Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia

ilustraciones, fotografías, graficas

Autores:
Méndez Galeano, Miguel Ángel
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82224
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82224
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
DEMOGRAFIA
CARACTERISTICAS DEMOGRAFICAS
BIOLOGIA EVOLUTIVA
Demography
Demographic characteristics
Developmental biology
Reptiles escamados
Congruencia filogeográfica
patrones atemporales
hipótesis de geodiversidad de montaña
Squamate reptiles
phylogeographic congruence
atemporal patterns
Mountain-geobiodiversity hypothesis
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_45dbf7e145c49ead3e956ae7c31a2bd3
oai_identifier_str oai:repositorio.unal.edu.co:unal/82224
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia
dc.title.translated.eng.fl_str_mv Comparative phylogeography of four squamate reptile species from Cundiboyacense high plateau, eastern cordillera of Colombia
title Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia
spellingShingle Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
DEMOGRAFIA
CARACTERISTICAS DEMOGRAFICAS
BIOLOGIA EVOLUTIVA
Demography
Demographic characteristics
Developmental biology
Reptiles escamados
Congruencia filogeográfica
patrones atemporales
hipótesis de geodiversidad de montaña
Squamate reptiles
phylogeographic congruence
atemporal patterns
Mountain-geobiodiversity hypothesis
title_short Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia
title_full Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia
title_fullStr Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia
title_full_unstemmed Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia
title_sort Filogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de Colombia
dc.creator.fl_str_mv Méndez Galeano, Miguel Ángel
dc.contributor.advisor.none.fl_str_mv Vargas Ramírez, Mario
dc.contributor.author.none.fl_str_mv Méndez Galeano, Miguel Ángel
dc.contributor.researchgroup.spa.fl_str_mv Biodiversidad y Conservación Genética
dc.subject.ddc.spa.fl_str_mv 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
topic 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
DEMOGRAFIA
CARACTERISTICAS DEMOGRAFICAS
BIOLOGIA EVOLUTIVA
Demography
Demographic characteristics
Developmental biology
Reptiles escamados
Congruencia filogeográfica
patrones atemporales
hipótesis de geodiversidad de montaña
Squamate reptiles
phylogeographic congruence
atemporal patterns
Mountain-geobiodiversity hypothesis
dc.subject.lemb.spa.fl_str_mv DEMOGRAFIA
CARACTERISTICAS DEMOGRAFICAS
BIOLOGIA EVOLUTIVA
dc.subject.lemb.eng.fl_str_mv Demography
Demographic characteristics
Developmental biology
dc.subject.proposal.spa.fl_str_mv Reptiles escamados
Congruencia filogeográfica
patrones atemporales
hipótesis de geodiversidad de montaña
dc.subject.proposal.eng.fl_str_mv Squamate reptiles
phylogeographic congruence
atemporal patterns
Mountain-geobiodiversity hypothesis
description ilustraciones, fotografías, graficas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-08-31T19:02:35Z
dc.date.available.none.fl_str_mv 2022-08-31T19:02:35Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82224
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82224
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Araujo-Carrillo, G. A., Varón-Ramírez, V. M., Jaramillo-Barrios, C. I., Estupiñan-Casallas, J. M., Silva-Arero, E. A., Gómez-Latorre, D. A., & Martínez-Maldonado, F. E. (2021). IRAKA: The first Colombian soil information system with digital soil mapping products. Catena, 196, 104940
Arbelaez-Cortes, E. (2012). Filogeografía comparada: conceptos, métodos y patrones generales en aves Neotropicales. Acta Biológica Colombiana, 17(1), 19-38
Arevalo, E., Davis, S. K., & Sites Jr, J. W. (1994). Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Systematic Biology, 43(3), 387-418
Arteaga, A., Pyron, R. A., Peñafiel, N., Romero-Barreto, P., Culebras, J., Bustamante, L., Yanez-Muñoz, M. H., & Guayasamin, J. M. (2016). Comparative phylogeography reveals cryptic diversity and repeated patterns of cladogenesis for amphibians and reptiles in northwestern Ecuador. PloS one, 11(4), e0151746
Avise, J. C. (1995). Mitochondrial DNA polymorphism and a connection between genetics and demography of relevance to conservation. Conservation Biology, 9(3), 686-690
Avise, J. C. (1998). The history and purview of phylogeography: a personal reflection. Molecular Ecology, 7(4), 371-379
Avise, J. C. (2000). Phylogeography: the history and formation of species. Harvard university press
Avise, J. C. (2009). Phylogeography: retrospect and prospect. Journal of biogeography, 36(1), 3-15
Avise, J. C., & Walker, D. E. (1998). Pleistocene phylogeographic effects on avian populations and the speciation process. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1395), 457-463
Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A. & Saunders, N. C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual review of ecology and systematics, 18(1), 489-522
Avise, J. C., Walker, D., & Johns, G. C. (1998). Speciation durations and Pleistocene effects on vertebrate phylogeography. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1407), 1707-1712
Barrow, L. N., Soto‐Centeno, J. A., Warwick, A. R., Lemmon, A. R., & Moriarty Lemmon, E. (2017). Evaluating hypotheses of expansion from refugia through comparative phylogeography of south‐eastern Coastal Plain amphibians. Journal of Biogeography, 44(12), 2692-2705
Beaumont, M. A., & Panchal, M. (2008). On the validity of nested clade phylogeographical analysis. Molecular Ecology 17, 2563–2565
Beaumont, M. A., Zhang, W., & Balding, D. J. (2002). Approximate Bayesian computation in population genetics. Genetics, 162(4), 2025-2035
Beheregaray, L. B. (2008). Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Molecular Ecology, 17(17), 3754-3774
Behling, H. (1998). Late Quaternary vegetational and climatic changes in Brazil. Review of palaeobotany and palynology, 99(2), 143-156
Benavides, E., Baum, R., McClellan, D., & Sites, J. W. (2007). Molecular phylogenetics of the lizard genus Microlophus (Squamata: Tropiduridae): aligning and retrieving indel signal from nuclear introns. Systematic biology, 56(5), 776-797
Brito, P. H., & Edwards, S. V. (2009). Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica, 135(3), 439-455
Calderón, M., Caicedo, J., Ines Hladki, A., Renjifo, J. & Urbina, N. 2017. Anadia bogotensis. In The IUCN Red List of Threatened Species 2017: e.T44578148A44578157. https://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T44578148A44578157.en
Camargo, A., Sinervo, B., & Sites Jr, J. W. (2010). Lizards as model organisms for linking phylogeographic and speciation studies. Molecular Ecology, 19(16), 3250-3270
Castaño-Mora, O.V, Hernández, E. & Cárdenas, G. (2000). Reptiles. En Colombia Diversidad Biótica III La región de vida paramuna. Bogotá D.C.
Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M., & Corander, J. (2013). Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Molecular biology and evolution, 30(5), 1224-1228
Clement, M., Posada, D. C. K. A., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular ecology, 9(10), 1657-1659
Crnobrnja-Isailovic, J. (2007). Cross-section of a refugium: genetic diversity of amphibian and reptile populations in the Balkans. In Phylogeography of southern European refugia (pp. 327-337). Springer, Dordrecht
Csilléry, K., Blum, M. G., Gaggiotti, O. E., & François, O. (2010). Approximate Bayesian computation (ABC) in practice. Trends in ecology & evolution, 25(7), 410-418
Da Silva, M. N. F., & Patton, J. L. (1998). Molecular phylogeography and the evolution and conservation of Amazonian mammals. Molecular Ecology, 7(4), 475-486
De Bermoudes, O., & Velandia, F. (2010). Hidrogeología regional de la Sabana de Bogotá. Universidad de Antioquia, Hidrogeología para la gestión del recurso Hídrico Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Pp. 159-168
De Queiroz, K. (2007). Species concepts and species delimitation. Systematic biology, 56(6), 879-886
Drummond A.J., Suchard M.A., Xie D., Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973. doi:10.1093/molbev/mss075
Flantua, S. G., Hooghiemstra, H., & Hoorn, C. (2018). Historical connectivity and mountain biodiversity. In Mountains, climate and biodiversity, 171-185
Flantua, S. G., O'Dea, A., Onstein, R. E., Giraldo, C., & Hooghiemstra, H. (2019). The flickering connectivity system of the north Andean páramos. Journal of Biogeography, 46(8), 1808-1825
García-R, J. C., Crawford, A. J., Mendoza, Á. M., Ospina, O., Cardenas, H., & Castro, F. (2012). Comparative phylogeography of direct-developing frogs (Anura: Craugastoridae: Pristimantis) in the southern Andes of Colombia. PLoS One, 7(9), e46077
Garrick, R. C., Hyseni, C., Arantes, Í. C., Zachos, L. G., Zee, P. C., & Oliver, J. C. (2021). Is Phylogeographic Congruence Predicted by Historical Habitat Stability, or Ecological Co-associations?. Insect Systematics and Diversity, 5(5), 1-7
Gehara, M., Garda, A. A., Werneck, F. P., Oliveira, E. F., da Fonseca, E. M., Camurugi, F., Magalhães, F. de M., Lanna, F. M., Sites Jr, J. W. Marques, R., Silveira-Filho, R., São Pedro, V. A., Colli, G. R., Costa, G. C., & Burbrink, F. T. (2017). Estimating synchronous demographic changes across populations using hABC and its application for a herpetological community from northeastern Brazil. Molecular Ecology, 26(18), 4756-4771
González, B. A., Vásquez, J. P., Gómez-Uchida, D., Cortés, J., Rivera, R., Aravena, N., Chero, A. M., Agapito, A. M., Varas, V, Wheeler, J. C., Orozco-terWengel, P., & Marín, J. C. (2019). Phylogeography and population genetics of Vicugna vicugna: Evolution in the arid Andean high plateau. Frontiers in genetics, 10, 445
Grazziotin, F. G., Zaher, H., Murphy, R. W., Scrocchi, G., Benavides, M. A., Zhang, Y. P., & Bonatto, S. L. (2012). Molecular phylogeny of the new world Dipsadidae (Serpentes: Colubroidea): a reappraisal. Cladistics, 28(5), 437-459
Green, M. R., & Sambrook, J. (2017). Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harbor Protocols, 2017(4), pdb-prot093450
Gregory-Wodzicki, K. M. (2000). Uplift history of the Central and Northern Andes: a review. Geological Society of America Bulletin, 112(7), 1091-1105
Guarnizo, C. E., Amézquita, A., & Bermingham, E. (2009). The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution, 50(1), 84-92
Guarnizo, C. E., Escallón, C., Cannatella, D., & Amézquita, A. (2012). Congruence between acoustic traits and genealogical history reveals a new species of Dendropsophus (Anura: Hylidae) in the high Andes of Colombia. Herpetologica, 68(4), 523-540
Guarnizo, C. E., Paz, A., Muñoz-Ortiz, A., Flechas, S. V., Méndez-Narváez, J., & Crawford, A. J. (2015). DNA barcoding survey of anurans across the Eastern Cordillera of Colombia and the impact of the Andes on cryptic diversity. PloS one, 10(5), e0127312
Guicking, D., Joger, U., & Wink, M. (2009). Cryptic diversity in a Eurasian water snake (Natrix tessellata, Serpentes: Colubridae): Evidence from mitochondrial sequence data and nuclear ISSR-PCR fingerprinting. Organisms Diversity & Evolution, 9(3), 201-214
Hall, T. A. (1999, January). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series (Vol. 41, No. 41, pp. 95-98). [London]: Information Retrieval Ltd., c1979-c2000
Heled, J. (2015). Extended Bayesian Skyline Plot tutorial for BEAST 2. Disponible en http://evomicsorg.wpengine.netdna-cdn.com/wpcontent/uploads/2015/11/ebsp2-tut1.pdf
Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological journal of the Linnean Society, 58(3), 247-276
Hewitt, G. M. (1999). Post-glacial re-colonization of European biota. Biological journal of the Linnean Society, 68(1-2), 87-112
Hickerson, M. J., Carstens, B. C., Cavender-Bares, J., Crandall, K. A., Graham, C. H., Johnson, J. B., Rissler, L., Victoriano, P. F. & Yoder, A. D. (2010). Phylogeography’s past, present, and future: 10 years after. Molecular phylogenetics and evolution, 54(1), 291-301
Ho, S. Y., & Shapiro, B. (2011). Skyline‐plot methods for estimating demographic history from nucleotide sequences. Molecular ecology resources, 11(3), 423-434
Hofmann, S., Kraus, S., Dorge, T., Nothnagel, M., Fritzsche, P., & Miehe, G. (2014). Effects of Pleistocene climatic fluctuations on the phylogeography, demography and population structure of a high‐elevation snake species, Thermophis baileyi, on the Tibetan Plateau. Journal of biogeography, 41(11), 2162-2172
Hooghiemstra, H., & Van der Hammen, T. (2004). Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1442), 173-181
Hoscheit, P., & Pybus, O. G. (2019). The multifurcating skyline plot. Virus evolution, 5(2), vez031
Hudson, R. R. (1990). Gene genealogies and the coalescent process. Oxford surveys in evolutionary biology, 7(1), 1-44
Jerez, A., & Calderón-Espinosa, M. L. (2014). Anadia bogotensis (Peters, 1862). Catálogo de Anfibios y Reptiles de Colombia, 2(1), 30-35
Jin, Y., Liu, N., & Brown, R. P. (2017). The geography and timing of genetic divergence in the lizard Phrynocephalus theobaldi on the Qinghai-Tibetan plateau. Scientific reports, 7(1), 1-8
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods, 14(6), 587-589
Klunzinger, M. W., Lopes-Lima, M., Gomes-dos-Santos, A., Froufe, E., Lymbery, A. J., & Kirkendale, L. (2021). Phylogeographic study of the West Australian freshwater mussel, Westralunio carteri, uncovers evolutionarily significant units that raise new conservation concerns. Hydrobiologia, 848(12), 2951-2964
Knowles, L. L. (2004). The burgeoning field of statistical phylogeography. Journal of evolutionary biology, 17(1), 1-10
Knowles, L. L., & Maddison, W. P. (2002). Statistical phylogeography. Molecular Ecology, 11(12), 2623-2635
Leigh, J. W., & Bryant, D. (2015). PoPArt: full‐feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116
Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452
Macey, J. R., Schulte II, J. A., Ananjeva, N. B., Larson, A., Rastegar-Pouyani, N., Shammakov, S. M., & Papenfuss, T. J. (1998). Phylogenetic Relationships among Agamid Lizards of the Laudakia caucasia species Group: Testing Hypotheses of Biogeographic Fragmentation and an Area Cladogram for the Iranian Plateau. Molecular Phylogenetics and Evolution, 10(1), 118-131
Macey, J. R., Schulte II, J. A., Larson, A., Tuniyev, B. S., Orlov, N., & Papenfuss, T. J. (1999). Molecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families. Molecular phylogenetics and evolution, 12(3), 250-272
