Sward heights for maximizing herbage and nutrient intake rate of dairy heifers grazing kikuyu grass and reduce in vitro methane production

La definición de una altura de la pastura que permita maximizar la tasa de consumo de forraje y de nutrientes se ha implementado como una estrategia de manejo sostenible del pastoreo en los sistemas de producción de leche basados en pasturas. El objetivo de esta tesis fue determinar la altura del pa...

Full description

Autores:
Marín Gómez, Alejandra
Tipo de recurso:
Work document
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/75736
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/75736
Palabra clave:
Zootecnia
Novillas lecheras
Mitigación de CH4
Comportamiento ingestivo
Manejo del pastoreo
Dairy heifers
CH4 mitigation
Grazing management target
Sward height
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_4417b7b1c05cf05907b5d4d3da73306d
oai_identifier_str oai:repositorio.unal.edu.co:unal/75736
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Sward heights for maximizing herbage and nutrient intake rate of dairy heifers grazing kikuyu grass and reduce in vitro methane production
title Sward heights for maximizing herbage and nutrient intake rate of dairy heifers grazing kikuyu grass and reduce in vitro methane production
spellingShingle Sward heights for maximizing herbage and nutrient intake rate of dairy heifers grazing kikuyu grass and reduce in vitro methane production
Zootecnia
Novillas lecheras
Mitigación de CH4
Comportamiento ingestivo
Manejo del pastoreo
Dairy heifers
CH4 mitigation
Grazing management target
Sward height
title_short Sward heights for maximizing herbage and nutrient intake rate of dairy heifers grazing kikuyu grass and reduce in vitro methane production
title_full Sward heights for maximizing herbage and nutrient intake rate of dairy heifers grazing kikuyu grass and reduce in vitro methane production
title_fullStr Sward heights for maximizing herbage and nutrient intake rate of dairy heifers grazing kikuyu grass and reduce in vitro methane production
title_full_unstemmed Sward heights for maximizing herbage and nutrient intake rate of dairy heifers grazing kikuyu grass and reduce in vitro methane production
title_sort Sward heights for maximizing herbage and nutrient intake rate of dairy heifers grazing kikuyu grass and reduce in vitro methane production
dc.creator.fl_str_mv Marín Gómez, Alejandra
dc.contributor.advisor.spa.fl_str_mv Bindelle, Jérôme
Camargo, Delmis Omar
dc.contributor.author.spa.fl_str_mv Marín Gómez, Alejandra
dc.subject.proposal.spa.fl_str_mv Zootecnia
Novillas lecheras
Mitigación de CH4
Comportamiento ingestivo
Manejo del pastoreo
topic Zootecnia
Novillas lecheras
Mitigación de CH4
Comportamiento ingestivo
Manejo del pastoreo
Dairy heifers
CH4 mitigation
Grazing management target
Sward height
dc.subject.proposal.eng.fl_str_mv Dairy heifers
CH4 mitigation
Grazing management target
Sward height
description La definición de una altura de la pastura que permita maximizar la tasa de consumo de forraje y de nutrientes se ha implementado como una estrategia de manejo sostenible del pastoreo en los sistemas de producción de leche basados en pasturas. El objetivo de esta tesis fue determinar la altura del pasto kikuyo (Cenchrus clandestinus - Hochst. ex Chiov) que permite a las novillas lecheras maximizar la tasa de consumo de forraje y de total de nutrientes digestibles. Adicionalmente, evaluar el efecto de la altura de la pastura de las muestras de forraje del estrato superior (estrato potencialmente pastado por el ganado) sobre la composición química, la digestibilidad in vitro de la materia orgánica (DIVMO) y los principales parámetros de fermentación ruminal in vitro, incluida la producción de CH4. Se llevó a cabo un experimento de pastoreo cuyos tratamientos consistieron en cinco alturas del pasto kikuyo (10, 15, 20, 25 y 30 cm). La tasa de consumo en el corto plazo (STIR, por su sigla en inglés) de forraje se midió con la técnica de