C. Moritz (Eds). Molecular systematics, pp. 205–247. Sinauer Associates, Sunderland, MA Panchal, M., & Beaumont, M. A. (2007). The automation and evaluation of nested clade phylogeographic analysis. Evolution: International Journal of Organic Evolution, 61(6), 1466-1480 Panchal, M., & Beaumont, M. A. (2010). Evaluating nested clade phylogeographic analysis under models of restricted gene flow. Systematic Biology, 59(4), 415-432 Paternina, R. F., & Capera-M, V. H. (2017). Atractus crassicaudatus (Duméril, Bibron & Duméril, 1854). Catálogo de Anfibios y Reptiles de Colombia, 3 (2): 7-13 Posada, D., Crandall, K. A., & Templeton, A. R. (2006). Nested clade analysis statistics. Molecular Ecology Notes, 6(3), 590-593 Pouchon, C., Fernández, A., Nassar, J. M., Boyer, F., Aubert, S., Lavergne, S., & Mavárez, J. (2018). Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the tropical Andes. Systematic Biology, 67(6), 1041-1060 Prates, I., Xue, A. T., Brown, J. L., Alvarado-Serrano, D. F., Rodrigues, M. T., Hickerson, M. J., & Carnaval, A. C. (2016). Inferring responses to climate dynamics from historical demography in neotropical forest lizards. Proceedings of the National Academy of Sciences, 113(29), 7978-798 Provost, K. L., Myers, E. A., & Smith, B. T. (2021). Community phylogeographic patterns reveal how a barrier filters and structures taxa in North American warm deserts. Journal of Biogeography, 48(6), 1267-1283 Puillandre, N., Brouillet, S., & Achaz, G. (2021). ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21(2), 609-620 Pybus, O. G., Rambaut, A., & Harvey, P. H. (2000). An integrated framework for the inference of viral population history from reconstructed genealogies. Genetics, 155(3), 1429-1437 Rambaut A. 2009. FigTree v1.3.1. Disponible en http://tree.bio.ed.ac. uk/software/figtree/ Rambaut A., Drummond A.J. 2007. Tracer v1.4. Disponible en http://beast.bio.ed.ac.uk/software/tracer/ Recoder, R., Prates, I., Marques-Souza, S., Camacho, A., Nunes, P. M. S., Dal Vechio, F., Ghellere, J. M., McDiarmid, R. W., & Rodrigues, M. T. (2020). Lizards from the Lost World: two new species and evolutionary relationships of the Pantepui highland Riolama (Gymnophthalmidae). Zoological Journal of the Linnean Society, 190(1), 271-297 Riddle, B. R., Hafner, D. J., Alexander, L. F., & Jaeger, J. R. (2000). Cryptic vicariance in the historical assembly of a Baja California Peninsular Desert biota. Proceedings of the National Academy of Sciences, 97(26), 14438-14443 Riginos, C. (2005). Cryptic vicariance in Gulf of California fishes parallels vicariant patterns found in Baja California mammals and reptiles. Evolution, 59(12), 2678-2690 Rivera, D., Gómez, F., & Goodhew, P. (2004). Altiplanos de Colombia. Imprelibros SA-Banco de Occidente. Cali, 59-107 Rodríguez-Barbosa, C. A., Mendoza-Roldán, J. S., & Sánchez, D. A. G. (2017). Stenocercus trachycephalus (Duméril, 1851). Catálogo de Anfibios y Reptiles de Colombia, 3 (1): 67-74 Rodríguez-Muñoz, E., Montes, C., & Crawford, A. J. (2020). Synthesis of geological and comparative phylogeographic data point to climate, not mountain uplift, as driver of divergence across the Eastern Andean Cordillera. BioRxiv Ronquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574 Sánchez, H., Castaño, O., & Cárdenas, G. (1995). Diversidad de los Reptiles en Colombia. En Rangel-Ch, O. (Ed.). Colombia Diversidad Biótica I. Santa Fe de Bogotá. Universidad Nacional de Colombia, INDERENA, Fundación FES, Ed. Guadalupe LTDA, 277-325 Sánchez‐Pacheco, S. J., Torres‐Carvajal, O., Aguirre‐Peñafiel, V., Nunes, P. M. S., Verrastro, L., Rivas, G. A., Rodrigues, M. T., Grant, T., & Murphy, R. W. (2018). Phylogeny of Riama (Squamata: Gymnophthalmidae), impact of phenotypic evidence on molecular datasets, and the origin of the Sierra Nevada de Santa Marta endemic fauna. Cladistics, 34(3), 260-291 Sarmiento, G., Gaviria, S., Hooghiemstra, H., Berrio, J. C., & Van der Hammen, T. (2008). Landscape evolution and origin of Lake Fúquene (Colombia): tectonics, erosion and sedimentation processes during the Pleistocene. Geomorphology, 100(3-4), 563-575 Sites Jr, J. W. & Morando, M. (2009). Phylogeography. En Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester Stephan, W., & Langley, C. H. (1992). Evolutionary consequences of DNA mismatch inhibited repair opportunity. Genetics, 132(2), 567-574 Strimmer, K., & Pybus, O. G. (2001). Exploring the demographic history of DNA sequences using the generalized skyline plot. Molecular Biology and Evolution, 18(12), 2298-2305 Sunnåker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M., & Dessimoz, C. (2013). Approximate bayesian computation. PLoS computational biology, 9(1), e1002803 Taberlet, P., Fumagalli, L., WUST‐SAUCY, A. G., & COSSON, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular ecology, 7(4), 453-464 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution, 28(10), 2731-2739 Templeton, A. R. (1998). Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology, 7(4), 381-397 Templeton, A. R. (2008). Nested clade analysis: an extensively validated method for strong phylogeographic inference. Molecular Ecology, 17(8), 1877 Templeton, A. R. (2009). Why does a method that fails continue to be used? The answer. Evolution: International Journal of Organic Evolution, 63(4), 807-812 Templeton, A. R. (2009a). Statistical hypothesis testing in intraspecific phylogeography: nested clade phylogeographical analysis vs. approximate Bayesian computation. Molecular ecology, 18(2), 319-331 Templeton, A. R. (2010). Coalescent-based, maximum likelihood inference in phylogeography. Molecular Ecology, 19(3), 431 Templeton, A. R. (2010). Coherent and incoherent inference in phylogeography and human evolution. Proceedings of the National Academy of Sciences, 107(14), 6376-6381 Templeton, A. R. (2010). The diverse applications of cladistic analysis of molecular evolution, with special reference to nested clade analysis. International journal of molecular sciences, 11(1), 124-139 Templeton, A. R., Routman, E., & Phillips, C. A. (1995). Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics, 140(2), 767-782 Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22(22), 4673-4680 Torres-Carvajal, O., Lobos, S. E., Venegas, P. J., Chávez, G., Aguirre-Peñafiel, V., Zurita, D., & Echevarría, L. Y. (2016). Phylogeny and biogeography of the most diverse clade of South American gymnophthalmid lizards (Squamata, Gymnophthalmidae, Cercosaurinae). Molecular phylogenetics and evolution, 99, 63-75 Vargas-Ramírez, M., & Moreno-Arias, R. (2014). Unknown evolutionary lineages and population differentiation in Anolis heterodermus (Squamata: Dactyloidae) from the eastern and central Cordilleras of Colombia revealed by DNA sequence data. South American Journal of Herpetology, 9(2), 131-141 Weiss, S., & Ferrand, N. (2007). Current perspectives in phylogeography and the significance of South European refugia in the creation and maintenance of European biodiversity. In Phylogeography of southern European refugia (pp. 341-357) Springer, Dordrecht Xu, W., Dong, W. J., Fu, T. T., Gao, W., Lu, C. Q., Yan, F., Wu Y., Jiang K., Jin J., Chen H., Zhang Y., Hillis D. M., & Che, J. (2021). Herpetological phylogeographic analyses support a Miocene focal point of Himalayan uplift and biological diversification. National science review, 8(9), nwaa263 Yang, S., Dong, H., & Lei, F. (2009). Phylogeography of regional fauna on the Tibetan Plateau: a review. Progress in Natural Science, 19(7), 789-799 Zając, K. S., Proćków, M., Zając, K., Stec, D., & Lachowska-Cierlik, D. (2020). Phylogeography and potential glacial refugia of terrestrial gastropod Faustina faustina (Rossmässler, 1835) (Gastropoda: Eupulmonata: Helicidae) inferred from molecular data and species distribution models. Organisms Diversity & Evolution, 20(4), 747-762 Zhang, J., Kapli, P., Pavlidis, P., & Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29(22), 2869-2876 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 102 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Biología |
dc.publisher.department.spa.fl_str_mv |
Departamento de Biología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82224/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82224/2/1015433702.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82224/3/1015433702.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
b577153cc0e11f0aeb5fc5005dc82d8a 4ff89d34e22e63a2a55fcab8eeefd01a f1697f24a88639254e3e1abeea61bc85 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089959956545536 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vargas Ramírez, Marioed5b1d0e018fc833079772b4f20c24d0Méndez Galeano, Miguel Ángele2fc85fbad90cb2039686ed3bc105851Biodiversidad y Conservación Genética2022-08-31T19:02:35Z2022-08-31T19:02:35Z2021https://repositorio.unal.edu.co/handle/unal/82224Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasEn el estudio de la distribución geográfica de la estructura genética intraespecífica y de los procesos y mecanismos subyacentes, el enfoque comparativo permite encontrar congruencias entre especies codistribuidas, y de este modo probar diferentes hipótesis con mayor soporte o evidencia, encontrando factores comunes. Recientemente, se han empezado a realizar este tipo de estudios en la región tropical. Sin embargo, los estudios en altiplanos son escasos. En el presente trabajo, se caracterizaron los patrones filogeográficos de cuatro especies codistribuidas de reptiles escamados del altiplano cundiboyacense, en la cordillera oriental de Colombia, desde un enfoque comparativo, tanto a nivel espacial como temporal. Se realizaron reconstrucciones filogenéticas, redes de haplotipos y se definieron grupos genéticos con base tanto en algoritmos de delimitación de especies o linajes, como en métodos coalescentes y AMOVA. También se calcularon distancias, índices de diversidad genética y se aplicaron métodos de reloj molecular filogenéticos y coalescentes. Anadia bogotensis y Stenocercus trachycephalus comparten una misma estructura filogeográfica asociada a las unidades geográficas del altiplano cundiboyacense, mientras que Riama striata y Atractus crassicaudatus comparten un patrón diferente. A. bogotensis y R. striata presentan linajes del Mioceno-Plioceno, mientras que las otras especies presentan unidades demográficas del Pleistoceno. Se discute como las similitudes ecológicas y