Estudio de las propiedades ópticas y eléctricas de películas delgadas de TiAlCrN depositadas por “co- sputtering” reactivo

ilustraciones

Autores:
Prieto Novoa, Gina Milena
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79689
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79689
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::537 - Electricidad y electrónica
Propiedades ópticas
Optical properties
TiAlCrN
Resistividad eléctrica
Propiedades ópticas
"Co-sputtering"
Electrical resistivity
Optical properties
TiAlCrN
"Co-sputtering"
Propiedad eléctrica
Electrical properties
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_122832d0f257968b830d533533b5bd76
oai_identifier_str oai:repositorio.unal.edu.co:unal/79689
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio de las propiedades ópticas y eléctricas de películas delgadas de TiAlCrN depositadas por “co- sputtering” reactivo
dc.title.translated.eng.fl_str_mv Study of the optical and electrical properties of TiAlCrN thin films deposited by reactive “co-sputtering”.
title Estudio de las propiedades ópticas y eléctricas de películas delgadas de TiAlCrN depositadas por “co- sputtering” reactivo
spellingShingle Estudio de las propiedades ópticas y eléctricas de películas delgadas de TiAlCrN depositadas por “co- sputtering” reactivo
530 - Física::537 - Electricidad y electrónica
Propiedades ópticas
Optical properties
TiAlCrN
Resistividad eléctrica
Propiedades ópticas
"Co-sputtering"
Electrical resistivity
Optical properties
TiAlCrN
"Co-sputtering"
Propiedad eléctrica
Electrical properties
title_short Estudio de las propiedades ópticas y eléctricas de películas delgadas de TiAlCrN depositadas por “co- sputtering” reactivo
title_full Estudio de las propiedades ópticas y eléctricas de películas delgadas de TiAlCrN depositadas por “co- sputtering” reactivo
title_fullStr Estudio de las propiedades ópticas y eléctricas de películas delgadas de TiAlCrN depositadas por “co- sputtering” reactivo
title_full_unstemmed Estudio de las propiedades ópticas y eléctricas de películas delgadas de TiAlCrN depositadas por “co- sputtering” reactivo
title_sort Estudio de las propiedades ópticas y eléctricas de películas delgadas de TiAlCrN depositadas por “co- sputtering” reactivo
dc.creator.fl_str_mv Prieto Novoa, Gina Milena
dc.contributor.advisor.none.fl_str_mv Piamba Tulcán, Oscar Edwin
Olaya Flórez, Jhon Jairo
dc.contributor.author.none.fl_str_mv Prieto Novoa, Gina Milena
dc.contributor.researchgroup.spa.fl_str_mv GRUPO DE INVESTIGACIÓN AFIS (ANÁLISIS DE FALLAS, INTEGRIDAD Y SUPERFICIES)
dc.subject.ddc.spa.fl_str_mv 530 - Física::537 - Electricidad y electrónica
topic 530 - Física::537 - Electricidad y electrónica
Propiedades ópticas
Optical properties
TiAlCrN
Resistividad eléctrica
Propiedades ópticas
"Co-sputtering"
Electrical resistivity
Optical properties
TiAlCrN
"Co-sputtering"
Propiedad eléctrica
Electrical properties
dc.subject.other.none.fl_str_mv Propiedades ópticas
Optical properties
dc.subject.proposal.spa.fl_str_mv TiAlCrN
Resistividad eléctrica
Propiedades ópticas
"Co-sputtering"
dc.subject.proposal.eng.fl_str_mv Electrical resistivity
Optical properties
TiAlCrN
"Co-sputtering"
dc.subject.unesco.none.fl_str_mv Propiedad eléctrica
Electrical properties
description ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-23T17:56:09Z
dc.date.available.none.fl_str_mv 2021-06-23T17:56:09Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79689
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79689
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv H. A. Jehn, “Multicomponent and multiphase hard coatings for tribological applications,” Surf. Coatings Technol., vol. 131, no. 1–3, pp. 433–440, Sep. 2000.
J. Musil, “Hard and superhard nanocomposite coatings,” Surf. Coatings Technol., vol. 125, no. 1–3, pp. 322–330, Mar. 2000.
S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: A review,” Surf. Coatings Technol., vol. 167, no. 2–3, pp. 113–119, 2003.
J. Musil, “Hard Nanocomposite Films Prepared by Reactive Magnetron Sputtering,” in Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Dordrecht: Kluwer Academic Publishers, 2004, pp. 43–56.
S. Hofmann, “Formation and diffusion properties of oxide films on metals and on nitride coatings studied with Auger electron spectroscopy and X-ray photoelectron spectroscopy,” Thin Solid Films, vol. 193–194, pp. 648–664, Dec. 1990.
R. Hauert and J. Patscheider, “From Alloying to Nanocomposites— Improved Performance of Hard Coatings,” Adv. Eng. Mater., vol. 2, no. 5, pp. 247–259, 2000.
G. S. Fox-Rabinovich et al., “Design and performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials,” Surf. Coatings Technol., vol. 204, no. 4, pp. 489–496, 2009.
K. Yamamoto, T. Sato, K. Takahara, and K. Hanaguri, “Properties of (Ti,Cr,Al)N coatings with high Al content deposited by new plasma enhanced arc-cathode,” Surf. Coatings Technol., vol. 174–175, pp. 620– 626, 2003.
J. Zhang, H. Lv, G. Cui, Z. Jing, and C. Wang, “Effects of bias voltage on the microstructure and mechanical properties of (Ti,Al,Cr)N hard films with N-gradient distributions,” Thin Solid Films, vol. 519, no. 15, pp. 4818–4823, 2011.
G. S. Fox-Rabinovich, K. Yamomoto, S. C. Veldhuis, A. I. Kovalev, and G. K. Dosbaeva, “Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions,” Surf. Coatings Technol., vol. 200, no. 5–6, pp. 1804–1813, 2005.
Y. X. Xu, H. Riedl, D. Holec, L. Chen, Y. Du, and P. H. Mayrhofer, “Thermal stability and oxidation resistance of sputtered Ti Al Cr N hard coatings,” Surf. Coatings Technol., vol. 324, pp. 48–56, 2017.
P. L. Tam, Z. F. Zhou, P. W. Shum, and K. Y. Li, “Structural, mechanical, and tribological studies of Cr-Ti-Al-N coating with different chemical compositions,” Thin Solid Films, vol. 516, no. 16, pp. 5725–5731, 2008.
F. Fernandes, M. Danek, T. Polcar, and A. Cavaleiro, “Tribological and cutting performance of TiAlCrN films with different Cr contents deposited with multilayered structure,” Tribol. Int., vol. 119, no. November 2017, pp. 345–353, 2018.
F. Huang, G. Wei, J. a Barnard, and M. L. Weaver, “Microstructure and stress development in magnetron sputtered TiAlCr ( N ) films,” Surf. Coatings Technol., vol. 147, pp. 391–397, 2001.
C. Zou, J. Zhang, W. Xie, L. Shao, and D. J. Fu, “Characterization and mechanical properties of Ti-Al-Cr-N nanocomposite coatings deposited by closed field unbalanced middle frequency magnetron sputtering,” Jpn. J. Appl. Phys., vol. 50, no. 12, pp. 1–5, 2011.
Y. Xu, L. Chen, Z. Liu, F. Pei, and Y. Du, “Influence of Ti on the mechanical properties, thermal stability and oxidation resistance of Al-Cr-N coatings,” Vacuum, vol. 120, no. PA, pp. 127–131, 2015.
Y. X. Xu et al., “Effect of CrN addition on the structure, mechanical and thermal properties of Ti-Al-N coating,” Surf. Coatings Technol., vol. 235, pp. 506–512, 2013.