doble pesaje y para la determinación de la masa de bocado (MB), tasa de bocado (TB) y tiempo efectivo de alimentación se usó el registrador de movimientos mandibulares IGER behaviour recorder. Se encontró que la altura del pasto kikuyo que maximiza el consumo de forraje y de nutrientes por unidad de tiempo de alimentación fue aproximadamente en 20 cm. Definir alturas del pasto kikuyu muy bajas (10 cm) o muy altas (30 cm) como meta de manejo de pastoreo restringiría la MB y, por lo tanto, la STIR. La composición química y la DIVMO de las muestras de forraje del estrato superior no difirieron en las alturas de la pastura que osciló entre 10 y 25 cm, además, estas alturas de la pastura mostraron una DIVMO más alta que en la altura de 30 cm. La producción de gas in vitro y la DIVMS mostraron un ajuste negativo y lineal con el incremento de la altura. El CH4 (ml/g DIVMS) mostró una respuesta doble lineal similar entre 10 y 20 cm de altura de la pastura, y luego, incrementó con los incrementos de la altura de la pastura superiores a los 21 cm. La proporción molar de acetato (mol / 100 mol) tuvo una respuesta similar a la del CH4 (ml/g DIVMS). La proporción molar del propionato también presentó una respuesta doble lineal pero opuesta a la del CH4 (ml / g DIVMS), aumentando hasta alturas de pastura cercanas a 20 cm y luego disminuyendo. En conclusión, para optimizar la STIR y el TDN-STIR de las novillas lecheras, el pasto kikuyo debe manejarse a 20 cm de altura de la pastura. Adicionalmente, a esta altura de la pastura, la producción in vitro de CH4 (ml / g DIVMS) también se reduciría.
publishDate 2019
dc.date.issued.spa.fl_str_mv 2019-12-20
dc.date.accessioned.spa.fl_str_mv 2020-02-25T19:27:37Z
dc.date.available.spa.fl_str_mv 2020-02-25T19:27:37Z
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/75736
url https://repositorio.unal.edu.co/handle/unal/75736
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Allden, W. G., & Whittaker, I. A. M. (1970). The determinants of herbage intake by grazing sheep: the interrelationship of factors influencing herbage intake and availability. Australian Journal of Agricultural Research, 21(5), 755–766.
Baumont, R., Cohen-Salmon, D., Prache, S., & Sauvant, D. (2004). A mechanistic model of intake and grazing behaviour in sheep integrating sward architecture and animal decisions. Animal Feed Science and Technol ogy, 112(1–4), 5–28. https://doi.org/10.1016/j.anifeedsci.2003.10.005
Bremm, C., Laca, E. A., Fonseca, L., Mezzalira, J. C., Elejalde, D. A. G., Gonda, H. L., & Carvalho, P. C. de F. (2012). Foraging behaviour of beef heifers and ewes in natural grasslands with distinct proportions of tussocks. Applied Animal Behaviour Science, 141(3–4), 108–116. https://doi.org/10.1016/j.applanim.2012.08.008
Carvalho, P. C. de F., Ribeiro Filho, H., Poli, C., Moraes, A. de, & Delagarde, R. (2001). Importância da estrutura da pastagem na ingestão e seleção de dietas pelo animal em pastejo. Reunião Anual Da Sociedade Brasileira de Zootecnia, 38(2001), 853–871. http://www.ufrgs.br/gpep/documents/capitulos/Importância da estrutura da pastagem na ingestão e seleção de dietas pelo animal em pastejo.pdf
Fonseca, L., Mezzalira, J. C., Bremm, C., Filho, R. S. A., Gonda, H. L., & herbage intake rate of cattle grazing in Sorghum bicolor. Livestock Science, 145(1– 3), 205–211. https://doi.org/10.1016/j.livsci.2012.02.003
Gerssen-Gondelach, S. J., Lauwerijssen, R. B., Havlík, P., Herrero, M., Valin, H., Faaij, A. P. C., & Wicke, B. (2017). Intensification pathways for beef and dairy cattle production systems: Impacts on GHG emissions, land occupation and land use change. Agriculture, Ecosystems & Environment, 240, 135–147. https://doi.org/10.1016/j.agee.2017.02.012
Laca, E. A., & Ortega, I. M. (1996). Integrating foraging mechanisms across spatial and temporal scales. In N. . R. in a sustainable biosphere West (Ed.), Proceedings of the Fifth International Rangeland Congress (pp. 129–132). Society for Range Management, Denver.