Manolopoulou, I., Hille, A., & Emerson, B. (2020). BPEC: An R package for Bayesian phylogeographic and ecological clustering. Journal of Statistical Software, 92, 1-32
Mao, K., Wang, Y., & Liu, J. (2021). Evolutionary origin of species diversity on the Qinghai‐Tibet Plateau. Journal of Systematics and Evolution. Pp. 1-17
Marin, J. C., González, B. A., Poulin, E., Casey, C. S., & Johnson, W. E. (2013). The influence of the arid Andean high plateau on the phylogeography and population genetics of guanaco (Lama guanicoe) in South America. Molecular ecology, 22(2), 463-482
Martins, L. F., Choueri, E. L., Oliveira, A. F., Domingos, F. M., Caetano, G. H., Cavalcante, V. H., Leite R. N., Fouquet, A., Rodrigues, M. T., Carnaval, A. C., Colli, G. R., & Werneck, F. P. (2021). Whiptail lizard lineage delimitation and population expansion as windows into the history of Amazonian open ecosystems. Systematics and Biodiversity, 1-19
Masta, S. E. (2000). Phylogeography of the jumping spider Habronattus pugillis (Araneae: Salticidae): recent vicariance of sky island populations?. Evolution, 54(5), 1699-1711
Méndez-Galeano, M. A., & Pinto-Erazo, M. A. (2018). Riama striata (Peters, 1862). Catálogo de Anfibios y Reptiles de Colombia, 4 (2), 61-67
Morales-Betancourt, M. A., Lasso, C. A., Páez, V. P., & Bock, B. C. (2015). Libro rojo de reptiles de Colombia (2015) Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Universidad de Antioquia. Bogotá, DC, Colombia
Moritz, C. (1994). Defining ‘evolutionarily significant units’ for conservation. Trends in ecology & evolution, 9(10), 373-375
Moritz, C., & Faith, D. P. (1998). Comparative phylogeography and the identification of genetically divergent areas for conservation. Molecular ecology, 7(4), 419-429
Mosbrugger, V., Favre, A., Muellner-Riehl, A. N., Päckert, M., & Mulch, A. (2018). Cenozoic evolution of geo-biodiversity in the Tibeto-Himalayan region. Mountains, climate, and biodiversity, 429, 448
Muellner-Riehl, A. N. (2019). Mountains as evolutionary arenas: patterns, emerging approaches, paradigm shifts, and their implications for plant phylogeographic research in the Tibeto-Himalayan region. Frontiers in Plant Science, 10, 195
Muñoz‐Ortiz, A., Velásquez‐Álvarez, Á. A., Guarnizo, C. E., & Crawford, A. J. (2015). Of peaks and valleys: testing the roles of orogeny and habitat heterogeneity in driving allopatry in mid‐elevation frogs (Aromobatidae: Rheobates) of the northern Andes. Journal of Biogeography, 42(1), 193-205
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution, 32(1), 268-274
Palacios, C., García-R, S., Parra, J. L., Cuervo, A. M., Stiles, F. G., McCormack, J. E., & Cadena, C. D. (2019). Shallow genetic divergence and distinct phenotypic differences between two Andean hummingbirds: Speciation with gene flow?. The Auk, 136(4), ukz046
Palumbi, S.R. (1996) Nucleic acids II: the polymerase chain reaction. In D.M. Hillis, B.K. Mable & C. Moritz (Eds). Molecular systematics, pp. 205–247. Sinauer Associates, Sunderland, MA
Panchal, M., & Beaumont, M. A. (2007). The automation and evaluation of nested clade phylogeographic analysis. Evolution: International Journal of Organic Evolution, 61(6), 1466-1480
Panchal, M., & Beaumont, M. A. (2010). Evaluating nested clade phylogeographic analysis under models of restricted gene flow. Systematic Biology, 59(4), 415-432
Paternina, R. F., & Capera-M, V. H. (2017). Atractus crassicaudatus (Duméril, Bibron & Duméril, 1854). Catálogo de Anfibios y Reptiles de Colombia, 3 (2): 7-13
Posada, D., Crandall, K. A., & Templeton, A. R. (2006). Nested clade analysis statistics. Molecular Ecology Notes, 6(3), 590-593
Pouchon, C., Fernández, A., Nassar, J. M., Boyer, F., Aubert, S., Lavergne, S., & Mavárez, J. (2018). Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the tropical Andes. Systematic Biology, 67(6), 1041-1060
Prates, I., Xue, A. T., Brown, J. L., Alvarado-Serrano, D. F., Rodrigues, M. T., Hickerson, M. J., & Carnaval, A. C. (2016). Inferring responses to climate dynamics from historical demography in neotropical forest lizards. Proceedings of the National Academy of Sciences, 113(29), 7978-798
Provost, K. L., Myers, E. A., & Smith, B. T. (2021). Community phylogeographic patterns reveal how a barrier filters and structures taxa in North American warm deserts. Journal of Biogeography, 48(6), 1267-1283
Puillandre, N., Brouillet, S., & Achaz, G. (2021). ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21(2), 609-620
Pybus, O. G., Rambaut, A., & Harvey, P. H. (2000). An integrated framework for the inference of viral population history from reconstructed genealogies. Genetics, 155(3), 1429-1437
Rambaut A. 2009. FigTree v1.3.1. Disponible en http://tree.bio.ed.ac. uk/software/figtree/
Rambaut A., Drummond A.J. 2007. Tracer v1.4. Disponible en http://beast.bio.ed.ac.uk/software/tracer/
Recoder, R., Prates, I., Marques-Souza, S., Camacho, A., Nunes, P. M. S., Dal Vechio, F., Ghellere, J. M., McDiarmid, R. W., & Rodrigues, M. T. (2020). Lizards from the Lost World: two new species and evolutionary relationships of the Pantepui highland Riolama (Gymnophthalmidae). Zoological Journal of the Linnean Society, 190(1), 271-297
Riddle, B. R., Hafner, D. J., Alexander, L. F., & Jaeger, J. R. (2000). Cryptic vicariance in the historical assembly of a Baja California Peninsular Desert biota. Proceedings of the National Academy of Sciences, 97(26), 14438-14443
Riginos, C. (2005). Cryptic vicariance in Gulf of California fishes parallels vicariant patterns found in Baja California mammals and reptiles. Evolution, 59(12), 2678-2690
Rivera, D., Gómez, F., & Goodhew, P. (2004). Altiplanos de Colombia. Imprelibros SA-Banco de Occidente. Cali, 59-107
Rodríguez-Barbosa, C. A., Mendoza-Roldán, J. S., & Sánchez, D. A. G. (2017). Stenocercus trachycephalus (Duméril, 1851). Catálogo de Anfibios y Reptiles de Colombia, 3 (1): 67-74
Rodríguez-Muñoz, E., Montes, C., & Crawford, A. J. (2020). Synthesis of geological and comparative phylogeographic data point to climate, not mountain uplift, as driver of divergence across the Eastern Andean Cordillera. BioRxiv
Ronquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574
Sánchez, H., Castaño, O., & Cárdenas, G. (1995). Diversidad de los Reptiles en Colombia. En Rangel-Ch, O. (Ed.). Colombia Diversidad Biótica I. Santa Fe de Bogotá. Universidad Nacional de Colombia, INDERENA, Fundación FES, Ed. Guadalupe LTDA, 277-325
Sánchez‐Pacheco, S. J., Torres‐Carvajal, O., Aguirre‐Peñafiel, V., Nunes, P. M. S., Verrastro, L., Rivas, G. A., Rodrigues, M. T., Grant, T., & Murphy, R. W. (2018). Phylogeny of Riama (Squamata: Gymnophthalmidae), impact of phenotypic evidence on molecular datasets, and the origin of the Sierra Nevada de Santa Marta endemic fauna. Cladistics, 34(3), 260-291
Sarmiento, G., Gaviria, S., Hooghiemstra, H., Berrio, J. C., & Van der Hammen, T. (2008). Landscape evolution and origin of Lake Fúquene (Colombia): tectonics, erosion and sedimentation processes during the Pleistocene. Geomorphology, 100(3-4), 563-575
Sites Jr, J. W. & Morando, M. (2009). Phylogeography. En Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: Chichester
Stephan, W., & Langley, C. H. (1992). Evolutionary consequences of DNA mismatch inhibited repair opportunity. Genetics, 132(2), 567-574
Strimmer, K., & Pybus, O. G. (2001). Exploring the demographic history of DNA sequences using the generalized skyline plot. Molecular Biology and Evolution, 18(12), 2298-2305