Musil J. ; Vlčekb J., “Magnetron sputtering of films with controlled texture and grain size,” Mater. Chem. Phys., vol. 54, no. 1–3, pp. 116–122, Jul. 1998.
P. Sigmund, “Recollections of fifty years with sputtering,” Thin Solid Films, vol. 520, no. 19. Elsevier, pp. 6031–6049, 31-Jul-2012.
C. W. Zou, J. Zhang, W. Xie, L. X. Shao, and D. J. Fu, “Structure and mechanical properties of Ti-Al-N coatings deposited by combined cathodic arc middle frequency magnetron sputtering,” J. Alloys Compd., vol. 509, no. 5, pp. 1989–1993, 2011.
K. Valleti, D. Murali Krishna, and S. V. Joshi, “Functional multi-layer nitride coatings for high temperature solar selective applications,” Sol. Energy Mater. Sol. Cells, vol. 121, pp. 14–21, 2014.
K. Valleti, D. M. Krishna, P. M. Reddy, and S. V Joshi, “Solar Energy Materials & Solar Cells High temperature stable solar selective coatings by cathodic arc PVD for heat collecting elements,” Sol. Energy Mater. Sol. Cells, vol. 145, pp. 447–453, 2016.
N. Selvakumar and H. C. Barshilia, “Solar Energy Materials & Solar Cells Review of physical vapor deposited ( PVD ) spectrally selective coatings for mid- and high-temperature solar thermal applications,” vol. 98, pp. 1–23, 2012.
U. Beck, G. Reiners, U. Kopacz, and H. A. Jehn, “Decorative hard coatings: interdependence of optical, stoichiometric and structural properties,” Surf. Coatings Technol., vol. 60, no. 1–3, pp. 389–395, 1993.
K.-D. Bouzakis, N. Michailidis, G. Skordaris, E. Bouzakis, D. Biermann, and R. M’Saoubi, “Cutting with coated tools: Coating technologies, characterization methods and performance optimization,” CIRP Ann., vol. 61, no. 2, pp. 703–723, Jan. 2012.
J. P. Manaud, A. Poulon, S. Gomez, and Y. Le Petitcorps, “A comparative study of CrN, ZrN, NbN and TaN layers as cobalt diffusion barriers for CVD diamond deposition on WC–Co tools,” Surf. Coatings Technol., vol. 202, no.2, pp. 222–231, Nov. 2007.
C. A. Dimitriadis et al., “Characteristics of TiNx/n-Si Schottky diodes deposited by reactive magnetron sputtering,” J. Appl. Phys., vol. 85, no. 8, pp. 4238–4242, Apr. 1999.
V. Cimalla, J. Pezoldt, and O. Ambacher, “Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications,” J. Phys. D. Appl. Phys., vol. 40, no. 20, pp. 6386–6434, Oct. 2007.
G. M. Matenoglou, L. E. Koutsokeras, and P. Patsalas, “Plasma energy and work function of conducting transition metal nitrides for electronic applications,” Appl. Phys. Lett., vol. 94, no. 15, p. 152108, Apr. 2009. [30] L. Koutsokeras, “Growth, structure and electronic properties of ternary transition metal nitrides thin films,” 2010.
P. Patsalas et al., “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. R Reports, vol. 123, pp. 1–55, 2018.
R. Jalali, M. Parhizkar, H. Bidadi, and H. Naghshara, “The effect of Al content , substrate temperature and nitrogen flow rate on optical band gap and optical features of nanostructured TiAlN thin films prepared by reactive magnetron sputtering,” 2016.
X. Feng, H. Zhou, Z. Wan, and K. Zhang, “Effect of Ti content on structure and mechanical properties of Cr–Ti–N films,” Surf. Eng., vol. 33, no. 8, pp. 619–625, Aug. 2017.
J. Xu, H. Umehara, and I. Kojima, “Effect of deposition parameters on composition, structures, density and topography of CrN films deposited by r.f. magnetron sputtering,” Appl. Surf. Sci., vol. 201, no. 1–4, pp. 208–218, Nov. 2002.
C. Chokwatvikul, S. Larpkiattaworn, S. Surinphong, C. Busabok, and P. Termsuksawad, “Effect of nitrogen partial pressure on characteristic and mechanical properties of hard coating TiAlN Film,” J. Met. Mater. Miner., vol. 21, no. 1, Jun. 2011.
H. J. Goldschmidt, Interstitial Alloys. Elsevier Science, 2013.
P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials (Basel)., vol. 8, no. 6, pp. 3128–3154, May 2015.
J.-E. Sundgren, “Structure and properties of TiN coatings,” Thin Solid Films, vol. 128, no. 1–2, pp. 21–44, Jun. 1985.
S. Yu, Q. Zeng, A. R. Oganov, G. Frapper, and L. Zhang, “Phase stability, chemical bonding and mechanical properties of titanium nitrides: a first- principles study,” Phys. Chem. Chem. Phys, vol. 17, p. 11763, 2015.
V. Poulek, J. Musil, V. Valvoda, and R. Cerny, “Microhardness of Ti-N films containing the epsilon -Ti 2 N phase,” J. Phys. D. Appl. Phys., vol. 21, no. 11, pp. 1657–1658, Nov. 1988.
M. Xu et al., “Optical properties of cubic Ti3N4, Zr3N4, and Hf3N4,” Appl. Phys. Lett., vol. 89, no. 15, p. 151908, Oct. 2006.
M. S. R. N. Kiran, M. G. Krishna, and K. A. Padmanabhan, “Growth, surface morphology, optical properties and electrical resistivity of ε-TiN x (0.4 < x ≤ 0.5) films,” Appl. Surf. Sci., vol. 255, no. 5 PART 1, pp. 1934–1941, 2008.
S. Yang, D. . Lewis, I. Wadsworth, J. Cawley, J. . Brooks, and W. . Münz, “Investigation of substoichiometric titanium nitride grown by unbalanced magnetron sputtering,” Surf. Coatings Technol., vol. 131, no. 1–3, pp. 228– 233, Sep. 2000.
E. Restrepo, P. J. Arango, and S. Casanova, “ALGUNOS CONCEPTOS SOBRE NITRURO DE TITANIO Y EL CARBURO DE TITANIO,” Año, vol. 76, pp. 213–224, 2008.
P. J. Clarke, “Magnetron dc reactive sputtering of titanium nitride and indium–tin oxide,” J. Vac. Sci. Technol., vol. 14, no. 1, pp. 141–142, Jan. 1977.
P. . Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, “A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings,” Thin Solid Films, vol. 415, no. 1–2, pp. 151–159, Aug. 2002.
H. Yu, T. Tan, W. Wu, C. Tian, Y. An, and F. Sun, “Thermal stability of titanium nitride coatings prepared by the mixing technology with laser and plasma,” Curr. Appl. Phys., vol. 12, no. 1, pp. 152–154, Jan. 2012.
C. Wei, J. F. Lin, T.-H. Jiang, and C.-F. Ai, “Tribological characteristics of titanium nitride and titanium carbonitride multilayer films: Part II. The effect of coating sequence on tribological properties,” Thin Solid Films, vol. 381, no. 1, pp. 104–118, Jan. 2001.
H. E. Rebenne and D. G. Bhat, “Review of CVD TiN coatings for wear- resistant applications: deposition processes, properties and performance,” Surf. Coatings Technol., vol. 63, no. 1–2, pp. 1–13, Jan. 1994.
N. Heide and J. W. Schultze, “Corrosion stability of TiN prepared by ion implantation and PVD,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 80–81, pp. 467–471, Jun. 1993.