Savian, J. V., Schons, R. M. T., Marchi, D. E., Freitas, T. S. de, da Silva Neto, G. F., Mezzalira, J. C., Berndt, A., Bayer, C., & Carvalho, P. C. de F. (2018). Rotatinuous stocking : A grazing management innovation that has high potential to mitigate methane emissions by sheep. Journal of Cleaner Production, 186, 602–608. https://doi.org/10.1016/j.jclepro.2018.03.162
Schmitt, D., Padilha, D. A., Medeiros-Neto, C., Ribeiro Filho, H. M. N., Sollenberger, L. E., & Sbrissia, A. F. (2019). Herbage intake by cattle in kikuyugrass pastures under intermittent stocking method. Revista ciência agronômica, 50(3). https://doi.org/10.5935/1806-6690.20190058
Andriamandroso, A. L. H., Bindelle, J., Mercatoris, B., & Lebeau, F. (2016). A review on the use of sensors to monitor cattle jaw movements and behavior when grazing. Biotechnologie, Agronomie, Société et Environnement, 20(1).
Bailey, Derek W, Gross, J. E., Laca, E. A., Rittenhouse, L. R., Coughenour, M. B., Swift, D. M., & Sims, P. L. (1996). Mechanisms That Result in Large Herbivore Grazing Distribution Patterns. Journal of Range Management, 49(5), 386. https://doi.org/10.2307/4002919
Baumont, R., Cohen-Salmon, D., Prache, S., & Sauvant, D. (2004). A mechanistic model of intake and grazing behaviour in sheep integrating sward architecture and animal decisions. Animal Feed Science and Technology, 112(1–4), 5–28. https://doi.org/10.1016/j.anifeedsci.2003.10.005
Benvenutti, M. A., Pavetti, D. R., Poppi, D. P., Gordon, I. J., & Cangiano, C. A. (2016). Defoliation patterns and their implications for the management of vegetative tropical pastures to control intake and diet quality by cattle. Grass and Forage Science, 71(3), 424–436. https://doi.org/10.1111/gfs.12186
Carvalho, P. C. de F. (2013). Harry Stobbs Memorial Lecture: Can grazing behaviour support innovations in grassland management? 22nd International Grasslands, 1134–1148.
Carvalho, P. C. de F, Bremm, C., Bonnet, O. J. F., Savian, J. V, Schons, R. M. T., Szymczak, L. S., Baggio, T., Moojen, F. G., Silva, D. F. F., Marin, A., Bolzan, A. M. ., Neto, G. F. S., Moraes, A., Monteiro, A., dos Santos, D. T., & Laca, E. (2016). Como a estrutura do pasto influencia o animal em pastejo?
Chacon, E., & Stobbs, T. (1976). Influence of progressive defoliation of a grass sward on the eating behaviour of cattle. Australian Journal of Agricultural Research, 27(5), 709. https://doi.org/10.1071/AR9760709
DeRamus, H. A., Clement, T. C., Giampola, D. D., & Dickison, P. C. (2003). Methane Emissions of Beef Cattle on Forages. Journal of Environment Quality, 32(1), 269. https://doi.org/10.2134/jeq2003.2690
Dohme-Meier, F., Kaufmann, L. D., Görs, S., Junghans, P., Metges, C. C., Van Dorland, H. A., Bruckmaier, R. M., & Münger, A. (2014). Comparison of energy expenditure, eating pattern and physical activity of grazing and zero-grazing dairy cows at different time points during lactation. Livestock Science, 162, 86–96. https://doi.org/10.1016/j.livsci.2014.01.006
Fonseca, L., Carvalho, P. C. de F., Mezzalira, J. C., Bremm, C., Galli, J. R., & Gregorini, P. (2013). Effect of sward surface height and level of herbage depletion on bite features of cattle grazing Sorghum bicolor swards1. Journal of Animal Science, 91(9), 4357–4365. ttps://doi.org/10.2527/jas.2012-5602
Forbes, T. D. (1988). Researching the plant-animal interface: the investigation of ingestive behavior in grazing animals. Journal of Animal Science, 66(9), 2369– 2379. https://doi.org/10.2527/jas1988.6692369x
Gibb, Huckle, & Nuthall. (1998). Effect of time of day on grazing behaviour by lactating dairy cows. Grass and Forage Science, 53(1), 41–46. https://doi.org/10.1046/j.1365-2494.1998.00102.x
Gibb, M. J., Huckle, C. A., Nuthall, R., & Rook, A. J. (1999). The effect of physiological state (lactating or dry) and sward surface height on grazing behaviour and intake by dairy cows. Applied Animal Behaviour Science, 63(4),