Sunnåker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M., & Dessimoz, C. (2013). Approximate bayesian computation. PLoS computational biology, 9(1), e1002803
Taberlet, P., Fumagalli, L., WUST‐SAUCY, A. G., & COSSON, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular ecology, 7(4), 453-464
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution, 28(10), 2731-2739
Templeton, A. R. (1998). Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology, 7(4), 381-397
Templeton, A. R. (2008). Nested clade analysis: an extensively validated method for strong phylogeographic inference. Molecular Ecology, 17(8), 1877
Templeton, A. R. (2009). Why does a method that fails continue to be used? The answer. Evolution: International Journal of Organic Evolution, 63(4), 807-812
Templeton, A. R. (2009a). Statistical hypothesis testing in intraspecific phylogeography: nested clade phylogeographical analysis vs. approximate Bayesian computation. Molecular ecology, 18(2), 319-331
Templeton, A. R. (2010). Coalescent-based, maximum likelihood inference in phylogeography. Molecular Ecology, 19(3), 431
Templeton, A. R. (2010). Coherent and incoherent inference in phylogeography and human evolution. Proceedings of the National Academy of Sciences, 107(14), 6376-6381
Templeton, A. R. (2010). The diverse applications of cladistic analysis of molecular evolution, with special reference to nested clade analysis. International journal of molecular sciences, 11(1), 124-139
Templeton, A. R., Routman, E., & Phillips, C. A. (1995). Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics, 140(2), 767-782
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22(22), 4673-4680
Torres-Carvajal, O., Lobos, S. E., Venegas, P. J., Chávez, G., Aguirre-Peñafiel, V., Zurita, D., & Echevarría, L. Y. (2016). Phylogeny and biogeography of the most diverse clade of South American gymnophthalmid lizards (Squamata, Gymnophthalmidae, Cercosaurinae). Molecular phylogenetics and evolution, 99, 63-75
Vargas-Ramírez, M., & Moreno-Arias, R. (2014). Unknown evolutionary lineages and population differentiation in Anolis heterodermus (Squamata: Dactyloidae) from the eastern and central Cordilleras of Colombia revealed by DNA sequence data. South American Journal of Herpetology, 9(2), 131-141
Weiss, S., & Ferrand, N. (2007). Current perspectives in phylogeography and the significance of South European refugia in the creation and maintenance of European biodiversity. In Phylogeography of southern European refugia (pp. 341-357) Springer, Dordrecht
Xu, W., Dong, W. J., Fu, T. T., Gao, W., Lu, C. Q., Yan, F., Wu Y., Jiang K., Jin J., Chen H., Zhang Y., Hillis D. M., & Che, J. (2021). Herpetological phylogeographic analyses support a Miocene focal point of Himalayan uplift and biological diversification. National science review, 8(9), nwaa263
Yang, S., Dong, H., & Lei, F. (2009). Phylogeography of regional fauna on the Tibetan Plateau: a review. Progress in Natural Science, 19(7), 789-799
Zając, K. S., Proćków, M., Zając, K., Stec, D., & Lachowska-Cierlik, D. (2020). Phylogeography and potential glacial refugia of terrestrial gastropod Faustina faustina (Rossmässler, 1835) (Gastropoda: Eupulmonata: Helicidae) inferred from molecular data and species distribution models. Organisms Diversity & Evolution, 20(4), 747-762
Zhang, J., Kapli, P., Pavlidis, P., & Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29(22), 2869-2876
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 102 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Biología
dc.publisher.department.spa.fl_str_mv Departamento de Biología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82224/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82224/2/1015433702.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82224/3/1015433702.2022.pdf.jpg
bitstream.checksum.fl_str_mv b577153cc0e11f0aeb5fc5005dc82d8a
4ff89d34e22e63a2a55fcab8eeefd01a
f1697f24a88639254e3e1abeea61bc85
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089959956545536
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vargas Ramírez, Marioed5b1d0e018fc833079772b4f20c24d0Méndez Galeano, Miguel Ángele2fc85fbad90cb2039686ed3bc105851Biodiversidad y Conservación Genética2022-08-31T19:02:35Z2022-08-31T19:02:35Z2021https://repositorio.unal.edu.co/handle/unal/82224Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasEn el estudio de la distribución geográfica de la estructura genética intraespecífica y de los procesos y mecanismos subyacentes, el enfoque comparativo permite encontrar congruencias entre especies codistribuidas, y de este modo probar diferentes hipótesis con mayor soporte o evidencia, encontrando factores comunes. Recientemente, se han empezado a realizar este tipo de estudios en la región tropical. Sin embargo, los estudios en altiplanos son escasos. En el presente trabajo, se caracterizaron los patrones filogeográficos de cuatro especies codistribuidas de reptiles escamados del altiplano cundiboyacense, en la cordillera oriental de Colombia, desde un enfoque comparativo, tanto a nivel espacial como temporal. Se realizaron reconstrucciones filogenéticas, redes de haplotipos y se definieron grupos genéticos con base tanto en algoritmos de delimitación de especies o linajes, como en métodos coalescentes y AMOVA. También se calcularon distancias, índices de diversidad genética y se aplicaron métodos de reloj molecular filogenéticos y coalescentes. Anadia bogotensis y Stenocercus trachycephalus comparten una misma estructura filogeográfica asociada a las unidades geográficas del altiplano cundiboyacense, mientras que Riama striata y Atractus crassicaudatus comparten un patrón diferente. A. bogotensis y R. striata presentan linajes del Mioceno-Plioceno, mientras que las otras especies presentan unidades demográficas del Pleistoceno. Se discute como las similitudes ecológicas y orografías complejas y conservadas propician patrones filogeográficos concordantes, incluso en tiempos geológicos diferentes, pero con procesos o eventos análogos. Esto por medio de un mecanismo atemporal común de diversificación de linajes o estructuración de poblaciones bajo ciertas hipótesis o sistemas de diversificación-dispersión en la herpetofauna del altiplano cundiboyacense. (Texto tomado de la fuente)For the study of geographical distribution of intraspecific genetic structure, and its subjacent processes and mechanisms, a comparative approach leads to find congruences between co-distributed species, and thus tests different hypothesis with best support or evidence, finding common factors. Recently, this kind of studies have started to be developed in the tropical region. However, studies focused on plateaus are scarce. In the present study, phylogeographic patterns were identified on four co-distributed species of squamate reptiles in the Cundiboyacense plateau, Eastern cordillera of Colombia, using a comparative approach; both spatially and temporally. Phylogenetic reconstructions and haplotype networks were performed and genetic groups were defined based on species or lineages delimitation algorithms, as well as coalescent methods and AMOVA. Also, genetic distances and genetic diversity indices were calculated and both phylogenetic and coalescent molecular clock methods were performed. Anadia bogotensis and Stenocercus trachycephalus share the same phylogeographical structure associated with geographic units of Cundiboyacense plateau, while Riama striata and Atractus crassicaudatus share a