S. Piscanec, “Bioactivity of TiN-coated titanium implants,” Acta Mater., vol. 52, no. 5, pp. 1237–1245, Mar. 2004.
D. A. Glocker and S. V. Ranade, Medical coatings and deposition technologies. 2016.
A. Mumtaz and W. H. Class, “Color of titanium nitride prepared by reactive dc magnetron sputtering,” J. Vac. Sci. Technol., vol. 20, no. 3, pp. 345–348, Mar. 1982.
S. M. Borah, H. Bailung, and J. Chutia, Decorative titanium nitride colored coatings on bell-metal by reactive cylindrical magnetron sputtering, progress in color., vol. 3, no. 2. 三省堂, 2010.
S. Kanamori, “Investigation of reactively sputtered TiN films for diffusion barriers,” Thin Solid Films, vol. 136, no. 2, pp. 195–214, Feb. 1986.
P. Ruterana et al., “The Microstructure of Ti/Al and TiN Ohmic Contacts to Gallium Nitride,” Phys. status solidi, vol. 176, no. 1, pp. 767–771, Nov. 1999.
M. Birkholz et al., “Ultrathin TiN Membranes as a Technology Platform for CMOS-Integrated MEMS and BioMEMS Devices,” Adv. Funct. Mater., vol. 21, no. 9, pp. 1652–1656, May 2011.
N. Savvides and B. Window, “Electrical transport, optical properties, and structure of TiN films synthesized by low‐energy ion assisted deposition,” J. Appl. Phys., vol. 64, no. 1, pp. 225–234, Jul. 1988.
J. Martan and P. Beneš, “Thermal properties of cutting tool coatings at high temperatures,” Thermochim. Acta, vol. 539, pp. 51–55, Jul. 2012.
J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully CMOS-compatible titanium nitride nanoantennas,” Appl. Phys. Lett., vol. 108, no. 5, p. 51110, Feb. 2016.
K. E. Andersson, M. K. Wahlström, and A. Roos, “High stability titanium nitride based solar control films,” Thin Solid Films, vol. 214, no. 2, pp. 213– 218, Jul. 1992.
H. Z. Durusoy, Ö. Duyar, A. Aydinli, and F. Ay, “Influence of Substrate Temperature and Bias Voltage on the Optical Properties of Sputter Coated TiN Films,” Vacuum, vol. 70, pp. 1–4, 2002.
Lanzhou Inst Chemical Physics Cas, “Titanium-nitride-based solar selective absorbing coating and preparing method thereof,” CN 106091446 A, 15- Jun-2016.
H. Wang, Q. Chen, L. Wen, S. Song, X. Hu, and G. Xu, “Titanium-nitride- based integrated plasmonic absorber/emitter for solar thermophotovoltaic application,” Photonics Res., vol. 3, no. 6, p. 329, Dec. 2015.
L. Roux, J. Hanus, J. C. Francois, and M. Sigrist, “The optical properties of titanium nitrides and carbides: Spectral selectivity and photothermal conversion of solar energy,” Sol. Energy Mater., vol. 7, no. 3, pp. 299–312, Dec. 1982.
A. Tarniowy, R. Mania, and M. Rekas, “The effect of thermal treatment on the structure , optical and electrical properties of amorphous titanium nitride thin films,” pp. 93–100, 1997.
H. Hamamura, H. Komiyama, and Y. Shimogaki, “TiN Films Prepared by Flow Modulation Chemical Vapor Deposition using TiCl 4 and NH 3,” Jpn. J. Appl. Phys., vol. 40, no. Part 1, No. 3A, pp. 1517–1521, Mar. 2001.
G. Zhao, T. Zhang, T. Zhang, J. Wang, and G. Han, “Electrical and optical properties of titanium nitride coatings prepared by atmospheric pressure chemical vapor deposition,” J. Non. Cryst. Solids, vol. 354, no. 12–13, pp. 1272–1275, 2008.
B. . Tay, X. Shi, H. . Yang, H. . Tan, D. Chua, and S. . Teo, “The effect of deposition conditions on the properties of TiN thin films prepared by filtered cathodic vacuum-arc technique,” Surf. Coatings Technol., vol. 111, no. 2–3, pp. 229–233, Jan. 1999.
L. E. Koutsokeras et al., “Electronic properties of binary and ternary, hard and refractory transition metal nitrides,” Surf. Coatings Technol., vol. 204, no. 12–13, pp. 2038–2041, 2010.
P. Patsalas, C. Charitidis, and S. Logothetidis, “The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films,” Surf. Coatings Technol., vol. 125, no. 1–3, pp. 335–340, Mar. 2000.
S. Adachi and M. Takahashi, “Optical properties of TiN films deposited by direct current reactive sputtering,” J. Appl. Phys., vol. 87, no. 3, pp. 1264– 1269, 2000.
P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys., vol. 90, no. 9, pp. 4725–4734, Nov. 2001.
M. N. Solovan, V. V. Brus, E. V. Maistruk, and P. D. Maryanchuk, “Electrical and optical properties of TiN thin films,” Inorg. Mater., vol. 50, no. 1, pp. 40– 45, 2014.
J. Paulitsch, M. Schenkel, T. Zufraß, P. H. Mayrhofer, and W.-D. Münz, “Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit,” Thin Solid Films, vol. 518, no. 19, pp. 5558–5564, Jul. 2010.
T. Q. Li, S. Noda, Y. Tsuji, T. Ohsawa, and H. Komiyama, “Initial growth and texture formation during reactive magnetron sputtering of TiN on Si(111),” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 20, no. 3, pp. 583–588, May 2002.
Y. L. Jeyachandran, S. K. Narayandass, D. Mangalaraj, S. Areva, and J. A. Mielczarski, “Properties of titanium nitride films prepared by direct current magnetron sputtering,” Mater. Sci. Eng. A, vol. 445–446, pp. 223–236, Feb. 2007.
N. K. Ponon et al., “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films, vol. 578, pp. 31–37, Mar. 2015.
T.-S. Yeh, J.-M. Wu, and L.-J. Hu, “The properties of TiN thin films deposited by pulsed direct current magnetron sputtering,” Thin Solid Films, vol. 516, no. 21, pp. 7294–7298, Sep. 2008.
L. Cunha, M. Andritschky, L. Rebouta, and R. Silva, “Corrosion of TiN, (TiAl)N and CrN hard coatings produced by magnetron sputtering,” Thin Solid Films, vol. 317, no. 1–2, pp. 351–355, Apr. 1998.
H. Liang, J. Xu, D. Zhou, X. Sun, S. Chu, and Y. Bai, “Thickness dependent microstructural and electrical properties of TiN thin films prepared by DC reactive magnetron sputtering,” Ceram. Int., vol. 42, no. 2, pp. 2642–2647, Feb. 2016.
H. Era, Y. Ide, A. Nino, and K. Kishitake, “TEM study on chromium nitride coatings deposited by reactive sputter method,” Surf. Coatings Technol., vol. 194, no. 2–3, pp. 265–270, May 2005.
I. Milošev, H.-H. Strehblow, and B. Navinšek, “XPS in the study of high- temperature oxidation of CrN and TiN hard coatings,” Surf. Coatings Technol., vol. 74–75, pp. 897–902, Oct. 1995.
J. A. Sue and T. P. Chang, “Friction and wear behavior of titanium nitride, zirconium nitride and chromium nitride coatings at elevated temperatures,” Surf. Coatings Technol., vol. 76–77, pp. 61–69, Nov. 1995.
E. Broszeit, C. Friedrich, and G. Berg, “Deposition, properties and applications of PVD CrxN coatings,” Surf. Coatings Technol., vol. 115, no. 1, pp. 9–16, Jun. 1999.