Hodgson, J. (1985). The control of herbage intake in the grazing ruminant. The Proceedings of the Nutrition Society, 44(2), 339–346. https://doi.org/10.1079/PNS19850054
Illius, A. W., Clark, D. A., & Hodgson, J. (1992). Discrimination and Patch Choice by Sheep Grazing Grass-Clover Swards. The Journal of Animal Ecology, 61(1), 183. https://doi.org/10.2307/5521
Laca, E. A., Ungar, E. D., Seligman, N., & Demment, M. W. (1992). Effects of sward height and bulk density on bite dimensions of cattle grazing homogeneous swards. Grass and Forage Science, 47(1), 91–102. https://doi.org/10.1111/j.1365-2494.1992.tb02251.x
Mezzalira, J.C. (2012). Taxa de ingestão potencial em pastejo: Um estudo contrastando pastos de clima temperado e tropical [Universidade Federal do Rio Grande de Sul, Porto Alegre, RS, Brazil]. http://goo.gl/cBxFSf
O’Reagain, P J, & Mentis, M. T. (1989). The effect of plant structure on the acceptability of different grass species to cattle. Journal of the Grassland Society of Southern Africa, 6(3), 163–170. https://doi.org/10.1080/02566702.1989.9648180
Parsons, A. J., Thornley, J. H. M., Newman, J., & Penning, P. D. (1994). A mechanistic model of some physical determinants of intake rate and diet selection in a two-species temperate grassland sward. Functional Ecology, 187–204.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 143
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.department.spa.fl_str_mv Departamento de Producción Animal
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/75736/4/43979169.2019.pdf
https://repositorio.unal.edu.co/bitstream/unal/75736/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/75736/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/75736/5/43979169.2019.pdf.jpg
bitstream.checksum.fl_str_mv 68a76c44b409a64d2379ffa6dad27f6e
6f3f13b02594d02ad110b3ad534cd5df
217700a34da79ed616c2feb68d4c5e06
305d92e3de07d0ca79a4f2a4ecdd42d5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089789763223552
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bindelle, Jérôme7ba9d1ff-f6c8-4e8f-9c85-4fddc0aa4336-1Camargo, Delmis Omar019fe9f8-5b8a-467a-974c-6fadde1f6a25-1Marín Gómez, Alejandra7931bb53-99d8-4fa4-8a44-69ef3582625d2020-02-25T19:27:37Z2020-02-25T19:27:37Z2019-12-20https://repositorio.unal.edu.co/handle/unal/75736La definición de una altura de la pastura que permita maximizar la tasa de consumo de forraje y de nutrientes se ha implementado como una estrategia de manejo sostenible del pastoreo en los sistemas de producción de leche basados en pasturas. El objetivo de esta tesis fue determinar la altura del pasto kikuyo (Cenchrus clandestinus - Hochst. ex Chiov) que permite a las novillas lecheras maximizar la tasa de consumo de forraje y de total de nutrientes digestibles. Adicionalmente, evaluar el efecto de la altura de la pastura de las muestras de forraje del estrato superior (estrato potencialmente pastado por el ganado) sobre la composición química, la digestibilidad in vitro de la materia orgánica (DIVMO) y los principales parámetros de fermentación ruminal in vitro, incluida la producción de CH4. Se llevó a cabo un experimento de pastoreo cuyos tratamientos consistieron en cinco alturas del pasto kikuyo (10, 15, 20, 25 y 30 cm). La tasa de consumo en el corto plazo (STIR, por su sigla en inglés) de forraje se midió con la técnica de doble pesaje y para la determinación de la masa de bocado (MB), tasa de bocado (TB) y tiempo efectivo de alimentación se usó el registrador de movimientos mandibulares IGER behaviour recorder. Se encontró que la altura del pasto kikuyo que maximiza el consumo de forraje y de nutrientes por unidad de tiempo de alimentación fue aproximadamente en 20 cm. Definir alturas del pasto kikuyu muy bajas (10 cm) o muy altas (30 cm) como meta de manejo de pastoreo restringiría la MB y, por lo tanto, la STIR. La composición química y la DIVMO de las muestras de forraje del estrato superior no difirieron en las alturas