different pattern. Anadia bogotensis and R. striata showed lineages from Miocene-Pliocene, while for the other species Pleistocene demographic units were revealed. It is discussed how ecological similarities and conserve and complex orographies boost concordant phylogeographic patterns, even in different geological periods, but with analogous processes or events. This being possible through common atemporal mechanisms of lineage diversification or populational structuring under certain diversification-dispersion hypothesis or systems in the herpetofauna of the Cundiboyacense plateauMaestríaMagíster en Ciencias - BiologíaFilogeografía, sistemática molecular, genética de poblacionesxv, 102 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BiologíaDepartamento de BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animalesDEMOGRAFIACARACTERISTICAS DEMOGRAFICASBIOLOGIA EVOLUTIVADemographyDemographic characteristicsDevelopmental biologyReptiles escamadosCongruencia filogeográficapatrones atemporaleshipótesis de geodiversidad de montañaSquamate reptilesphylogeographic congruenceatemporal patternsMountain-geobiodiversity hypothesisFilogeografía comparativa de cuatro especies de reptiles escamados en el altiplano cundiboyacense, cordillera oriental de ColombiaComparative phylogeography of four squamate reptile species from Cundiboyacense high plateau, eastern cordillera of ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAraujo-Carrillo, G. A., Varón-Ramírez, V. M., Jaramillo-Barrios, C. I., Estupiñan-Casallas, J. M., Silva-Arero, E. A., Gómez-Latorre, D. A., & Martínez-Maldonado, F. E. (2021). IRAKA: The first Colombian soil information system with digital soil mapping products. Catena, 196, 104940Arbelaez-Cortes, E. (2012). Filogeografía comparada: conceptos, métodos y patrones generales en aves Neotropicales. Acta Biológica Colombiana, 17(1), 19-38Arevalo, E., Davis, S. K., & Sites Jr, J. W. (1994). Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of the Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Systematic Biology, 43(3), 387-418Arteaga, A., Pyron, R. A., Peñafiel, N., Romero-Barreto, P., Culebras, J., Bustamante, L., Yanez-Muñoz, M. H., & Guayasamin, J. M. (2016). Comparative phylogeography reveals cryptic diversity and repeated patterns of cladogenesis for amphibians and reptiles in northwestern Ecuador. PloS one, 11(4), e0151746Avise, J. C. (1995). Mitochondrial DNA polymorphism and a connection between genetics and demography of relevance to conservation. Conservation Biology, 9(3), 686-690Avise, J. C. (1998). The history and purview of phylogeography: a personal reflection. Molecular Ecology, 7(4), 371-379Avise, J. C. (2000). Phylogeography: the history and formation of species. Harvard university pressAvise, J. C. (2009). Phylogeography: retrospect and prospect. Journal of biogeography, 36(1), 3-15Avise, J. C., & Walker, D. E. (1998). Pleistocene phylogeographic effects on avian populations and the speciation process. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1395), 457-463Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A. & Saunders, N. C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual review of ecology and systematics, 18(1), 489-522Avise, J. C., Walker, D., & Johns, G. C. (1998). Speciation durations and Pleistocene effects on vertebrate phylogeography. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1407), 1707-1712Barrow, L. N., Soto‐Centeno, J. A., Warwick, A. R., Lemmon, A. R., & Moriarty Lemmon, E. (2017). Evaluating hypotheses of expansion from refugia through comparative phylogeography of south‐eastern Coastal Plain amphibians. Journal of Biogeography, 44(12), 2692-2705Beaumont, M. A., & Panchal, M. (2008). On the validity of nested clade phylogeographical analysis. Molecular Ecology 17, 2563–2565Beaumont, M. A., Zhang, W., & Balding, D. J. (2002). Approximate Bayesian computation in population genetics. Genetics, 162(4), 2025-2035Beheregaray, L. B. (2008). Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Molecular Ecology, 17(17), 3754-3774Behling, H. (1998). Late Quaternary vegetational and climatic changes in Brazil. Review of palaeobotany and palynology, 99(2), 143-156Benavides, E., Baum, R., McClellan, D., & Sites, J. W. (2007). Molecular phylogenetics of the lizard genus Microlophus (Squamata: Tropiduridae): aligning and retrieving indel signal from nuclear introns. Systematic biology, 56(5), 776-797Brito, P. H., & Edwards, S. V. (2009). Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica, 135(3), 439-455Calderón, M., Caicedo, J., Ines Hladki, A., Renjifo, J. & Urbina, N. 2017. Anadia bogotensis. In The IUCN Red List of Threatened Species 2017: e.T44578148A44578157. https://dx.doi.org/10.2305/IUCN.UK.2017-2.RLTS.T44578148A44578157.enCamargo, A., Sinervo, B., & Sites Jr, J. W. (2010). Lizards as model organisms for linking phylogeographic and speciation studies. Molecular Ecology, 19(16), 3250-3270Castaño-Mora, O.V, Hernández, E. & Cárdenas, G. (2000). Reptiles. En Colombia Diversidad Biótica III La región de vida paramuna. Bogotá D.C.Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M., & Corander, J. (2013). Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Molecular biology and evolution, 30(5), 1224-1228Clement, M., Posada, D. C. K. A., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular ecology, 9(10), 1657-1659Crnobrnja-Isailovic, J. (2007). Cross-section of a refugium: genetic diversity of amphibian and reptile populations in the Balkans. In Phylogeography of southern European refugia (pp. 327-337). Springer, DordrechtCsilléry, K., Blum, M. G., Gaggiotti, O. E., & François, O. (2010). Approximate Bayesian computation (ABC) in practice. Trends in ecology & evolution, 25(7), 410-418Da Silva, M. N. F., & Patton, J. L. (1998). Molecular phylogeography and the evolution and conservation of Amazonian mammals. Molecular Ecology, 7(4), 475-486De Bermoudes, O., & Velandia, F. (2010). Hidrogeología regional de la Sabana de Bogotá. Universidad de Antioquia, Hidrogeología para la gestión del recurso Hídrico Ministerio de Ambiente, Vivienda y Desarrollo Territorial. Pp. 159-168De Queiroz, K. (2007). Species concepts and species delimitation. Systematic biology, 56(6), 879-886Drummond A.J., Suchard M.A., Xie D., Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973. doi:10.1093/molbev/mss075Flantua, S. G., Hooghiemstra, H., & Hoorn, C. (2018). Historical connectivity and mountain biodiversity. In Mountains, climate and biodiversity, 171-185Flantua, S. G., O'Dea, A., Onstein, R. E., Giraldo, C., & Hooghiemstra, H. (2019). The flickering connectivity system of the north Andean páramos. Journal of Biogeography, 46(8), 1808-1825García-R, J. C., Crawford, A. J., Mendoza, Á. M., Ospina, O., Cardenas, H., & Castro, F. (2012). Comparative phylogeography of direct-developing frogs (Anura: Craugastoridae: Pristimantis) in the southern Andes of Colombia. PLoS One, 7(9), e46077Garrick, R. C., Hyseni, C., Arantes, Í. C., Zachos, L. G., Zee, P. C., & Oliver, J. C. (2021). Is Phylogeographic Congruence Predicted by Historical Habitat Stability, or Ecological Co-associations?. Insect Systematics and Diversity, 5(5), 1-7Gehara, M., Garda, A. A., Werneck, F. P., Oliveira, E. F., da Fonseca, E. M., Camurugi, F., Magalhães, F. de M., Lanna, F. M., Sites Jr, J. W. Marques, R., Silveira-Filho, R., São Pedro, V. A., Colli, G. R., Costa, G. C., & Burbrink, F. T. (2017). Estimating synchronous demographic changes across populations using hABC and