M. A. Djouadi, C. Nouveau, P. Beer, and M. Lambertin, “CrxNy hard coatings deposited with PVD method on tools for wood machining,” Surf. Coatings Technol., vol. 133–134, pp. 478–483, Nov. 2000.
S. K. Pradhan, C. Nouveau, A. Vasin, and M.-A. Djouadi, “Deposition of CrN coatings by PVD methods for mechanical application,” Surf. Coatings Technol., vol. 200, no. 1–4, pp. 141–145, Oct. 2005.
B. Navinšek, P. Panjan, and I. Milošev, “Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures,” Surf. Coatings Technol., vol. 97, no. 1–3, pp. 182–191, Dec. 1997.
M. G. Brik and C.-G. Ma, “First-principles studies of the electronic and elastic properties of metal nitrides XN (X=Sc, Ti, V, Cr, Zr, Nb),” Comput. Mater. Sci., vol. 51, no. 1, pp. 380–388, Jan. 2012.
D. Gall, C.-S. Shin, R. T. Haasch, I. Petrov, and J. E. Greene, “Band gap in epitaxial NaCl-structure CrN(001) layers,” J. Appl. Phys., vol. 91, no. 9, pp. 5882–5886, May 2002.
A. Filippetti, W. E. Pickett, and B. M. Klein, “Competition between magnetic and structural transitions in CrN,” Phys. Rev. B, vol. 59, no. 10, pp. 7043– 7050, Mar. 1999.
A. Filippetti and N. A. Hill, “Magnetic Stress as a Driving Force of Structural Distortions: The Case of CrN,” Phys. Rev. Lett., vol. 85, no. 24, pp. 5166– 5169, Dec. 2000.
C. Constantin, M. B. Haider, D. Ingram, and A. R. Smith, “Metal/semiconductor phase transition in chromium nitride(001) grown by rf- plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett., vol. 85, no. 26, pp. 6371–6373, Dec. 2004.
K. Kashiwagi, K. Kobayashi, A. Masuyama, and Y. Murayama, “Chromium nitride films synthesized by radio‐frequency reactive ion plating,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 4, no. 2, pp. 210–214, Mar. 1986.
L. Shen, S. Xu, N. Sun, T. Cheng, and Q. Cui, “Synthesis of nanocrystalline CrN by arc discharge,” Mater. Lett., vol. 62, no. 10–11, pp. 1469–1471, Apr. 2008.
J. Lin, J. J. Moore, W. D. Sproul, B. Mishra, Z. Wu, and J. Wang, “The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering,” Surf. Coatings Technol., vol. 204, no. 14, pp. 2230–2239, Apr. 2010.
M. Novakovi, M. Popovi, and N. Bibi, “Structural , optical and electrical properties of reactively sputtered CrxNy films : Nitrogen influence on the phase formation,” pp. 45–51, 2017.
G. A. Zhang, P. X. Yan, P. Wang, Y. M. Chen, and J. Y. Zhang, “Influence of nitrogen content on the structural, electrical and mechanical properties of CrNx thin films,” Mater. Sci. Eng. A, vol. 460–461, pp. 301–305, Jul. 2007.
G. Wei, A. Rar, and J. . Barnard, “Composition, structure, and nanomechanical properties of DC-sputtered CrNx (0≤x≤1) thin films,” Thin Solid Films, vol. 398–399, pp. 460–464, Nov. 2001.
A. Barata, L. Cunha, and C. Moura, “Characterisation of chromium nitride films produced by PVD techniques,” Thin Solid Films, vol. 398–399, pp. 501–506, Nov. 2001.
E. Martinez, R. Sanjines, O. Banakh, and F. Levy, “Electrical, optical and mechanical properties of sputtered CrN and CrSiN thin films,” vol. 448, pp. 332–336, 2004.
B. Subramanian, K. Prabakaran, and M. Jayachandran, “Influence of nitrogen flow rates on materials properties of CrNx films grown by reactive magnetron sputtering,” Bull. Mater. Sci., vol. 35, pp. 505–511, 2012.
S. Logothetidis, P. Patsalas, K. Sarakinos, C. Charitidis, and C. Metaxa, “The effect of crystal structure and morphology on the optical properties of chromium nitride thin films,” Surf. Coatings Technol., vol. 180–181, pp. 637– 641, 2004.
I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III– V compound semiconductors and their alloys,” J. Appl. Phys., vol. 89, no. 11, pp. 5815–5875, Jun. 2001.
M. Ueno, A. Onodera, O. Shimomura, and K. Takemura, “X-ray observation of the structural phase transition of aluminum nitride under high pressure,” Phys. Rev. B, vol. 45, no. 17, pp. 10123–10126, May 1992.
Z. Li et al., “Mechanically controlling the reversible phase transformation from zinc blende to wurtzite in AlN,” Mater. Res. Lett., vol. 5, no. 6, pp. 426– 432, Nov. 2017.
A. Siegel, K. Parlinski, and U. D. Wdowik, “Ab initio calculation of structural phase transitions in AlN crystal,” Phys. Rev. B, vol. 74, no. 10, p. 104116, Sep. 2006.
S. K. Yadav, J. Wang, and X.-Y. Liu, “First-principles modeling of zincblende AlN layer in Al-AlN-TiN multilayers,” Apr. 2016.
A. Brudnik, A. Czapla, and E. Kusior, “AlN thin films prepared by optical emission spectroscopy-controlled reactive sputtering,” Thin Solid Films, vol. 478, no. 1–2, pp. 67–71, May 2005.
Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature, vol. 441, no. 7091, pp. 325–328, May 2006.
C. R. Miskys et al., “AlN/diamond heterojunction diodes,” Appl. Phys. Lett., vol. 82, no. 2, pp. 290–292, Jan. 2003.
M.-A. Dubois and P. Muralt, “Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications,” Appl. Phys. Lett., vol. 74, no. 20, pp. 3032–3034, May 1999.
F. Engelmark, G. F. Iriarte, I. V. Katardjiev, M. Ottosson, P. Muralt, and S. Berg, “Structural and electroacoustic studies of AlN thin films during low temperature radio frequency sputter deposition,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 19, no. 5, pp. 2664–2669, Sep. 2001.
D. Liufu and K. C. Kao, “Piezoelectric, dielectric, and interfacial properties of aluminum nitride films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 16, no. 4, pp. 2360–2366, Jul. 1998.
P. Muralt, “AlN Thin Film Processing and Basic Properties,” in Piezoelectric MEMS Resonators, 2017, pp. 3–37.
J. P. Kar, G. Bose, and S. Tuli, “Influence of nitrogen concentration on grain growth, structural and electrical properties of sputtered aluminum nitride films,” Scr. Mater., vol. 54, no. 10, pp. 1755–1759, May 2006.
M.-A. Dubois, P. Muralt, and V. Plessky, “BAW resonators based on aluminum nitride thin films,” in 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027), 1999, vol. 2, pp. 907–910.
V. Yantchev and I. Katardjiev, “Thin film Lamb wave resonators in frequency control and sensing applications: a review,” J. Micromechanics Microengineering, vol. 23, no. 4, p. 43001, Apr. 2013.
C. Duquenne, M.-P. Besland, P. Y. Tessier, E. Gautron, Y. Scudeller, and D. Averty, “Thermal conductivity of aluminium nitride thin films prepared by reactive magnetron sputtering,” J. Phys. D. Appl. Phys., vol. 45, no. 1, p. 15301, Jan. 2012.
T. Aubert, M. B. Assouar, O. Legrani, O. Elmazria, C. Tiusan, and S. Robert, “Highly textured growth of AlN films on sapphire by magnetron sputtering for high temperature surface acoustic wave applications,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 29, no. 2, p. 21010, Mar. 2011.