orografías complejas y conservadas propician patrones filogeográficos concordantes, incluso en tiempos geológicos diferentes, pero con procesos o eventos análogos. Esto por medio de un mecanismo atemporal común de diversificación de linajes o estructuración de poblaciones bajo ciertas hipótesis o sistemas de diversificación-dispersión en la herpetofauna del altiplano cundiboyacense. (Texto tomado de la fuente)For the study of geographical distribution of intraspecific genetic structure, and its subjacent processes and mechanisms, a comparative approach leads to find congruences between co-distributed species, and thus tests different hypothesis with best support or evidence, finding common factors. Recently, this kind of studies have started to be developed in the tropical region. However, studies focused on plateaus are scarce. In the present study, phylogeographic patterns were identified on four co-distributed species of squamate reptiles in the Cundiboyacense plateau, Eastern cordillera of Colombia, using a comparative approach; both spatially and temporally. Phylogenetic reconstructions and haplotype networks were performed and genetic groups were defined based on species or lineages delimitation algorithms, as well as coalescent methods and AMOVA. Also, genetic distances and genetic diversity indices were calculated and both phylogenetic and coalescent molecular clock methods were performed. Anadia bogotensis and Stenocercus trachycephalus share the same phylogeographical structure associated with geographic units of Cundiboyacense plateau, while Riama striata and Atractus crassicaudatus share a different pattern. Anadia bogotensis and R. striata showed lineages from Miocene-Pliocene, while for the other species Pleistocene demographic units were revealed. It is discussed how ecological similarities and conserve and complex orographies boost concordant phylogeographic patterns, even in different geological periods, but with analogous processes or events. This being possible through common atemporal mechanisms of lineage diversification or populational structuring under certain diversification-dispersion hypothesis or systems in the herpetofauna of the Cundiboyacense plateauMaestríaMagíster en Ciencias - BiologíaFilogeografía, sistemática molecular, genética de poblacionesxv, 102 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BiologíaDepartamento de BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animalesDEMOGRAFIACARACTERISTICAS DEMOGRAFICASBIOLOGIA EVOLUTIVADemographyDemographic characteristicsDevelopmental biologyReptiles escamadosCongruencia filogeográficapatrones atemporaleshipótesis de geodiversidad de montañaSquamate reptilesphylogeographic congruenceatemporal patternsMountain-geobiodiversity hypothesisFilogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de ColombiaComparative phylogeography of four squamate reptile species from Cundiboyacense high plateau, eastern cordillera of ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAraujo-Carrillo, G. A., Varón-Ramírez, V. M., Jaramillo-Barrios, C. I., Estupiñan-Casallas, J. M., Silva-Arero, E. A., Gómez-Latorre, D. A., & Martínez-Maldonado, F. E. (2021). IRAKA: The first Colombian soil information system with digital soil mapping products. Catena, 196, 104940Arbelaez-Cortes, E. (2012). Filogeografía comparada: conceptos, métodos y patrones generales en aves Neotropicales. Acta Biológica Colombiana, 17(1), 19-38Arevalo, E., Davis, S. K., & Sites Jr, J. W. (1994). Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Systematic Biology, 43(3), 387-418Arteaga, A., Pyron, R. A., Peñafiel, N., Romero-Barreto, P., Culebras, J., Bustamante, L., Yanez-Muñoz, M. H., & Guayasamin, J. M. (2016). Comparative phylogeography reveals cryptic diversity and repeated patterns of cladogenesis for amphibians and reptiles in northwestern Ecuador. PloS one, 11(4), e0151746Avise, J. C. (1995). Mitochondrial DNA polymorphism and a connection between genetics and demography of relevance to conservation. Conservation Biology, 9(3), 686-690Avise, J. C. (1998). The history and purview of phylogeography: a personal reflection. Molecular Ecology, 7(4), 371-379Avise, J. C. (2000). Phylogeography: the history and formation of species. Harvard university pressAvise, J. C. (2009). Phylogeography: retrospect and prospect. Journal of biogeography, 36(1), 3-15Avise, J. C., & Walker, D. E. (1998). Pleistocene phylogeographic effects on avian populations and the speciation process. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1395), 457-463Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A. & Saunders, N. C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual review of ecology and systematics, 18(1), 489-522Avise, J. C., Walker, D., & Johns, G. C. (1998). Speciation durations and Pleistocene effects on vertebrate phylogeography. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1407), 1707-1712Barrow, L. N., Soto‐Centeno, J. A., Warwick, A. R., Lemmon, A. R., & Moriarty Lemmon, E. (2017). Evaluating hypotheses of expansion from refugia through comparative phylogeography of south‐eastern Coastal Plain amphibians. Journal of Biogeography, 44(12), 2692-2705Beaumont, M. A., & Panchal, M. (2008). On the validity of nested clade phylogeographical analysis. Molecular Ecology 17, 2563–2565Beaumont, M. A., Zhang, W., & Balding, D. J. (2002). Approximate Bayesian computation in population genetics. Genetics, 162(4), 2025-2035Beheregaray, L. B. (2008). Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Molecular Ecology, 17(17), 3754-3774Behling, H. (1998). Late Quaternary vegetational and climatic changes in Brazil. Review of palaeobotany and palynology, 99(2), 143-156Benavides, E., Baum, R., McClellan, D., & Sites, J. W. (2007). Molecular phylogenetics of the lizard genus Microlophus (Squamata: Tropiduridae): aligning and retrieving indel signal from nuclear introns. Systematic biology, 56(5), 776-797Brito, P. H., & Edwards, S. V. (2009). Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica, 135(3), 439-455Calderón, M., Caicedo, J., Ines Hladki, A., Renjifo, J. & Urbina, N. 2017. Anadia bogotensis. In The IUCN Red List of Threatened Species 2017: e.T44578148A44578157. https://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T44578148A44578157.enCamargo, A., Sinervo, B., & Sites Jr, J. W. (2010). Lizards as model organisms for linking phylogeographic and speciation studies. Molecular Ecology, 19(16), 3250-3270Castaño-Mora, O.V, Hernández, E. & Cárdenas, G. (2000). Reptiles. En Colombia Diversidad Biótica III La región de vida paramuna. Bogotá D.C.Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M., & Corander, J. (2013). Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Molecular biology and evolution, 30(5), 1224-1228Clement, M., Posada, D. C. K. A., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular ecology, 9(10), 1657-1659Crnobrnja-Isailovic, J. (2007). Cross-section of a refugium: genetic diversity of amphibian and reptile populations in the Balkans. In Phylogeography of southern European refugia (pp. 327-337). Springer, DordrechtCsilléry, K., Blum, M. G., Gaggiotti, O. E., & François, O. (2010). Approximate Bayesian computation (ABC) in practice. Trends in ecology & evolution, 25(7), 410-418Da Silva, M. N. F., & Patton, J. L. (1998). Molecular phylogeography and the evolution and conservation of Amazonian mammals. Molecular Ecology, 7(4), 475-486De Bermoudes, O., & Velandia, F. (2010). Hidrogeología regional de la Sabana de Bogotá. Universidad de Antioquia, Hidrogeología para la gestión del recurso Hídrico Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Pp. 159-168De Queiroz, K. (2007). Species concepts and species delimitation. Systematic biology, 56(6), 879-886Drummond A.J., Suchard M.A., Xie D., Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973. doi:10.1093/molbev/mss075Flantua, S. G., Hooghiemstra, H., & Hoorn, C. (2018). Historical connectivity and mountain biodiversity. In Mountains, climate and biodiversity, 171-185Flantua, S. G., O'Dea, A., Onstein, R. E., Giraldo, C., & Hooghiemstra, H. (2019). The flickering connectivity system of the north Andean páramos. Journal of Biogeography, 46(8), 1808-1825García-R, J. C., Crawford, A. J., Mendoza, Á. M., Ospina, O., Cardenas, H., & Castro, F. (2012). Comparative phylogeography of direct-developing frogs (Anura: Craugastoridae: Pristimantis) in the southern Andes of Colombia. PLoS One, 7(9), e46077Garrick, R. C., Hyseni, C., Arantes, Í. C., Zachos, L. G., Zee, P. C., & Oliver, J. C. (2021). Is Phylogeographic Congruence Predicted by Historical Habitat Stability, or Ecological Co-associations?. Insect Systematics and Diversity, 5(5), 1-7Gehara, M., Garda, A. A., Werneck, F. P., Oliveira, E. F., da Fonseca, E. M., Camurugi, F., Magalhães, F. de M., Lanna, F. M., Sites Jr, J. W. Marques, R., Silveira-Filho, R., São Pedro, V. A., Colli, G. R., Costa, G. C., & Burbrink, F. T. (2017). Estimating synchronous demographic changes across populations using hABC and its application for a herpetological community from northeastern Brazil. Molecular Ecology, 26(18), 4756-4771González, B. A., Vásquez, J. P., Gómez-Uchida, D., Cortés, J., Rivera, R., Aravena, N., Chero, A. M., Agapito, A. M., Varas, V, Wheeler, J. C., Orozco-terWengel, P., & Marín, J. C. (2019). Phylogeography and population genetics of Vicugna vicugna: Evolution in the arid Andean high plateau. Frontiers in genetics, 10, 445Grazziotin, F. G., Zaher, H., Murphy, R. W., Scrocchi, G., Benavides, M. A., Zhang, Y. P., & Bonatto, S. L. (2012). Molecular phylogeny of the new world Dipsadidae (Serpentes: Colubroidea): a reappraisal. Cladistics, 28(5), 437-459Green, M. R., & Sambrook, J. (2017). Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harbor Protocols, 2017(4), pdb-prot093450Gregory-Wodzicki, K. M. (2000). Uplift history of the Central and Northern Andes: a review. Geological Society of America Bulletin, 112(7), 1091-1105Guarnizo, C. E., Amézquita, A., & Bermingham, E. (2009). The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution, 50(1), 84-92Guarnizo, C. E., Escallón, C., Cannatella, D., & Amézquita, A. (2012). Congruence between acoustic traits and genealogical history reveals a new species of Dendropsophus (Anura: Hylidae) in the high Andes of Colombia. Herpetologica, 68(4), 523-540Guarnizo, C. E., Paz, A., Muñoz-Ortiz, A., Flechas, S. V., Méndez-Narváez, J., & Crawford, A. J. (2015). DNA barcoding survey of anurans across the Eastern Cordillera of Colombia and the impact of the Andes on cryptic diversity. PloS one, 10(5), e0127312Guicking, D., Joger, U., & Wink, M. (2009). Cryptic diversity in a Eurasian water snake (Natrix tessellata, Serpentes: Colubridae): Evidence from mitochondrial sequence data and nuclear ISSR-PCR fingerprinting. Organisms Diversity & Evolution, 9(3), 201-214Hall, T. A. (1999, January). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series (Vol. 41, No. 41, pp. 95-98). [London]: Information Retrieval Ltd., c1979-c2000Heled, J. (2015). Extended Bayesian Skyline Plot tutorial for BEAST 2. Disponible en http://evomicsorg.wpengine.netdna-cdn.com/wpcontent/uploads/2015/11/ebsp2-tut1.pdfHewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological journal of the Linnean Society, 58(3), 247-276Hewitt, G. M. (1999). Post-glacial re-colonization of European biota. Biological journal of the Linnean Society, 68(1-2), 87-112Hickerson, M. J., Carstens, B. C., Cavender-Bares, J., Crandall, K. A., Graham, C. H., Johnson, J. B., Rissler, L., Victoriano, P. F. & Yoder, A. D. (2010). Phylogeography’s past, present, and future: 10 years after. Molecular phylogenetics and evolution, 54(1), 291-301Ho, S. Y., & Shapiro, B. (2011). Skyline‐plot methods for estimating demographic history from nucleotide sequences. Molecular ecology resources, 11(3), 423-434Hofmann, S., Kraus, S., Dorge, T., Nothnagel, M., Fritzsche, P., & Miehe, G. (2014). Effects of Pleistocene climatic fluctuations on the phylogeography, demography and population structure of a high‐elevation snake species, Thermophis baileyi, on the Tibetan Plateau. Journal of biogeography, 41(11), 2162-2172Hooghiemstra, H., & Van der Hammen, T. (2004). Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1442), 173-181Hoscheit, P., & Pybus, O. G. (2019). The multifurcating skyline plot. Virus evolution, 5(2), vez031Hudson, R. R. (1990). Gene genealogies and the coalescent process. Oxford surveys in evolutionary biology, 7(1), 1-44Jerez, A., & Calderón-Espinosa, M. L. (2014). Anadia bogotensis (Peters, 1862). Catálogo de Anfibios y Reptiles de Colombia, 2(1), 30-35Jin, Y., Liu, N., & Brown, R. P. (2017). The geography and timing of genetic divergence in the lizard Phrynocephalus theobaldi on the Qinghai-Tibetan plateau. Scientific reports, 7(1), 1-8Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods, 14(6), 587-589Klunzinger, M. W., Lopes-Lima, M., Gomes-dos-Santos, A., Froufe, E., Lymbery, A. J., & Kirkendale, L. (2021). Phylogeographic study of the West Australian freshwater mussel, Westralunio carteri, uncovers evolutionarily significant units that raise new conservation concerns. Hydrobiologia, 848(12), 2951-2964Knowles, L. L. (2004). The burgeoning field of statistical phylogeography. Journal of evolutionary biology, 17(1), 1-10Knowles, L. L., & Maddison, W. P. (2002). Statistical phylogeography. Molecular Ecology, 11(12), 2623-2635Leigh, J. W., & Bryant, D. (2015). PoPArt: full‐feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452Macey, J. R., Schulte II, J. A., Ananjeva, N. B., Larson, A., Rastegar-Pouyani, N., Shammakov, S. M., & Papenfuss, T. J. (1998). Phylogenetic Relationships among Agamid Lizards of the Laudakia caucasia species Group: Testing Hypotheses of Biogeographic Fragmentation and an Area Cladogram for the Iranian Plateau. Molecular Phylogenetics and Evolution, 10(1), 118-131Macey, J. R., Schulte II, J. A., Larson, A., Tuniyev, B. S., Orlov, N., & Papenfuss, T. J. (1999). Molecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families. Molecular phylogenetics and evolution, 12(3), 250-272Manolopoulou, I., Hille, A., & Emerson, B. (2020). BPEC: An R package for Bayesian phylogeographic and ecological clustering. Journal of Statistical Software, 92, 1-32Mao, K., Wang, Y., & Liu, J. (2021). Evolutionary origin of species diversity on the Qinghai‐Tibet Plateau. Journal of Systematics and Evolution. Pp. 1-17Marin, J. C., González, B. A., Poulin, E., Casey, C. S., & Johnson, W. E. (2013). The influence of the arid Andean high plateau on the phylogeography and population genetics of guanaco (Lama guanicoe) in South America. Molecular ecology, 22(2), 463-482Martins, L. F., Choueri, E. L., Oliveira, A. F., Domingos, F. M., Caetano, G. H., Cavalcante, V. H., Leite R. N., Fouquet, A., Rodrigues, M. T., Carnaval, A. C., Colli, G. R., & Werneck, F. P. (2021). Whiptail lizard lineage delimitation and population expansion as windows into the history of Amazonian open ecosystems. Systematics and Biodiversity, 1-19Masta, S. E. (2000). Phylogeography of the jumping spider Habronattus pugillis (Araneae: Salticidae): recent vicariance of sky island populations?. Evolution, 54(5), 1699-1711Méndez-Galeano, M. A., & Pinto-Erazo, M. A. (2018). Riama striata (Peters, 1862). Catálogo de Anfibios y Reptiles de Colombia, 4 (2), 61-67Morales-Betancourt, M. A., Lasso, C. A., Páez, V. P., & Bock, B. C. (2015). Libro rojo de reptiles de Colombia (2015) Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Universidad de Antioquia. Bogotá, DC, ColombiaMoritz, C. (1994). Defining ‘evolutionarily significant units’ for