de la pastura que osciló entre 10 y 25 cm, además, estas alturas de la pastura mostraron una DIVMO más alta que en la altura de 30 cm. La producción de gas in vitro y la DIVMS mostraron un ajuste negativo y lineal con el incremento de la altura. El CH4 (ml/g DIVMS) mostró una respuesta doble lineal similar entre 10 y 20 cm de altura de la pastura, y luego, incrementó con los incrementos de la altura de la pastura superiores a los 21 cm. La proporción molar de acetato (mol / 100 mol) tuvo una respuesta similar a la del CH4 (ml/g DIVMS). La proporción molar del propionato también presentó una respuesta doble lineal pero opuesta a la del CH4 (ml / g DIVMS), aumentando hasta alturas de pastura cercanas a 20 cm y luego disminuyendo. En conclusión, para optimizar la STIR y el TDN-STIR de las novillas lecheras, el pasto kikuyo debe manejarse a 20 cm de altura de la pastura. Adicionalmente, a esta altura de la pastura, la producción in vitro de CH4 (ml / g DIVMS) también se reduciría.The definition of a sward height that allows maximizing the herbage and nutrient intake rate has been implemented as a sustainable grazing management strategy in forage-based dairy production systems. The aim of this thesis was to determine the sward height of the kikuyu grass (Cenchrus clandestinus - Hochst. ex Chiov) that allows dairy heifers to maximize the herbage and total digestible nutrients intake rate. Additionally, assess the effect of sward height from herbage samples of top stratum (stratum potentially grazed by cattle) on the chemical composition, in vitro organic matter digestibility (IVOMD), and the main in vitro ruminal fermentation parameters, including CH4 production. A grazing experiment was carried out whose treatments consisted of five sward heights of kikuyu grass (10, 15, 20, 25 and 30 cm). Short-term intake rate (STIR) of herbage was measured with the double weighing technique and for the determination of bite mass (BM), bite rate (BR) and the eating time the IGER Behaviour recorder was used. It was found that the sward height of kikuyu grass that maximizes the herbage and nutrient intake per unit of eating time was approximately 20 cm. Define very low (10 cm) or very tall (30 cm) sward heights of kikuyu grass as a grazing management target would constraint the BM, and thus, the STIR. The chemical composition and IVOMD of the herbage samples from the top stratum did not differ in sward heights ranged between 10 to 25 cm, in addition, these sward heights tended to have a higher IVOMD than 30 cm. The in vitro gas production and the IVDMD displayed a negative and linear fit to increasing sward height. The CH4 (ml /g IVDMD) showed a broken line response being similar between 10 to 20 cm sward height, and then, increased with increases in sward height above to 21 cm. The acetate molar proportion (mol/100 mol) had a similar response to CH4 (mL/g IVDMD). The propionate molar proportion (mol/100 mol) also displayed a broken line response but opposite to CH4 (ml /g IVDMD), increasing until sward heights close to 20 cm and then decreasing. In conclusion, to optimize the STIR and TDN-STIR of dairy heifers, kikuyu grass should be managed at 20 cm of sward height. Additionally, at this sward height the in vitro CH4 production (mL/g IVDMD) would be also reduced.Doctora en Ciencias AgrariasDoctorado143application/pdfengSward heights for maximizing herbage and nutrient intake rate of dairy heifers grazing kikuyu grass and reduce in vitro methane productionDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8042http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/WPDepartamento de Producción AnimalUniversidad Nacional de Colombia - Sede MedellínAllden, W. G., & Whittaker, I. A. M. (1970). The determinants of herbage intake by grazing sheep: the interrelationship of factors influencing herbage intake and availability. Australian Journal of Agricultural Research, 21(5), 