L. La Spina, E. Iborra, H. Schellevis, M. Clement, J. Olivares, and L. K. Nanver, “Aluminum nitride for heatspreading in RF IC’s,” Solid. State. Electron., vol. 52, no. 9, pp. 1359–1363, Sep. 2008.
M.-J. Lai, L.-B. Chang, T.-T. Yuan, and R.-M. Lin, “Improvement of crystal quality of AlN grown on sapphire substrate by MOCVD,” Cryst. Res. Technol., vol. 45, no. 7, pp. 703–706, May 2010.
N. Azéma, J. Durand, R. Berjoan, C. Dupuy, J. L. Balladore, and L. Cot, “Plasma-enhanced chemical vapour deposition of A1N (1010) on Si (100): Microstructural study of the interlayers,” J. Cryst. Growth, vol. 129, no. 3–4, pp. 621–628, Apr. 1993.
B. Liu, J. Gao, K. M. Wu, and C. Liu, “Preparation and rapid thermal annealing of AlN thin films grown by molecular beam epitaxy,” Solid State Commun., vol. 149, no. 17–18, pp. 715–717, May 2009.
C.-S. Oh and C.-S. Han, “A Study on the Preferred Orientation Characteristics of AlN Thin Films by Reactive Evaporation Method using NH3,” Korean J. Met. Mater., vol. 50, no. 1, pp. 78–85, Jan. 2012.
R. D. Vispute, J. Narayan, and J. D. Budai, “High quality optoelectronic grade epitaxial AlN films on α-Al2O3, Si and 6H-SiC by pulsed laser deposition,” Thin Solid Films, vol. 299, no. 1–2, pp. 94–103, May 1997.
J. A. Perez Taborda, H. R. Landazuri, and L. P. V. Londono, “Correlation Between Optical, Morphological, and Compositional Properties of Aluminum Nitride Thin Films by Pulsed Laser Deposition,” IEEE Sens. J., vol. 16, no. 2, pp. 359–364, Jan. 2016.
Q. X. Guo, M. Yoshitugu, T. Tanaka, M. Nishio, and H. Ogawa, “Microscopic investigations of aluminum nitride thin films grown by low-temperature reactive sputtering,” Thin Solid Films, vol. 483, no. 1–2, pp. 16–20, Jul. 2005.
V. Dumitru, C. Morosanu, V. Sandu, and A. Stoica, “Optical and structural differences between RF and DC AlxNy magnetron sputtered films,” Thin Solid Films, vol. 359, no. 1, pp. 17–20, Jan. 2000.
H. Cheng, Y. Sun, J. . Zhang, Y. . Zhang, S. Yuan, and P. Hing, “AlN films deposited under various nitrogen concentrations by RF reactive sputtering,” J. Cryst. Growth, vol. 254, no. 1–2, pp. 46–54, Jun. 2003.
L. Vergara Herrero, “Películas delgadas de nitruro de aluminio depositadas por pulverización y su aplicación a dispositivos de ondas acústicas,” UNIVERSIDAD POLITÉCNICA DE MADRID E. T. S. I. DE TELECOMUNICACIÓN, 2005.
C.-T. Chang, Y.-C. Yang, J.-W. Lee, and B.-S. Lou, “The influence of deposition parameters on the structure and properties of aluminum nitride coatings deposited by high power impulse magnetron sputtering,” Thin Solid Films, vol. 572, pp. 161–168, Dec. 2014.
X.-H. Xu, H.-S. Wu, C.-J. Zhang, and Z.-H. Jin, “Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering,” Thin Solid Films, vol. 388, no. 1–2, pp. 62–67, Jun. 2001.
P. Patsalas, G. Abadias, G. M. Matenoglou, L. E. Koutsokeras, and C. E. Lekka, “Electronic and crystal structure and bonding in Ti-based ternary solid solution nitrides and Ti–Cu–N nanocomposite films,” Surf. Coatings Technol., vol. 205, no. 5, pp. 1324–1330, Nov. 2010.
G. M. Matenoglou et al., “Structure, stability and bonding of ternary transition metal nitrides,” Surf. Coatings Technol., vol. 204, no. 6–7, pp. 911–914, Dec. 2009.
J. Y. Rauch, C. Rousselot, and N. Martin, “Structure and composition of TixAl1−xN thin films sputter deposited using a composite metallic target,” Surf. Coatings Technol., vol. 157, no. 2–3, pp. 138–143, Aug. 2002.
A. Kimura, H. Hasegawa, K. Yamada, and T. Suzuki, “Effects of Al content on hardness, lattice parameter and microstructure of Ti1−xAlxN films,” Surf. Coatings Technol., vol. 120–121, pp. 438–441, Nov. 1999.
K. Kutschej, P. H. Mayrhofer, M. Kathrein, P. Polcik, R. Tessadri, and C. Mitterer, “Structure, mechanical and tribological properties of sputtered Ti1– xAlxN coatings with 0.5≤x≤0.75,” Surf. Coatings Technol., vol. 200, no. 7, pp. 2358–2365, Dec. 2005.
P. H. Mayrhofer, R. Rachbauer, D. Holec, F. Rovere, and J. M. Schneider, “Protective Transition Metal Nitride Coatings,” in Comprehensive Materials Processing, Elsevier, 2014, pp. 355–388.
S. PalDey and S. C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti,Al)N: A review,” Mater. Sci. Eng. A, vol. 342, no. 1–2, pp. 58– 79, 2003.
R. Wuhrer, W. Y. Yeung, M. R. Phillips, and G. McCredie, “Study on d.c. magnetron sputter deposition of titanium aluminium nitride thin films: effect of aluminium content on coating,” Thin Solid Films, vol. 290–291, pp. 339– 342, Dec. 1996.
D. McIntyre, J. E. Greene, G. Håkansson, J. ‐E. Sundgren, and W. ‐D. Münz, “Oxidation of metastable single‐phase polycrystalline Ti 0.5 Al 0.5 N films: Kinetics and mechanisms,” J. Appl. Phys., vol. 67, no. 3, pp. 1542– 1553, Feb. 1990.
A. S. Bhansali, R. Sinclair, and A. E. Morgan, “A thermodynamic approach for interpreting metallization layer stability and thin‐film reactions involving four elements: Application to integrated circuit contact metallurgy,” J. Appl. Phys., vol. 68, no. 3, pp. 1043–1049, Aug. 1990.
S. Kassavetis, G. Abadias, G. Vourlias, G. Bantsis, S. Logothetidis, and P. Patsalas, “Optical properties of TixAl1 − xN thin films in the whole compositional range,” Surf. Coatings Technol., vol. 295, pp. 125–129, 2015.
S. Kassavetis, D. V. Bellas, G. Abadias, E. Lidorikis, and P. Patsalas, “Plasmonic spectral tunability of conductive ternary nitrides,” Appl. Phys. Lett., vol. 108, no. 26, p. 263110, Jun. 2016.
L. Rebouta et al., “Optical characterization of TiAlN/TiAlON/SiO2 absorber for solar selective applications,” Surf. Coatings Technol., vol. 211, pp. 41– 44, Oct. 2012.
B. Subramanian, R. Ananthakumar, and M. Jayachandran, “Microstructural, mechanical and electrochemical corrosion properties of sputtered titanium- aluminum-nitride films for bio-implants,” Vacuum, vol. 85, no. 5, pp. 601– 609, 2010.
Y. C. Chim, X. Z. Ding, X. T. Zeng, and S. Zhang, “Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc,” Thin Solid Films, vol. 517, no. 17, pp. 4845–4849, Jul. 2009.
C. W. Kim and K. H. Kim, “Anti-oxidation properties of TiAlN film prepared by plasma-assisted chemical vapor deposition and roles of Al,” Thin Solid Films, vol. 307, no. 1–2, pp. 113–119, Oct. 1997.