its application for a herpetological community from northeastern Brazil. Molecular Ecology, 26(18), 4756-4771González, B. A., Vásquez, J. P., Gómez-Uchida, D., Cortés, J., Rivera, R., Aravena, N., Chero, A. M., Agapito, A. M., Varas, V, Wheeler, J. C., Orozco-terWengel, P., & Marín, J. C. (2019). Phylogeography and population genetics of Vicugna vicugna: Evolution in the arid Andean high plateau. Frontiers in genetics, 10, 445Grazziotin, F. G., Zaher, H., Murphy, R. W., Scrocchi, G., Benavides, M. A., Zhang, Y. P., & Bonatto, S. L. (2012). Molecular phylogeny of the new world Dipsadidae (Serpentes: Colubroidea): a reappraisal. Cladistics, 28(5), 437-459Green, M. R., & Sambrook, J. (2017). Isolation of high-molecular-weight DNA using organic solvents. Cold Spring Harbor Protocols, 2017(4), pdb-prot093450Gregory-Wodzicki, K. M. (2000). Uplift history of the Central and Northern Andes: a review. Geological Society of America Bulletin, 112(7), 1091-1105Guarnizo, C. E., Amézquita, A., & Bermingham, E. (2009). The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution, 50(1), 84-92Guarnizo, C. E., Escallón, C., Cannatella, D., & Amézquita, A. (2012). Congruence between acoustic traits and genealogical history reveals a new species of Dendropsophus (Anura: Hylidae) in the high Andes of Colombia. Herpetologica, 68(4), 523-540Guarnizo, C. E., Paz, A., Muñoz-Ortiz, A., Flechas, S. V., Méndez-Narváez, J., & Crawford, A. J. (2015). DNA barcoding survey of anurans across the Eastern Cordillera of Colombia and the impact of the Andes on cryptic diversity. PloS one, 10(5), e0127312Guicking, D., Joger, U., & Wink, M. (2009). Cryptic diversity in a Eurasian water snake (Natrix tessellata, Serpentes: Colubridae): Evidence from mitochondrial sequence data and nuclear ISSR-PCR fingerprinting. Organisms Diversity & Evolution, 9(3), 201-214Hall, T. A. (1999, January). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series (Vol. 41, No. 41, pp. 95-98). [London]: Information Retrieval Ltd., c1979-c2000Heled, J. (2015). Extended Bayesian Skyline Plot tutorial for BEAST 2. Disponible en http://evomicsorg.wpengine.netdna-cdn.com/wpcontent/uploads/2015/11/ebsp2-tut1.pdfHewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological journal of the Linnean Society, 58(3), 247-276Hewitt, G. M. (1999). Post-glacial re-colonization of European biota. Biological journal of the Linnean Society, 68(1-2), 87-112Hickerson, M. J., Carstens, B. C., Cavender-Bares, J., Crandall, K. A., Graham, C. H., Johnson, J. B., Rissler, L., Victoriano, P. F. & Yoder, A. D. (2010). Phylogeography’s past, present, and future: 10 years after. Molecular phylogenetics and evolution, 54(1), 291-301Ho, S. Y., & Shapiro, B. (2011). Skyline‐plot methods for estimating demographic history from nucleotide sequences. Molecular ecology resources, 11(3), 423-434Hofmann, S., Kraus, S., Dorge, T., Nothnagel, M., Fritzsche, P., & Miehe, G. (2014). Effects of Pleistocene climatic fluctuations on the phylogeography, demography and population structure of a high‐elevation snake species, Thermophis baileyi, on the Tibetan Plateau. Journal of biogeography, 41(11), 2162-2172Hooghiemstra, H., & Van der Hammen, T. (2004). Quaternary Ice-Age dynamics in the Colombian Andes: developing an understanding of our legacy. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1442), 173-181Hoscheit, P., & Pybus, O. G. (2019). The multifurcating skyline plot. Virus evolution, 5(2), vez031Hudson, R. R. (1990). Gene genealogies and the coalescent process. Oxford surveys in evolutionary biology, 7(1), 1-44Jerez, A., & Calderón-Espinosa, M. L. (2014). Anadia bogotensis (Peters, 1862). Catálogo de Anfibios y Reptiles de Colombia, 2(1), 30-35Jin, Y., Liu, N., & Brown, R. P. (2017). The geography and timing of genetic divergence in the lizard Phrynocephalus theobaldi on the Qinghai-Tibetan plateau. Scientific reports, 7(1), 1-8Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., Von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods, 14(6), 587-589Klunzinger, M. W., Lopes-Lima, M., Gomes-dos-Santos, A., Froufe, E., Lymbery, A. J., & Kirkendale, L. (2021). Phylogeographic study of the West Australian freshwater mussel, Westralunio carteri, uncovers evolutionarily significant units that raise new conservation concerns. Hydrobiologia, 848(12), 2951-2964Knowles, L. L. (2004). The burgeoning field of statistical phylogeography. Journal of evolutionary biology, 17(1), 1-10Knowles, L. L., & Maddison, W. P. (2002). Statistical phylogeography. Molecular Ecology, 11(12), 2623-2635Leigh, J. W., & Bryant, D. (2015). PoPArt: full‐feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452Macey, J. R., Schulte II, J. A., Ananjeva, N. B., Larson, A., Rastegar-Pouyani, N., Shammakov, S. M., & Papenfuss, T. J. (1998). Phylogenetic Relationships among Agamid Lizards of the Laudakia caucasia species Group: Testing Hypotheses of Biogeographic Fragmentation and an Area Cladogram for the Iranian Plateau. Molecular Phylogenetics and Evolution, 10(1), 118-131Macey, J. R., Schulte II, J. A., Larson, A., Tuniyev, B. S., Orlov, N., & Papenfuss, T. J. (1999). Molecular phylogenetics, tRNA evolution, and historical biogeography in anguid lizards and related taxonomic families. Molecular phylogenetics and evolution, 12(3), 250-272Manolopoulou, I., Hille, A., & Emerson, B. (2020). BPEC: An R package for Bayesian phylogeographic and ecological clustering. Journal of Statistical Software, 92, 1-32Mao, K., Wang, Y., & Liu, J. (2021). Evolutionary origin of species diversity on the Qinghai‐Tibet Plateau. Journal of Systematics and Evolution. Pp. 1-17Marin, J. C., González, B. A., Poulin, E., Casey, C. S., & Johnson, W. E. (2013). The influence of the arid Andean high plateau on the phylogeography and population genetics of guanaco (Lama guanicoe) in South America. Molecular ecology, 22(2), 463-482Martins, L. F., Choueri, E. L., Oliveira, A. F., Domingos, F. M., Caetano, G. H., Cavalcante, V. H., Leite R. N., Fouquet, A., Rodrigues, M. T., Carnaval, A. C., Colli, G. R., & Werneck, F. P. (2021). Whiptail lizard lineage delimitation and population expansion as windows into the history of Amazonian open ecosystems. Systematics and Biodiversity, 1-19Masta, S. E. (2000). Phylogeography of the jumping spider Habronattus pugillis (Araneae: Salticidae): recent vicariance of sky island populations?. Evolution, 54(5), 1699-1711Méndez-Galeano, M. A., & Pinto-Erazo, M. A. (2018). Riama striata (Peters, 1862). Catálogo de Anfibios y Reptiles de Colombia, 4 (2), 61-67Morales-Betancourt, M. A., Lasso, C. A., Páez, V. P., & Bock, B. C. (2015). Libro rojo de reptiles de Colombia (2015) Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Universidad de Antioquia. Bogotá, DC, ColombiaMoritz, C. (1994). Defining ‘evolutionarily significant units’ for conservation. Trends in ecology & evolution, 9(10), 373-375Moritz, C., & Faith, D. P. (1998). Comparative phylogeography and the identification of genetically divergent areas for conservation. Molecular ecology, 7(4), 419-429Mosbrugger, V., Favre, A., Muellner-Riehl, A. N., Päckert, M., & Mulch, A. (2018). Cenozoic evolution of geo-biodiversity in the Tibeto-Himalayan region. Mountains, climate, and biodiversity, 429, 448Muellner-Riehl, A. N. (2019). Mountains as evolutionary arenas: patterns, emerging approaches, paradigm shifts, and their implications for plant phylogeographic research in the Tibeto-Himalayan region. Frontiers in Plant Science, 10, 