755–766.Baumont, R., Cohen-Salmon, D., Prache, S., & Sauvant, D. (2004). A mechanistic model of intake and grazing behaviour in sheep integrating sward architecture and animal decisions. Animal Feed Science and Technol ogy, 112(1–4), 5–28. https://doi.org/10.1016/j.anifeedsci.2003.10.005Bremm, C., Laca, E. A., Fonseca, L., Mezzalira, J. C., Elejalde, D. A. G., Gonda, H. L., & Carvalho, P. C. de F. (2012). Foraging behaviour of beef heifers and ewes in natural grasslands with distinct proportions of tussocks. Applied Animal Behaviour Science, 141(3–4), 108–116. https://doi.org/10.1016/j.applanim.2012.08.008Carvalho, P. C. de F., Ribeiro Filho, H., Poli, C., Moraes, A. de, & Delagarde, R. (2001). Importância da estrutura da pastagem na ingestão e seleção de dietas pelo animal em pastejo. Reunião Anual Da Sociedade Brasileira de Zootecnia, 38(2001), 853–871. http://www.ufrgs.br/gpep/documents/capitulos/Importância da estrutura da pastagem na ingestão e seleção de dietas pelo animal em pastejo.pdfFonseca, L., Mezzalira, J. C., Bremm, C., Filho, R. S. A., Gonda, H. L., & herbage intake rate of cattle grazing in Sorghum bicolor. Livestock Science, 145(1– 3), 205–211. https://doi.org/10.1016/j.livsci.2012.02.003Gerssen-Gondelach, S. J., Lauwerijssen, R. B., Havlík, P., Herrero, M., Valin, H., Faaij, A. P. C., & Wicke, B. (2017). Intensification pathways for beef and dairy cattle production systems: Impacts on GHG emissions, land occupation and land use change. Agriculture, Ecosystems & Environment, 240, 135–147. https://doi.org/10.1016/j.agee.2017.02.012Laca, E. A., & Ortega, I. M. (1996). Integrating foraging mechanisms across spatial and temporal scales. In N. . R. in a sustainable biosphere West (Ed.), Proceedings of the Fifth International Rangeland Congress (pp. 129–132). Society for Range Management, Denver.Savian, J. V., Schons, R. M. T., Marchi, D. E., Freitas, T. S. de, da Silva Neto, G. F., Mezzalira, J. C., Berndt, A., Bayer, C., & Carvalho, P. C. de F. (2018). Rotatinuous stocking : A grazing management innovation that has high potential to mitigate methane emissions by sheep. Journal of Cleaner Production, 186, 602–608. https://doi.org/10.1016/j.jclepro.2018.03.162Schmitt, D., Padilha, D. A., Medeiros-Neto, C., Ribeiro Filho, H. M. N., Sollenberger, L. E., & Sbrissia, A. F. (2019). Herbage intake by cattle in kikuyugrass pastures under intermittent stocking method. Revista ciência agronômica, 50(3). https://doi.org/10.5935/1806-6690.20190058Andriamandroso, A. L. H., Bindelle, J., Mercatoris, B., & Lebeau, F. (2016). A review on the use of sensors to monitor cattle jaw movements and behavior when grazing. Biotechnologie, Agronomie, Société et Environnement, 20(1).Bailey, Derek W, Gross, J. E., Laca, E. A., Rittenhouse, L. R., Coughenour, M. B., Swift, D. M., & Sims, P. L. (1996). Mechanisms That Result in Large Herbivore Grazing Distribution Patterns. Journal of Range Management, 49(5), 386. https://doi.org/10.2307/4002919Baumont, R., Cohen-Salmon, D., Prache, S., & Sauvant, D. (2004). A mechanistic model of intake and grazing behaviour in sheep integrating sward architecture and animal decisions. Animal Feed Science and Technology, 112(1–4), 5–28. https://doi.org/10.1016/j.anifeedsci.2003.10.005Benvenutti, M. A., Pavetti, D. R., Poppi, D. P., Gordon, I. J., & Cangiano, C. A. (2016). Defoliation patterns and their implications for the management of vegetative tropical pastures to control intake and diet quality by cattle. Grass and Forage Science, 71(3), 424–436. https://doi.org/10.1111/gfs.12186Carvalho, P. C. de F. (2013). Harry Stobbs Memorial Lecture: Can grazing behaviour support innovations in grassland management? 