H. Ichimura and A. Kawana, “High-temperature oxidation of ion-plated TiN and TiAlN films,” J. Mater. Res., vol. 8, no. 5, pp. 1093–1100, May 1993.
J. M. Lackner, W. Waldhauser, R. Ebner, J. Keckés, and T. Schöberl, “Room temperature deposition of (Ti,Al)N and (Ti,Al)(C,N) coatings by pulsed laser deposition for tribological applications,” Surf. Coatings Technol., vol. 177–178, pp. 447–452, Jan. 2004.
N. Pliatsikas, A. Siozios, S. Kassavetis, G. Vourlias, and P. Patsalas, “Optical properties of nanostructured Al-rich Al1 − xTixN films,” Surf. Coatings Technol., vol. 257, pp. 63–69, Oct. 2014.
A. Schüler et al., “Structural and optical properties of titanium aluminum nitride films (Ti1−xAlxN),” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 19, no. 3, pp. 922–929, 2001.
S. Chen, D. Luo, and G. Zhao, “Investigation of the properties of TixCr1-xN coatings prepared by cathodic arc deposition,” Phys. Procedia, vol. 50, pp. 163–168, 2013.
N. Witit-Anun and A. Teekhaboot, “Effect of Ti Sputtering Current on Structure of TiCrN Thin Films Prepared by Reactive DC Magnetron Co- Sputtering,” Key Eng. Mater., vol. 675–676, pp. 181–184, Jan. 2016.
J. . Nainaparampil, J. . Zabinski, and A. Korenyi-Both, “Formation and characterization of multiphase film properties of (Ti–Cr)N formed by cathodic arc deposition,” Thin Solid Films, vol. 333, no. 1–2, pp. 88–94, Nov. 1998.
B. Navinšek, P. Panjan, and A. Cvelbar, “Characterization of low temperature CrN and TiN (PVD) hard coatings,” Surf. Coatings Technol., vol. 74–75, pp. 155–161, Sep. 1995.
Y. Otani and S. Hofmann, “High temperature oxidation behaviour of (Ti1−xCrx)N coatings,” Thin Solid Films, vol. 287, no. 1–2, pp. 188–192, Oct. 1996.
Q. Wang, F. Zhou, and J. Yan, “Evaluating mechanical properties and crack resistance of CrN, CrTiN, CrAlN and CrTiAlN coatings by nanoindentation and scratch tests,” Surf. Coatings Technol., vol. 285, pp. 203–213, Jan. 2016.
S. . Aouadi et al., “Characterization of titanium chromium nitride nanocomposite protective coatings,” Appl. Surf. Sci., vol. 229, no. 1–4, pp. 387–394, May 2004.
C. H. Hsu, C. K. Lin, K. H. Huang, and K. L. Ou, “Improvement on hardness and corrosion resistance of ferritic stainless steel via PVD-(Ti,Cr)N coatings,” Surf. Coatings Technol., vol. 231, pp. 380–384, Sep. 2013.
V. V. A. Thampi, A. Bendavid, and B. Subramanian, “Nanostructured TiCrN thin films by Pulsed Magnetron Sputtering for cutting tool applications,” Ceram. Int., vol. 42, no. 8, pp. 9940–9948, Jun. 2016.
H. S. Choi, D. H. Han, W. H. Hong, and J. J. Lee, “(Titanium, chromium) nitride coatings for bipolar plate of polymer electrolyte membrane fuel cell,” J. Power Sources, vol. 189, no. 2, pp. 966–971, Apr. 2009.
C. Paksunchai, S. Denchitcharoen, S. Chaiyakun, and P. Limsuwan, “Growth and characterization of nanostructured TiCrN films prepared by DC magnetron cosputtering,” J. Nanomater., vol. 2014, 2014.
C. Paksunchai, C. Chantharangsi, S. Denchitcharoen, S. Chaiyakun, and P. Limsuwan, “Structure and morphology study of very thin TiCrN films deposited by unbalanced magnetron co-sputtering,” in Key Engineering Materials, 2019, vol. 798 KEM, pp. 152–157.
N. Witit-anun, A. Buranawong, and S. Chaikhun, “Effect of nitrogen flow rate on structure of TiCrN thin films prepared from mosaic target by rective dc unbalanced magnetron sputtering,” Phranakhon Rajabhat Res. J. (Science Technol., vol. 13, pp. 38–49, 2018.
L. Zhou, “Dissertation First-principles studies of CrN-based materials,” Technische Universität Wien, 2015.
H. C. Barshilia, N. Selvakumar, B. Deepthi, and K. S. Rajam, “A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings,” Surf. Coatings Technol., vol. 201, no. 6, pp. 2193–2201, Dec. 2006.
O. Banakh, P. E. Schmid, R. Sanjinés, and F. Lévy, “High-temperature oxidation resistance of Cr1-xAlxN thin films deposited by reactive magnetron sputtering,” Surf. Coatings Technol., vol. 163–164, pp. 57–61, Jan. 2003.
W. Kalss, A. Reiter, V. Derflinger, C. Gey, and J. L. Endrino, “Modern coatings in high performance cutting applications,” Int. J. Refract. Met. Hard Mater., vol. 24, no. 5, pp. 399–404, Sep. 2006.
M. Kawate, A. K. Hashimoto, and T. Suzuki, “Oxidation resistance of Cr1- xAlxN and Ti1-xAlxN films,” Surf. Coatings Technol., vol. 165, no. 2, pp. 163–167, Feb. 2003.
J. Lin, B. Mishra, J. J. Moore, and W. D. Sproul, “A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses,” Surf. Coatings Technol., vol. 202, no. 14, pp. 3272–3283, Apr. 2008.
L. Wang, G. Zhang, R. J. K. Wood, S. C. Wang, and Q. Xue, “Fabrication of CrAlN nanocomposite films with high hardness and excellent anti-wear performance for gear application,” Surf. Coatings Technol., vol. 204, no. 21– 22, pp. 3517–3524, Aug. 2010.
K. Bobzin, E. Lugscheider, M. Maes, P. W. Gold, J. Loos, and M. Kuhn, “High-performance chromium aluminium nitride PVD coatings on roller bearings,” Surf. Coatings Technol., vol. 188–189, no. 1–3 SPEC.ISS., pp. 649–654, Nov. 2004.
E. Lugscheider, K. Bobzin, S. Bärwulf, and T. Hornig, “Oxidation characteristics and surface energy of chromium-based hardcoatings for use in semisolid forming tools,” Surf. Coatings Technol., vol. 133–134, pp. 540– 547, Nov. 2000.
E. Lugscheider, K. Bobzin, T. Hornig, and M. Maes, “Investigation of the residual stresses and mechanical properties of (Cr,Al)N arc PVD coatings used for semi-solid metal (SSM) forming dies,” in Thin Solid Films, 2002, vol. 420–421, pp. 318–323.
J. Chen, C. Guo, J. Chen, J. He, Y. Ren, and L. Hu, “Microstructure, optical and electrical properties of CrAlN film as a novel material for high temperature solar selective absorber applications,” Mater. Lett., vol. 133, pp. 71–74, Oct. 2014.
C. Zou, L. Huang, J. Wang, and S. Xue, “Effects of antireflection layers on the optical and thermal stability properties of a spectrally selective CrAlN- CrAlON based tandem absorber,” Sol. Energy Mater. Sol. Cells, vol. 137, pp. 243–252, Jun. 2015.
K. Dejun, G. Haoyuan, W. Wenchang, F. Guizhong, Y. Cundong, and W. Jinchun, “A kind of apparatus and method preparing TiAlCrN multi-element coating,” CN103981496B, 2014.