conservation. Trends in ecology & evolution, 9(10), 373-375Moritz, C., & Faith, D. P. (1998). Comparative phylogeography and the identification of genetically divergent areas for conservation. Molecular ecology, 7(4), 419-429Mosbrugger, V., Favre, A., Muellner-Riehl, A. N., Päckert, M., & Mulch, A. (2018). Cenozoic evolution of geo-biodiversity in the Tibeto-Himalayan region. Mountains, climate, and biodiversity, 429, 448Muellner-Riehl, A. N. (2019). Mountains as evolutionary arenas: patterns, emerging approaches, paradigm shifts, and their implications for plant phylogeographic research in the Tibeto-Himalayan region. Frontiers in Plant Science, 10, 195Muñoz‐Ortiz, A., Velásquez‐Álvarez, Á. A., Guarnizo, C. E., & Crawford, A. J. (2015). Of peaks and valleys: testing the roles of orogeny and habitat heterogeneity in driving allopatry in mid‐elevation frogs (Aromobatidae: Rheobates) of the northern Andes. Journal of Biogeography, 42(1), 193-205Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution, 32(1), 268-274Palacios, C., García-R, S., Parra, J. L., Cuervo, A. M., Stiles, F. G., McCormack, J. E., & Cadena, C. D. (2019). Shallow genetic divergence and distinct phenotypic differences between two Andean hummingbirds: Speciation with gene flow?. The Auk, 136(4), ukz046Palumbi, S.R. (1996) Nucleic acids II: the polymerase chain reaction. In D.M. Hillis, B.K. Mable & C. Moritz (Eds). Molecular systematics, pp. 205–247. Sinauer Associates, Sunderland, MAPanchal, M., & Beaumont, M. A. (2007). The automation and evaluation of nested clade phylogeographic analysis. Evolution: International Journal of Organic Evolution, 61(6), 1466-1480Panchal, M., & Beaumont, M. A. (2010). Evaluating nested clade phylogeographic analysis under models of restricted gene flow. Systematic Biology, 59(4), 415-432Paternina, R. F., & Capera-M, V. H. (2017). Atractus crassicaudatus (Duméril, Bibron & Duméril, 1854). Catálogo de Anfibios y Reptiles de Colombia, 3 (2): 7-13Posada, D., Crandall, K. A., & Templeton, A. R. (2006). Nested clade analysis statistics. Molecular Ecology Notes, 6(3), 590-593Pouchon, C., Fernández, A., Nassar, J. M., Boyer, F., Aubert, S., Lavergne, S., & Mavárez, J. (2018). Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the tropical Andes. Systematic Biology, 67(6), 1041-1060Prates, I., Xue, A. T., Brown, J. L., Alvarado-Serrano, D. F., Rodrigues, M. T., Hickerson, M. J., & Carnaval, A. C. (2016). Inferring responses to climate dynamics from historical demography in neotropical forest lizards. Proceedings of the National Academy of Sciences, 113(29), 7978-798Provost, K. L., Myers, E. A., & Smith, B. T. (2021). Community phylogeographic patterns reveal how a barrier filters and structures taxa in North American warm deserts. Journal of Biogeography, 48(6), 1267-1283Puillandre, N., Brouillet, S., & Achaz, G. (2021). ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21(2), 609-620Pybus, O. G., Rambaut, A., & Harvey, P. H. (2000). An integrated framework for the inference of viral population history from reconstructed genealogies. Genetics, 155(3), 1429-1437Rambaut A. 2009. FigTree v1.3.1. Disponible en http://tree.bio.ed.ac. uk/software/figtree/Rambaut A., Drummond A.J. 2007. Tracer v1.4. Disponible en http://beast.bio.ed.ac.uk/software/tracer/Recoder, R., Prates, I., Marques-Souza, S., Camacho, A., Nunes, P. M. S., Dal Vechio, F., Ghellere, J. M., McDiarmid, R. W., & Rodrigues, M. T. (2020). Lizards from the Lost World: two new species and evolutionary relationships of the Pantepui highland Riolama (Gymnophthalmidae). Zoological Journal of the Linnean Society, 190(1), 271-297Riddle, B. R., Hafner, D. J., Alexander, L. F., & Jaeger, J. R. (2000). Cryptic vicariance in the historical assembly of a Baja California Peninsular Desert biota. Proceedings of the National Academy of Sciences, 97(26), 14438-14443Riginos, C. (2005). Cryptic vicariance in Gulf of California fishes parallels vicariant patterns found in Baja California mammals and reptiles. Evolution, 59(12), 2678-2690Rivera, D., Gómez, F., & Goodhew, P. (2004). Altiplanos de Colombia. Imprelibros SA-Banco de Occidente. Cali, 59-107Rodríguez-Barbosa, C. A., Mendoza-Roldán, J. S., & Sánchez, D. A. G. (2017). Stenocercus trachycephalus (Duméril, 1851). Catálogo de Anfibios y Reptiles de Colombia, 3 (1): 67-74Rodríguez-Muñoz, E., Montes, C., & Crawford, A. J. (2020). Synthesis of geological and comparative phylogeographic data point to climate, not mountain uplift, as driver of divergence across the Eastern Andean Cordillera. BioRxivRonquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574Sánchez, H., Castaño, O., & Cárdenas, G. (1995). Diversidad de los Reptiles en Colombia. En Rangel-Ch, O. (Ed.). Colombia Diversidad Biótica I. Santa Fe de Bogotá. Universidad Nacional de Colombia, INDERENA, Fundación FES, Ed. Guadalupe LTDA, 277-325Sánchez‐Pacheco, S. J., Torres‐Carvajal, O., Aguirre‐Peñafiel, V., Nunes, P. M. S., Verrastro, L., Rivas, G. A., Rodrigues, M. T., Grant, T., & Murphy, R. W. (2018). Phylogeny of Riama (Squamata: Gymnophthalmidae), impact of phenotypic evidence on molecular datasets, and the origin of the Sierra Nevada de Santa Marta endemic fauna. Cladistics, 