195Muñoz‐Ortiz, A., Velásquez‐Álvarez, Á. A., Guarnizo, C. E., & Crawford, A. J. (2015). Of peaks and valleys: testing the roles of orogeny and habitat heterogeneity in driving allopatry in mid‐elevation frogs (Aromobatidae: Rheobates) of the northern Andes. Journal of Biogeography, 42(1), 193-205Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution, 32(1), 268-274Palacios, C., García-R, S., Parra, J. L., Cuervo, A. M., Stiles, F. G., McCormack, J. E., & Cadena, C. D. (2019). Shallow genetic divergence and distinct phenotypic differences between two Andean hummingbirds: Speciation with gene flow?. The Auk, 136(4), ukz046Palumbi, S.R. (1996) Nucleic acids II: the polymerase chain reaction. In D.M. Hillis, B.K. Mable & C. Moritz (Eds). Molecular systematics, pp. 205–247. Sinauer Associates, Sunderland, MAPanchal, M., & Beaumont, M. A. (2007). The automation and evaluation of nested clade phylogeographic analysis. Evolution: International Journal of Organic Evolution, 61(6), 1466-1480Panchal, M., & Beaumont, M. A. (2010). Evaluating nested clade phylogeographic analysis under models of restricted gene flow. Systematic Biology, 59(4), 415-432Paternina, R. F., & Capera-M, V. H. (2017). Atractus crassicaudatus (Duméril, Bibron & Duméril, 1854). Catálogo de Anfibios y Reptiles de Colombia, 3 (2): 7-13Posada, D., Crandall, K. A., & Templeton, A. R. (2006). Nested clade analysis statistics. Molecular Ecology Notes, 6(3), 590-593Pouchon, C., Fernández, A., Nassar, J. M., Boyer, F., Aubert, S., Lavergne, S., & Mavárez, J. (2018). Phylogenomic analysis of the explosive adaptive radiation of the Espeletia complex (Asteraceae) in the tropical Andes. Systematic Biology, 67(6), 1041-1060Prates, I., Xue, A. T., Brown, J. L., Alvarado-Serrano, D. F., Rodrigues, M. T., Hickerson, M. J., & Carnaval, A. C. (2016). Inferring responses to climate dynamics from historical demography in neotropical forest lizards. Proceedings of the National Academy of Sciences, 113(29), 7978-798Provost, K. L., Myers, E. A., & Smith, B. T. (2021). Community phylogeographic patterns reveal how a barrier filters and structures taxa in North American warm deserts. Journal of Biogeography, 48(6), 1267-1283Puillandre, N., Brouillet, S., & Achaz, G. (2021). ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21(2), 609-620Pybus, O. G., Rambaut, A., & Harvey, P. H. (2000). An integrated framework for the inference of viral population history from reconstructed genealogies. Genetics, 155(3), 1429-1437Rambaut A. 2009. FigTree v1.3.1. Disponible en http://tree.bio.ed.ac. uk/software/figtree/Rambaut A., Drummond A.J. 2007. Tracer v1.4. Disponible en http://beast.bio.ed.ac.uk/software/tracer/Recoder, R., Prates, I., Marques-Souza, S., Camacho, A., Nunes, P. M. S., Dal Vechio, F., Ghellere, J. M., McDiarmid, R. W., & Rodrigues, M. T. (2020). Lizards from the Lost World: two new species and evolutionary relationships of the Pantepui highland Riolama (Gymnophthalmidae). Zoological Journal of the Linnean Society, 190(1), 271-297Riddle, B. R., Hafner, D. J., Alexander, L. F., & Jaeger, J. R. (2000). Cryptic vicariance in the historical assembly of a Baja California Peninsular Desert biota. Proceedings of the National Academy of Sciences, 97(26), 14438-14443Riginos, C. (2005). Cryptic vicariance in Gulf of California fishes parallels vicariant patterns found in Baja California mammals and reptiles. Evolution, 59(12), 2678-2690Rivera, D., Gómez, F., & Goodhew, P. (2004). Altiplanos de Colombia. Imprelibros SA-Banco de Occidente. Cali, 59-107Rodríguez-Barbosa, C. A., Mendoza-Roldán, J. S., & Sánchez, D. A. G. (2017). Stenocercus trachycephalus (Duméril, 1851). Catálogo de Anfibios y Reptiles de Colombia, 3 (1): 67-74Rodríguez-Muñoz, E., Montes, C., & Crawford, A. J. (2020). Synthesis of geological and comparative phylogeographic data point to climate, not mountain uplift, as driver of divergence across the Eastern Andean Cordillera. BioRxivRonquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574Sánchez, H., Castaño, O., & Cárdenas, G. (1995). Diversidad de los Reptiles en Colombia. En Rangel-Ch, O. (Ed.). Colombia Diversidad Biótica I. Santa Fe de Bogotá. Universidad Nacional de Colombia, INDERENA, Fundación FES, Ed. Guadalupe LTDA, 277-325Sánchez‐Pacheco, S. J., Torres‐Carvajal, O., Aguirre‐Peñafiel, V., Nunes, P. M. S., Verrastro, L., Rivas, G. A., Rodrigues, M. T., Grant, T., & Murphy, R. W. (2018). Phylogeny of Riama (Squamata: Gymnophthalmidae), impact of phenotypic evidence on molecular datasets, and the origin of the Sierra Nevada de Santa Marta endemic fauna. Cladistics, 34(3), 260-291Sarmiento, G., Gaviria, S., Hooghiemstra, H., Berrio, J. C., & Van der Hammen, T. (2008). Landscape evolution and origin of Lake Fúquene (Colombia): tectonics, erosion and sedimentation processes during the Pleistocene. Geomorphology, 100(3-4), 563-575Sites Jr, J. W. & Morando, M. (2009). Phylogeography. En Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd: ChichesterStephan, W., & Langley, C. H. (1992). Evolutionary consequences of DNA mismatch inhibited repair opportunity. Genetics, 132(2), 567-574Strimmer, K., & Pybus, O. G. (2001). Exploring the demographic history of DNA sequences using the generalized skyline plot. Molecular Biology and Evolution, 18(12), 2298-2305Sunnåker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M., & Dessimoz, C. (2013). Approximate bayesian computation. PLoS computational biology, 9(1), e1002803Taberlet, P., Fumagalli, L., WUST‐SAUCY, A. G., & COSSON, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular ecology, 7(4), 453-464Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution, 28(10), 2731-2739Templeton, A. R. (1998). Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Molecular Ecology, 7(4), 381-397Templeton, A. R. (2008). Nested clade analysis: an extensively validated method for strong phylogeographic inference. Molecular Ecology, 17(8), 1877Templeton, A. R. (2009). Why does a method that fails continue to be used? The answer. Evolution: International Journal of Organic Evolution, 63(4), 807-812Templeton, A. R. (2009a). Statistical hypothesis testing in intraspecific phylogeography: nested clade phylogeographical analysis vs. approximate Bayesian computation. Molecular ecology, 18(2), 319-331Templeton, A. R. (2010). Coalescent-based, maximum likelihood inference in phylogeography. Molecular Ecology, 19(3), 431Templeton, A. R. (2010). Coherent and incoherent inference in phylogeography and human evolution. Proceedings of the National Academy of Sciences, 107(14), 6376-6381Templeton, A. R. (2010). The diverse applications of cladistic analysis of molecular evolution, with special reference to nested clade analysis. International journal of molecular sciences, 11(1), 124-139Templeton, A. R., Routman, E., & Phillips, C. A. (1995). Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics, 140(2), 767-782Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research, 22(22), 4673-4680Torres-Carvajal, O., Lobos, S. E., Venegas, P. J., Chávez, G., Aguirre-Peñafiel, V., Zurita, D., & Echevarría, L. Y. (2016). Phylogeny and biogeography of the most diverse clade of South American gymnophthalmid lizards (Squamata, Gymnophthalmidae, Cercosaurinae). Molecular phylogenetics and evolution, 99, 63-75Vargas-Ramírez, M., & Moreno-Arias, R. (2014). Unknown evolutionary lineages and population differentiation in Anolis heterodermus (Squamata: Dactyloidae) from the eastern and central Cordilleras of Colombia revealed by DNA sequence data. South American Journal of Herpetology, 9(2), 131-141Weiss, S., & Ferrand, N. (2007). Current perspectives in phylogeography and the significance of South European refugia in the creation and maintenance of European biodiversity. In Phylogeography of southern European refugia (pp. 341-357) Springer, DordrechtXu, W., Dong, W. J., Fu, T. T., Gao, W., Lu, C. Q., Yan, F., Wu Y., Jiang K., Jin J., Chen H., Zhang Y., Hillis D. M., & Che, J. (2021). Herpetological phylogeographic analyses support a Miocene focal point of Himalayan uplift and biological diversification. National science review, 8(9), nwaa263Yang, S., Dong, H., & Lei, F. (2009). Phylogeography of regional fauna on the Tibetan Plateau: a review. Progress in Natural Science, 19(7), 789-799Zając, K. S., Proćków, M., Zając, K., Stec, D., & Lachowska-Cierlik, D. (2020). Phylogeography and potential glacial refugia of terrestrial gastropod Faustina faustina (Rossmässler, 1835) (Gastropoda: Eupulmonata: Helicidae) inferred from molecular data and species distribution models. Organisms Diversity & Evolution, 20(4), 747-762Zhang, J., Kapli, P., Pavlidis, P., & Stamatakis, A. (2013). A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29(22), 2869-2876Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-84675https://repositorio.unal.edu.co/bitstream/unal/82224/1/license.txtb577153cc0e11f0aeb5fc5005dc82d8aMD51ORIGINAL1015433702.2022.pdf1015433702.2022.pdfTesis de Maestría en Ciencias - Biologíaapplication/pdf2469817https://repositorio.unal.edu.co/bitstream/unal/82224/2/1015433702.2022.pdf4ff89d34e22e63a2a55fcab8eeefd01aMD52THUMBNAIL1015433702.2022.pdf.jpg1015433702.2022.pdf.jpgGenerated Thumbnailimage/jpeg5093https://repositorio.unal.edu.co/bitstream/unal/82224/3/1015433702.2022.pdf.jpgf1697f24a88639254e3e1abeea61bc85MD53unal/82224oai:repositorio.unal.edu.co:unal/822242023-08-08 23:04:18.828Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUGFydGUgMS4gIFTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBwYXJhIHB1YmxpY2FjacOzbiBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yLCBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhLCBsaW1pdGFkYSB5IGdyYXR1aXRhIHNvYnJlIGxhIG9icmEgcXVlIHNlIGludGVncmEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgYmFqbyBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6CgoKYSkJTG9zIGF1dG9yZXMgeS9vIGxvcyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhIHBhcmEgcmVhbGl6YXIgbG9zIHNpZ3VpZW50ZXMgYWN0b3Mgc29icmUgbGEgb2JyYTogaSkgcmVwcm9kdWNpciBsYSBvYnJhIGRlIG1hbmVyYSBkaWdpdGFsLCBwZXJtYW5lbnRlIG8gdGVtcG9yYWwsIGluY2x1eWVuZG8gZWwgYWxtYWNlbmFtaWVudG8gZWxlY3Ryw7NuaWNvLCBhc8OtIGNvbW8gY29udmVydGlyIGVsIGRvY3VtZW50byBlbiBlbCBjdWFsIHNlIGVuY3VlbnRyYSBjb250ZW5pZGEgbGEgb2JyYSBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gZXhpc3RlbnRlIGEgbGEgZmVjaGEgZGUgbGEgc3VzY3JpcGNpw7NuIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhLCB5IGlpKSBjb211bmljYXIgYWwgcMO6YmxpY28gbGEgb2JyYSBwb3IgY3VhbHF1aWVyIG1lZGlvIG8gcHJvY2VkaW1pZW50bywgZW4gbWVkaW9zIGFsw6FtYnJpY29zIG8gaW5hbMOhbWJyaWNvcywgaW5jbHV5ZW5kbyBsYSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZW4gYWNjZXNvIGFiaWVydG8uIEFkaWNpb25hbCBhIGxvIGFudGVyaW9yLCBlbCBhdXRvciB5L28gdGl0dWxhciBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHBhcmEgcXVlLCBlbiBsYSByZXByb2R1Y2Npw7NuIHkgY29tdW5pY2FjacOzbiBhbCBww7pibGljbyBxdWUgbGEgVW5pdmVyc2lkYWQgcmVhbGljZSBzb2JyZSBsYSBvYnJhLCBoYWdhIG1lbmNpw7NuIGRlIG1hbmVyYSBleHByZXNhIGFsIHRpcG8gZGUgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBiYWpvIGxhIGN1YWwgZWwgYXV0b3IgeS9vIHRpdHVsYXIgZGVzZWEgb2ZyZWNlciBzdSBvYnJhIGEgbG9zIHRlcmNlcm9zIHF1ZSBhY2NlZGFuIGEgZGljaGEgb2JyYSBhIHRyYXbDqXMgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIGN1YW5kbyBzZWEgZWwgY2Fzby4gRWwgYXV0b3IgeS9vIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIHByZXNlbnRlIGxpY2VuY2lhIG1lZGlhbnRlIHNvbGljaXR1ZCBlbGV2YWRhIGEgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYS4gCgpiKSAJTG9zIGF1dG9yZXMgeS9vIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBsYSBsaWNlbmNpYSBzZcOxYWxhZGEgZW4gZWwgbGl0ZXJhbCBhKSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHBvciBlbCB0aWVtcG8gZGUgcHJvdGVjY2nDs24gZGUgbGEgb2JyYSBlbiB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8sIGVzdG8gZXMsIHNpbiBsaW1pdGFjacOzbiB0ZXJyaXRvcmlhbCBhbGd1bmEuCgpjKQlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgbWFuaWZpZXN0YW4gZXN0YXIgZGUgYWN1ZXJkbyBjb24gcXVlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHNlIG90b3JnYSBhIHTDrXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bywgcmVudW5jaWFuIGEgcmVjaWJpciBjdWFscXVpZXIgcmV0cmlidWNpw7NuIGVjb27Ds21pY2EgbyBlbW9sdW1lbnRvIGFsZ3VubyBwb3IgbGEgcHVibGljYWNpw7NuLCBkaXN0cmlidWNpw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGNvbiBxdWUgc2UgcHVibGljYS4KCmQpCVF1aWVuZXMgZmlybWFuIGVsIHByZXNlbnRlIGRvY3VtZW50byBkZWNsYXJhbiBxdWUgcGFyYSBsYSBjcmVhY2nDs24gZGUgbGEgb2JyYSwgbm8gc2UgaGFuIHZ1bG5lcmFkbyBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsLCBpbmR1c3RyaWFsLCBtb3JhbGVzIHkgcGF0cmltb25pYWxlcyBkZSB0ZXJjZXJvcy4gRGUgb3RyYSBwYXJ0ZSwgIHJlY29ub2NlbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZSB5IHNlIGVuY3VlbnRyYSBleGVudGEgZGUgY3VscGEgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGfDum4gdGlwbyBkZSByZWNsYW1hY2nDs24gZW4gbWF0ZXJpYSBkZSBkZXJlY2hvcyBkZSBhdXRvciBvIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBnZW5lcmFsLiBQb3IgbG8gdGFudG8sIGxvcyBmaXJtYW50ZXMgIGFjZXB0YW4gcXVlIGNvbW8gdGl0dWxhcmVzIMO6bmljb3MgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGFzdW1pcsOhbiB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlIGxhIG9icmEuICAKCmYpCUF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3MgYWdyZWdhZG9yZXMgZGUgY29udGVuaWRvcywgYnVzY2Fkb3JlcyBhY2Fkw6ltaWNvcywgbWV0YWJ1c2NhZG9yZXMsIMOtbmRpY2VzIHkgZGVtw6FzIG1lZGlvcyBxdWUgc2UgZXN0aW1lbiBuZWNlc2FyaW9zIHBhcmEgcHJvbW92ZXIgZWwgYWNjZXNvIHkgY29uc3VsdGEgZGUgbGEgbWlzbWEuIAoKZykJRW4gZWwgY2FzbyBkZSBsYXMgdGVzaXMgY3JlYWRhcyBwYXJhIG9wdGFyIGRvYmxlIHRpdHVsYWNpw7NuLCBsb3MgZmlybWFudGVzIHNlcsOhbiBsb3MgcmVzcG9uc2FibGVzIGRlIGNvbXVuaWNhciBhIGxhcyBpbnN0aXR1Y2lvbmVzIG5hY2lvbmFsZXMgbyBleHRyYW5qZXJhcyBlbiBjb252ZW5pbywgbGFzIGxpY2VuY2lhcyBkZSBhY2Nlc28gYWJpZXJ0byBDcmVhdGl2ZSBDb21tb25zIHkgYXV0b3JpemFjaW9uZXMgYXNpZ25hZGFzIGEgc3Ugb2JyYSBwYXJhIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwgZGUgYWN1ZXJkbyBjb24gbGFzIGRpcmVjdHJpY2VzIGRlIGxhIFBvbMOtdGljYSBHZW5lcmFsIGRlIGxhIEJpYmxpb3RlY2EgRGlnaXRhbC4KCgpoKQlTZSBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGNvbW8gcmVzcG9uc2FibGUgZGVsIHRyYXRhbWllbnRvIGRlIGRhdG9zIHBlcnNvbmFsZXMsIGRlIGFjdWVyZG8gY29uIGxhIGxleSAxNTgxIGRlIDIwMTIgZW50ZW5kaWVuZG8gcXVlIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQsIHkgc3UgdHJhdGFtaWVudG8gdGllbmUgdW5hIGZpbmFsaWRhZCBoaXN0w7NyaWNhLCBlc3RhZMOtc3RpY2EgbyBjaWVudMOtZmljYSBzZWfDum4gbG8gZGlzcHVlc3RvIGVuIGxhIFBvbMOtdGljYSBkZSBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLgoKCgpQYXJ0ZSAyLiBBdXRvcml6YWNpw7NuIHBhcmEgcHVibGljYXIgeSBwZXJtaXRpciBsYSBjb25zdWx0YSB5IHVzbyBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpTZSBhdXRvcml6YSBsYSBwdWJsaWNhY2nDs24gZWxlY3Ryw7NuaWNhLCBjb25zdWx0YSB5IHVzbyBkZSBsYSBvYnJhIHBvciBwYXJ0ZSBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IGRlIHN1cyB1c3VhcmlvcyBkZSBsYSBzaWd1aWVudGUgbWFuZXJhOgoKYS4JQ29uY2VkbyBsaWNlbmNpYSBlbiBsb3MgdMOpcm1pbm9zIHNlw7FhbGFkb3MgZW4gbGEgcGFydGUgMSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBjb24gZWwgb2JqZXRpdm8gZGUgcXVlIGxhIG9icmEgZW50cmVnYWRhIHNlYSBwdWJsaWNhZGEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0byBwYXJhIHN1IGNvbnN1bHRhIHBvciBsb3MgdXN1YXJpb3MgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgIGEgdHJhdsOpcyBkZSBpbnRlcm5ldC4KCg==