H. Zhou, J. Zheng, and Q. Wang, “A kind of AlTiCrN high-temperature wear resistant coating and preparation method thereof,” CN106086806B, 2016.
W. Ruijun, X. Tianyang, W. Yiqi, L. Zhendong, Z. Hua, and M. Xiaobin, “A kind of titanium fire flame retardant coating and preparation method thereof,” CN109518139A, 2018.
L. Min and L. Sheng, “A kind of composite Nano coating on saw blade surface,” CN107354438B, 2017.
Z. Haibo, X. Guang, L. Hongzuo, L. Yating, D. Hao, and W. Hui, “AlTiCrN/MoN nano laminated coating being firmly combined with tool surfaces and preparation method thereof ,” CN103789726B, 2014.
H. Hasegawa, T. Yamamoto, T. Suzuki, and K. Yamamoto, “The effects of deposition temperature and post-annealing on the crystal structure and mechanical property of TiCrAlN films with high Al contents,” Surf. Coatings Technol., vol. 200, no. 9, pp. 2864–2869, 2006.
H. Lind et al., “Improving thermal stability of hard coating films via a concept of multicomponent alloying,” Appl. Phys. Lett., vol. 99, no. 9, pp. 2011–2014, 2011.
S. Yang and D. G. Teer, “Properties and Performance Crtialn of Multilayer Hard Coatings Deposited Using Magnetron Sputter Ion Plating,” Surf. Eng., vol. 18, no. 5, pp. 391–396, Oct. 2002.
P. H. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens, “Microstructural design of hard coatings,” Progress in Materials Science, vol. 51, no. 8. Pergamon, pp. 1032–1114, 01-Nov-2006.
D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Film Formation, Adhesion, Surface Preparation and Contamination Control. 1998.
K. Seshan, Handbook of Thin Film Deposition Processes and Techniques Principles, Methods, Equipment and Applicatios, Segunda. 2001.
D. Satas and A. A. Tracton, Coatings Technology Handbook. 2001.
ASM International, ASM Handbook Volume 5: Surface Engineering , vol. 5. .
J. M. Albella M., Láminas delgadas y recubrimientos. Preparación, propiedades y aplicaciones. Madrid: Consejo Superior de Investigaciones Científicas, 2003.
E. Santecchia, A. M. S. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, and S. Spigarelli, “Wear resistance investigation of titanium nitride- based coatings,” Ceramics International, vol. 41, no. 9. Elsevier Ltd, pp. 10349–10379, Nov-2015.
O. L. Depablos Rivera, “Propiedades ópticas y eléctricas de películas delgadas de óxidos ternarios de bismuto y niobio,” Universidad Nacional Autónoma de México, México, 2017.
R. F. Bunshah, Handbook of Hard Coatings. Deposition Technologies, Properties and Applications, First. 2000.
J. Musil, “Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness,” Surf. Coatings Technol., vol. 207, pp. 50–65, 2012.
J. D. La Fuente, J. Santiago, A. Román, C. Dumitrache, and D. Casasanto, Sculptured Thin Films: Nanoengineered Morphology and Optics, vol. 25, no. 9. 2014.
J. A. Thornton, “The microstructure of sputter‐deposited coatings,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 4, no. 6, pp. 3059–3065, 1986.
C. G. Granqvist, “Preparation of thin films and nanostructured coatings for clean tech applications: A primer,” Solar Energy Materials and Solar Cells, vol. 99. North-Holland, pp. 166–172, 01-Apr-2012.
Barna P. B. and Adamik M., “Growth mechanisms of polycrystalline thin films,” Sci. Technol. Thin Film., pp. 1–28, 1995.
J. Musil et al., “Morphology and microstructure of hard and superhard Zr-Cu- N nanocomposite coatings,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., vol. 41, no. 11, pp. 6529–6533, 2002.
M. Diserens, J. Patscheider, and F. Lévy, “Improving the properties of titanium nitride by incorporation of silicon,” Surf. Coatings Technol., vol. 108–109, pp. 241–246, Oct. 1998.
N. Kaiser, “Review of the fundamentals of thin-film growth,” Appl. Opt., vol. 41, no. 16, p. 3053, 2002.
S. Hofmann, Auger- and X-Ray Photoelectron Spectroscopy in Materials Science, vol. 49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
J. F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES. Chichester, UK: John Wiley & Sons, Ltd, 2003.
G. E. McGuire, Auger Electron Spectroscopy Reference Manual. Springer US, 1979.
Y. Waseda, E. Matsubara, and K. Shinoda, X-Ray Diffraction Crystallography - Introduction, Examples and Solved Problems. Springer Berlin Heidelberg, 2011.
V. Uvarov and I. Popov, “Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials,” Mater. Charact., vol. 58, no. 10, pp. 883–891, Oct. 2007.
I. Miccoli, F. Edler, H. Pfnür, and C. Tegenkamp, “The 100th anniversary of the four-point probe technique: The role of probe geometries in isotropic and anisotropic systems,” Journal of Physics Condensed Matter, vol. 27, no. 22. Institute of Physics Publishing, p. 223201, 10-Jun-2015.
E. M. Girotto and I. A. Santos, “Medidas de resistividade elétrica DC em sólidos: Como efetuá-las corretamente,” Quim. Nova, vol. 25, no. 4, pp. 639–647, 2002.
M. Fox, Optical Properties of Solids. WORLD SCIENTIFIC, 2002.
E. Hasani and D. Raoufi, “Influence of temperature and pressure on CdTe:Ag thin film,” Surf. Eng., vol. 34, no. 12, pp. 915–925, Dec. 2018.
D. Raoufi and A. Taherniya, “The effect of substrate temperature on the microstructural, electrical and optical properties of Sn-doped indium oxide thin films,” EPJ Appl. Phys., vol. 70, no. 3, Jun. 2015.
J. Tauc, R. Grigorovici, A. Vancu, J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” PSSBR, vol. 15, no. 2, pp. 627–637, 1966.
S. R. Bhattacharyya, R. N. Gayen, R. Paul, and A. K. Pal, “Determination of optical constants of thin films from transmittance trace,” Thin Solid Films, vol. 517, no. 18, pp. 5530–5536, 2009.
S. W. Xue, X. T. Zu, W. G. Zheng, H. X. Deng, and X. Xiang, “Effects of Al doping concentration on optical parameters of ZnO:Al thin films by sol-gel technique,” Phys. B Condens. Matter, vol. 381, no. 1–2, pp. 209–213, 2006.
E. A. Brandes and G. B. Brook, Smithells Metals Reference Book: Seventh Edition. Elsevier Inc., 2013.
M. Danek, F. Fernandes, A. Cavaleiro, and T. Polcar, “Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films,” Surf. Coatings Technol., vol. 313, pp. 158–167, Mar. 2017.
W. Eckstein, “Sputtering Yields,” in Sputtering by Particle Bombardment, Springer Berlin Heidelberg, 2007, pp. 33–187.
R. Forsén, M. Johansson, M. Odén, and N. Ghafoor, “Decomposition and phase transformation in TiCrAlN thin coatings,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 30, no. 6, p. 61506, 2012.
S. Kassavetis, G. Abadias, G. Vourlias, G. Bantsis, S. Logothetidis, and P. Patsalas, “Optical properties of TixAl1 − xN thin films in the whole compositional range,” Surf. Coatings Technol., vol. 295, pp. 125–129, Jun. 2016.
Y. X. Xu, H. Riedl, D. Holec, L. Chen, Y. Du, and P. H. Mayrhofer, “Thermal stability and oxidation resistance of sputtered Ti[sbnd]Al[sbnd]Cr[sbnd]N hard coatings,” Surf. Coatings Technol., vol. 324, pp. 48–56, Sep. 2017.