34(3), 260-291Sarmiento, G., Gaviria, S., Hooghiemstra, H., Berrio, J. C., & Van der Hammen, T. (2008). Landscape evolution and origin of Lake Fúquene (Colombia): tectonics, erosion and sedimentation processes during the Pleistocene. Geomorphology, 100(3-4), 563-575Sites Jr, J. W. & Morando, M. (2009). Phylogeography. En Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: ChichesterStephan, W., & Langley, C. H. (1992). Evolutionary consequences of DNA mismatch inhibited repair opportunity. Genetics, 132(2), 567-574Strimmer, K., & Pybus, O. G. (2001). Exploring the demographic history of DNA sequences using the generalized skyline plot. Molecular Biology and Evolution, 18(12), 2298-2305Sunnåker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M., & Dessimoz, C. (2013). Approximate bayesian computation. PLoS computational biology, 9(1), e1002803Taberlet, P., Fumagalli, L., WUST‐SAUCY, A. G., & COSSON, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular ecology, 7(4), 453-464Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution, 28(10), 2731-2739Templeton, A. R. (1998). Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology, 7(4), 381-397Templeton, A. R. (2008). Nested clade analysis: an extensively validated method for strong phylogeographic inference. Molecular Ecology, 17(8), 1877Templeton, A. R. (2009). Why does a method that fails continue to be used? The answer. Evolution: International Journal of Organic Evolution, 63(4), 807-812Templeton, A. R. (2009a). Statistical hypothesis testing in intraspecific phylogeography: nested clade phylogeographical analysis vs. approximate Bayesian computation. Molecular ecology, 18(2), 319-331Templeton, A. R. (2010). Coalescent-based, maximum likelihood inference in phylogeography. Molecular Ecology, 19(3), 431Templeton, A. R. (2010). Coherent and incoherent inference in phylogeography and human evolution. Proceedings of the National Academy of Sciences, 107(14), 6376-6381Templeton, A. R. (2010). The diverse applications of cladistic analysis of molecular evolution, with special reference to nested clade analysis. International journal of molecular sciences, 11(1), 124-139Templeton, A. R., Routman, E., & Phillips, C. A. (1995). Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics, 140(2), 767-782Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22(22), 4673-4680Torres-Carvajal, O., Lobos, S. E., Venegas, P. J., Chávez, G., Aguirre-Peñafiel, V., Zurita, D., & Echevarría, L. Y. (2016). Phylogeny and biogeography of the most diverse clade of South American gymnophthalmid lizards (Squamata, Gymnophthalmidae, Cercosaurinae). Molecular phylogenetics and evolution, 99, 63-75Vargas-Ramírez, M., & Moreno-Arias, R. (2014). Unknown evolutionary lineages and population differentiation in Anolis heterodermus (Squamata: Dactyloidae) from the eastern and central Cordilleras of Colombia revealed by DNA sequence data. South American Journal of Herpetology, 9(2), 131-141Weiss, S., & Ferrand, N. (2007). Current perspectives in phylogeography and the significance of South European refugia in the creation and maintenance of European biodiversity. In Phylogeography of southern European refugia (pp. 341-357) Springer, DordrechtXu, W., Dong, W. J., Fu, T. T., Gao, W., Lu, C. Q., Yan, F., Wu Y., Jiang K., Jin J., Chen H., Zhang Y., Hillis D. M., & Che, J. (2021). Herpetological phylogeographic analyses support a Miocene focal point of Himalayan uplift and biological diversification. National science review, 8(9), nwaa263Yang, S., Dong, H., & Lei, F. (2009). Phylogeography of regional fauna on the Tibetan Plateau: a review. Progress in Natural Science, 19(7), 789-799Zając, K. S., Proćków, M., Zając, K., Stec, D., & Lachowska-Cierlik, D. (2020). Phylogeography and potential glacial refugia of terrestrial gastropod Faustina faustina (Rossmässler, 1835) (Gastropoda: Eupulmonata: Helicidae) inferred from molecular data and species distribution models. Organisms Diversity & Evolution, 20(4), 747-762Zhang, J., Kapli, P., Pavlidis, P., & Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29(22), 2869-2876Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-84675https://repositorio.unal.edu.co/bitstream/unal/82224/1/license.txtb577153cc0e11f0aeb5fc5005dc82d8aMD51ORIGINAL1015433702.2022.pdf1015433702.2022.pdfTesis de Maestría en Ciencias - Biologíaapplication/pdf2469817https://repositorio.unal.edu.co/bitstream/unal/82224/2/1015433702.2022.pdf4ff89d34e22e63a2a55fcab8eeefd01aMD52THUMBNAIL1015433702.2022.pdf.jpg1015433702.2022.pdf.jpgGenerated Thumbnailimage/jpeg5093https://repositorio.unal.edu.co/bitstream/unal/82224/3/1015433702.2022.pdf.jpgf1697f24a88639254e3e1abeea61bc85MD53unal/82224oai:repositorio.unal.edu.co:unal/822242023-08-08 