22nd International Grasslands, 1134–1148.Carvalho, P. C. de F, Bremm, C., Bonnet, O. J. F., Savian, J. V, Schons, R. M. T., Szymczak, L. S., Baggio, T., Moojen, F. G., Silva, D. F. F., Marin, A., Bolzan, A. M. ., Neto, G. F. S., Moraes, A., Monteiro, A., dos Santos, D. T., & Laca, E. (2016). Como a estrutura do pasto influencia o animal em pastejo?Chacon, E., & Stobbs, T. (1976). Influence of progressive defoliation of a grass sward on the eating behaviour of cattle. Australian Journal of Agricultural Research, 27(5), 709. https://doi.org/10.1071/AR9760709DeRamus, H. A., Clement, T. C., Giampola, D. D., & Dickison, P. C. (2003). Methane Emissions of Beef Cattle on Forages. Journal of Environment Quality, 32(1), 269. https://doi.org/10.2134/jeq2003.2690Dohme-Meier, F., Kaufmann, L. D., Görs, S., Junghans, P., Metges, C. C., Van Dorland, H. A., Bruckmaier, R. M., & Münger, A. (2014). Comparison of energy expenditure, eating pattern and physical activity of grazing and zero-grazing dairy cows at different time points during lactation. Livestock Science, 162, 86–96. https://doi.org/10.1016/j.livsci.2014.01.006Fonseca, L., Carvalho, P. C. de F., Mezzalira, J. C., Bremm, C., Galli, J. R., & Gregorini, P. (2013). Effect of sward surface height and level of herbage depletion on bite features of cattle grazing Sorghum bicolor swards1. Journal of Animal Science, 91(9), 4357–4365. ttps://doi.org/10.2527/jas.2012-5602Forbes, T. D. (1988). Researching the plant-animal interface: the investigation of ingestive behavior in grazing animals. Journal of Animal Science, 66(9), 2369– 2379. https://doi.org/10.2527/jas1988.6692369xGibb, Huckle, & Nuthall. (1998). Effect of time of day on grazing behaviour by lactating dairy cows. Grass and Forage Science, 53(1), 41–46. https://doi.org/10.1046/j.1365-2494.1998.00102.xGibb, M. J., Huckle, C. A., Nuthall, R., & Rook, A. J. (1999). The effect of physiological state (lactating or dry) and sward surface height on grazing behaviour and intake by dairy cows. Applied Animal Behaviour Science, 63(4),Hodgson, J. (1985). The control of herbage intake in the grazing ruminant. The Proceedings of the Nutrition Society, 44(2), 339–346. https://doi.org/10.1079/PNS19850054Illius, A. W., Clark, D. A., & Hodgson, J. (1992). Discrimination and Patch Choice by Sheep Grazing Grass-Clover Swards. The Journal of Animal Ecology, 61(1), 183. https://doi.org/10.2307/5521Laca, E. A., Ungar, E. D., Seligman, N., & Demment, M. W. (1992). Effects of sward height and bulk density on bite dimensions of cattle grazing homogeneous swards. Grass and Forage Science, 47(1), 91–102. https://doi.org/10.1111/j.1365-2494.1992.tb02251.xMezzalira, J.C. (2012). Taxa de ingestão potencial em pastejo: Um estudo contrastando pastos de clima temperado e tropical [Universidade Federal do Rio Grande de Sul, Porto Alegre, RS, Brazil]. http://goo.gl/cBxFSfO’Reagain, P J, & Mentis, M. T. (1989). The effect of plant structure on the acceptability of different grass species to cattle. Journal of the Grassland Society of Southern Africa, 6(3), 163–170. https://doi.org/10.1080/02566702.1989.9648180Parsons, A. J., Thornley, J. H. M., Newman, J., & Penning, P. D. (1994). A mechanistic model of some physical determinants of intake rate and diet selection in a two-species temperate grassland sward. Functional Ecology, 187–204.ZootecniaNovillas lecherasMitigación de CH4Comportamiento ingestivoManejo del pastoreoDairy heifersCH4 mitigationGrazing management targetSward heightORIGINAL43979169.2019.pdf43979169.2019.pdfTesis de Doctorado en Ciencias Agrariasapplication/pdf1804477https://repositorio.unal.edu.co/bitstream/unal/75736/4/43979169.2019.pdf68a76c44b409a64d2379ffa6dad27f6eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/75736/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/75736/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53THUMBNAIL43979169.2019.pdf.jpg43979169.2019.pdf.jpgGenerated Thumbnailimage/jpeg5775https://repositorio.unal.edu.co/bitstream/unal/75736/5/43979169.2019.pdf.jpg305d92e3de07d0ca79a4f2a4ecdd42d5MD55unal/75736oai:repositorio.unal.edu.co:unal/757362024-01-03 12:20:11.012Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==