23:04:18.828Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUGFydGUgMS4gIFTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBwYXJhIHB1YmxpY2FjacOzbiBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yLCBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhLCBsaW1pdGFkYSB5IGdyYXR1aXRhIHNvYnJlIGxhIG9icmEgcXVlIHNlIGludGVncmEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgYmFqbyBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6CgoKYSkJTG9zIGF1dG9yZXMgeS9vIGxvcyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhIHBhcmEgcmVhbGl6YXIgbG9zIHNpZ3VpZW50ZXMgYWN0b3Mgc29icmUgbGEgb2JyYTogaSkgcmVwcm9kdWNpciBsYSBvYnJhIGRlIG1hbmVyYSBkaWdpdGFsLCBwZXJtYW5lbnRlIG8gdGVtcG9yYWwsIGluY2x1eWVuZG8gZWwgYWxtYWNlbmFtaWVudG8gZWxlY3Ryw7NuaWNvLCBhc8OtIGNvbW8gY29udmVydGlyIGVsIGRvY3VtZW50byBlbiBlbCBjdWFsIHNlIGVuY3VlbnRyYSBjb250ZW5pZGEgbGEgb2JyYSBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gZXhpc3RlbnRlIGEgbGEgZmVjaGEgZGUgbGEgc3VzY3JpcGNpw7NuIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhLCB5IGlpKSBjb211bmljYXIgYWwgcMO6YmxpY28gbGEgb2JyYSBwb3IgY3VhbHF1aWVyIG1lZGlvIG8gcHJvY2VkaW1pZW50bywgZW4gbWVkaW9zIGFsw6FtYnJpY29zIG8gaW5hbMOhbWJyaWNvcywgaW5jbHV5ZW5kbyBsYSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZW4gYWNjZXNvIGFiaWVydG8uIEFkaWNpb25hbCBhIGxvIGFudGVyaW9yLCBlbCBhdXRvciB5L28gdGl0dWxhciBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHBhcmEgcXVlLCBlbiBsYSByZXByb2R1Y2Npw7NuIHkgY29tdW5pY2FjacOzbiBhbCBww7pibGljbyBxdWUgbGEgVW5pdmVyc2lkYWQgcmVhbGljZSBzb2JyZSBsYSBvYnJhLCBoYWdhIG1lbmNpw7NuIGRlIG1hbmVyYSBleHByZXNhIGFsIHRpcG8gZGUgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBiYWpvIGxhIGN1YWwgZWwgYXV0b3IgeS9vIHRpdHVsYXIgZGVzZWEgb2ZyZWNlciBzdSBvYnJhIGEgbG9zIHRlcmNlcm9zIHF1ZSBhY2NlZGFuIGEgZGljaGEgb2JyYSBhIHRyYXbDqXMgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIGN1YW5kbyBzZWEgZWwgY2Fzby4gRWwgYXV0b3IgeS9vIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIHByZXNlbnRlIGxpY2VuY2lhIG1lZGlhbnRlIHNvbGljaXR1ZCBlbGV2YWRhIGEgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYS4gCgpiKSAJTG9zIGF1dG9yZXMgeS9vIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBsYSBsaWNlbmNpYSBzZcOxYWxhZGEgZW4gZWwgbGl0ZXJhbCBhKSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHBvciBlbCB0aWVtcG8gZGUgcHJvdGVjY2nDs24gZGUgbGEgb2JyYSBlbiB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8sIGVzdG8gZXMsIHNpbiBsaW1pdGFjacOzbiB0ZXJyaXRvcmlhbCBhbGd1bmEuCgpjKQlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgbWFuaWZpZXN0YW4gZXN0YXIgZGUgYWN1ZXJkbyBjb24gcXVlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHNlIG90b3JnYSBhIHTDrXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bywgcmVudW5jaWFuIGEgcmVjaWJpciBjdWFscXVpZXIgcmV0cmlidWNpw7NuIGVjb27Ds21pY2EgbyBlbW9sdW1lbnRvIGFsZ3VubyBwb3IgbGEgcHVibGljYWNpw7NuLCBkaXN0cmlidWNpw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGNvbiBxdWUgc2UgcHVibGljYS4KCmQpCVF1aWVuZXMgZmlybWFuIGVsIHByZXNlbnRlIGRvY3VtZW50byBkZWNsYXJhbiBxdWUgcGFyYSBsYSBjcmVhY2nDs24gZGUgbGEgb2JyYSwgbm8gc2UgaGFuIHZ1bG5lcmFkbyBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsLCBpbmR1c3RyaWFsLCBtb3JhbGVzIHkgcGF0cmltb25pYWxlcyBkZSB0ZXJjZXJvcy4gRGUgb3RyYSBwYXJ0ZSwgIHJlY29ub2NlbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZSB5IHNlIGVuY3VlbnRyYSBleGVudGEgZGUgY3VscGEgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGfDum4gdGlwbyBkZSByZWNsYW1hY2nDs24gZW4gbWF0ZXJpYSBkZSBkZXJlY2hvcyBkZSBhdXRvciBvIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBnZW5lcmFsLiBQb3IgbG8gdGFudG8sIGxvcyBmaXJtYW50ZXMgIGFjZXB0YW4gcXVlIGNvbW8gdGl0dWxhcmVzIMO6bmljb3MgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGFzdW1pcsOhbiB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlIGxhIG9icmEuICAKCmYpCUF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3MgYWdyZWdhZG9yZXMgZGUgY29udGVuaWRvcywgYnVzY2Fkb3JlcyBhY2Fkw6ltaWNvcywgbWV0YWJ1c2NhZG9yZXMsIMOtbmRpY2VzIHkgZGVtw6FzIG1lZGlvcyBxdWUgc2UgZXN0aW1lbiBuZWNlc2FyaW9zIHBhcmEgcHJvbW92ZXIgZWwgYWNjZXNvIHkgY29uc3VsdGEgZGUgbGEgbWlzbWEuIAoKZykJRW4gZWwgY2FzbyBkZSBsYXMgdGVzaXMgY3JlYWRhcyBwYXJhIG9wdGFyIGRvYmxlIHRpdHVsYWNpw7NuLCBsb3MgZmlybWFudGVzIHNlcsOhbiBsb3MgcmVzcG9uc2FibGVzIGRlIGNvbXVuaWNhciBhIGxhcyBpbnN0aXR1Y2lvbmVzIG5hY2lvbmFsZXMgbyBleHRyYW5qZXJhcyBlbiBjb252ZW5pbywgbGFzIGxpY2VuY2lhcyBkZSBhY2Nlc28gYWJpZXJ0byBDcmVhdGl2ZSBDb21tb25zIHkgYXV0b3JpemFjaW9uZXMgYXNpZ25hZGFzIGEgc3Ugb2JyYSBwYXJhIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwgZGUgYWN1ZXJkbyBjb24gbGFzIGRpcmVjdHJpY2VzIGRlIGxhIFBvbMOtdGljYSBHZW5lcmFsIGRlIGxhIEJpYmxpb3RlY2EgRGlnaXRhbC4KCgpoKQlTZSBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGNvbW8gcmVzcG9uc2FibGUgZGVsIHRyYXRhbWllbnRvIGRlIGRhdG9zIHBlcnNvbmFsZXMsIGRlIGFjdWVyZG8gY29uIGxhIGxleSAxNTgxIGRlIDIwMTIgZW50ZW5kaWVuZG8gcXVlIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQsIHkgc3UgdHJhdGFtaWVudG8gdGllbmUgdW5hIGZpbmFsaWRhZCBoaXN0w7NyaWNhLCBlc3RhZMOtc3RpY2EgbyBjaWVudMOtZmljYSBzZWfDum4gbG8gZGlzcHVlc3RvIGVuIGxhIFBvbMOtdGljYSBkZSBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLgoKCgpQYXJ0ZSAyLiBBdXRvcml6YWNpw7NuIHBhcmEgcHVibGljYXIgeSBwZXJtaXRpciBsYSBjb25zdWx0YSB5IHVzbyBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpTZSBhdXRvcml6YSBsYSBwdWJsaWNhY2nDs24gZWxlY3Ryw7NuaWNhLCBjb25zdWx0YSB5IHVzbyBkZSBsYSBvYnJhIHBvciBwYXJ0ZSBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IGRlIHN1cyB1c3VhcmlvcyBkZSBsYSBzaWd1aWVudGUgbWFuZXJhOgoKYS4JQ29uY2VkbyBsaWNlbmNpYSBlbiBsb3MgdMOpcm1pbm9zIHNlw7FhbGFkb3MgZW4gbGEgcGFydGUgMSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBjb24gZWwgb2JqZXRpdm8gZGUgcXVlIGxhIG9icmEgZW50cmVnYWRhIHNlYSBwdWJsaWNhZGEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0byBwYXJhIHN1IGNvbnN1bHRhIHBvciBsb3MgdXN1YXJpb3MgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgIGEgdHJhdsOpcyBkZSBpbnRlcm5ldC4KCg== |