T. Li, J. Xiong, Z. Guo, T. Yang, M. Yang, and H. Du, “Structures and properties of TiAlCrN coatings deposited on Ti(C,N)-based cermets with various WC contents,” Int. J. Refract. Met. Hard Mater., vol. 69, pp. 247– 253, Dec. 2017.
K. Thomas, A. A. Taylor, R. Raghavan, V. Chawla, R. Spolenak, and J. Michler, “Microstructure and mechanical properties of metastable solid solution copper’tungsten films,” Thin Solid Films, 2017.
P. Panjan, M. Čekada, M. Panjan, and D. Kek-Merl, “Growth defects in PVD hard coatings,” Vacuum, vol. 84, no. 1, pp. 209–214, 2009.
Y. Wang et al., “Tuning the structure and preferred orientation in reactively sputtered copper oxide thin films,” Appl. Surf. Sci., vol. 335, pp. 85–91, Apr. 2015.
J. T. Chen et al., “Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering,” J. Alloys Compd., vol. 472, no. 1–2, pp. 91–96, Mar. 2009.
Z. F. Zhou, P. L. Tam, P. W. Shum, and K. Y. Li, “High temperature oxidation of CrTiAlN hard coatings prepared by unbalanced magnetron sputtering,” Thin Solid Films, vol. 517, no. 17, pp. 5243–5247, Jul. 2009.
Y. Shi, S. Long, S. Yang, and F. Pan, “Deposition of nano-scaled CrTiAlN multilayer coatings with different negative bias voltage on Mg alloy by unbalanced magnetron sputtering,” Vacuum, vol. 84, no. 7, pp. 962–968, Mar. 2010.
L. Lu et al., “Microstructure and cutting performance of CrTiAlN coating for high-speed dry milling,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 24, no. 6, pp. 1800–1806, Jun. 2014.
H. Zhou, J. Zheng, B. Gui, D. Geng, and Q. Wang, “AlTiCrN coatings deposited by hybrid HIPIMS/DC magnetron co-sputtering,” Vacuum, vol. 136, pp. 129–136, Feb. 2017.
B. Schumacher, H.-G. Bach, P. Spitzer, and J. Obrzut, “Electrical Properties,” in Springer Handbook of Materials Measurement Methods, Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 431–484.
V. Chawla, R. Chandra, and R. Jayaganthan, “Effect of phase transformation on structural, electrical and hydrophobic properties of nanocomposite Ti1-xAlxN films,” Journal of Alloys and Compounds, vol. 507, no. 2. Elsevier Ltd, pp. L47–L53, 08-Oct-2010.
M. Zhou, Y. Makino, M. Nose, and K. Nogi, “Phase transition and properties of Ti-Al-N thin films prepared by r.f.-plasma assisted magnetron sputtering,” Thin Solid Films, vol. 339, no. 1–2, pp. 203–208, Feb. 1999.
H. Marom, M. Ritterband, and M. Eizenberg, “The contribution of grain boundary scattering versus surface scattering to the resistivity of thin polycrystalline films,” Thin Solid Films, vol. 510, no. 1–2, pp. 62–67, 2006.
G. M. Prieto-Novoa, E. N. Borja-Goyeneche, and J. J. Olaya-Florez, “Efecto del contenido de Ni en las propiedades ópticas y eléctricas de recubrimientos ZrTiSiNiN depositados por co-sputtering,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 43, no. 168, pp. 366–374, Sep. 2019.
H. Luo et al., “A chemical solution approach to epitaxial metal nitride thin films,” Adv. Mater., vol. 21, no. 2, pp. 193–197, Jan. 2009.
R. Jalali, M. Parhizkar, H. Bidadi, H. Naghshara, S. R. Hosseini, and M. Jafari, “The effect of Al content, substrate temperature and nitrogen flow rate on optical band gap and optical features of nanostructured TiAlN thin films prepared by reactive magnetron sputtering,” Appl. Phys. A Mater. Sci. Process., vol. 122, no. 11, p. 978, Nov. 2016.
R. Apetz and M. P. B. Van Bruggen, “Transparent alumina: A light-scattering model,” J. Am. Ceram. Soc., vol. 86, no. 3, pp. 480–486, Mar. 2003.
N. M. S, S. S, and M. D, “Structural and Optical Properties of Chromium Doped Aluminum Nitride Thin Films Prepared by Stacking of Cr Layer on AlN Thin Film,” Int. J. Eng. Trends Technol., vol. 9, no. 13, pp. 667–670, Mar. 2014.
M. Singh, M. Goyal, and K. Devlal, “Size and shape effects on the band gap of semiconductor compound nanomaterials,” J. Taibah Univ. Sci., vol. 12, no. 4, pp. 470–475, Jul. 2018.
G. Ramalingam et al., “Quantum Confinement Effect of 2D Nanomaterials,” in Quantum Dots - Fundamental and Applications, IntechOpen, 2020.
H. C. Barshilia, N. Selvakumar, K. S. Rajam, and A. Biswas, “Optical properties and thermal stability of TiAlN/AlON tandem absorber prepared by reactive DC/RF magnetron sputtering,” Sol. Energy Mater. Sol. Cells, vol. 92, pp. 1425–1433, 2008.
dc.rights.spa.fl_str_mv Derechos Reservados al Autor, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos Reservados al Autor, 2021
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 126 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79689/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79689/2/1020756588-2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79689/3/1020756588-2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
e4b17f62d08396d482d72132d599ba94
817eb93078e41e3a4c389f875091dbda
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090171018117120
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos Reservados al Autor, 2021http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Piamba Tulcán, Oscar Edwin033a75a569122c165a4115dc829748eaOlaya Flórez, Jhon Jairo6742336e78cba204f151e59d8e612f56Prieto Novoa, Gina Milena691e0484e1fcd9d922dd51effeac6f2aGRUPO DE INVESTIGACIÓN AFIS (ANÁLISIS DE FALLAS, INTEGRIDAD Y SUPERFICIES)2021-06-23T17:56:09Z2021-06-23T17:56:09Z2021https://repositorio.unal.edu.co/handle/unal/79689Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesEn la presente investigación se estudiaron las propiedades eléctricas y ópticas de recubrimientos de TiAlCrN con diferentes concentraciones de Cr y espesores aproximados de 222±25 nm y 1040±40 nm. Los recubrimientos se depositaron sobre sustratos de vidrio mediante la técnica de “co-sputtering” reactivo empleando blancos de TiAl y Cr, variando la potencia aplicada al blanco de Cr entre 0-170W. La composición química elemental, microestructura, morfología superficial y rugosidad fueron evaluadas mediante espectrofotometría electrónica Auger (AES, por sus siglas en inglés), difracción de rayos X (XRD, por sus siglas en inglés), microscopía electrónica de barrido (SEM, por sus siglas en inglés) y perfilometría mecánica. La resistividad eléctrica se midió mediante el método de cuatro puntas y sus propiedades ópticas se caracterizaron por espectrofotometría UV- Vis-NIR. De acuerdo con los resultados obtenidos, se observó que la concentración de Cr en el recubrimiento influye sobre la composición química, microestructura y morfología, incidiendo en las propiedades eléctricas y ópticas de los recubrimientos de TiAlCrN. Con una variación de Cr entre el 0 at% y 12 at% se presentó una transición de fases desde una estructura monofásica hexagonal tipo wurtzita hasta una estructura monofásica cúbica tipo NaCl, pasando por una estructura bifásica hexagonal/cúbica. Igualmente, la adición de Cr aumentó el tamaño de cristalito y con este la rugosidad de los recubrimientos. Los recubrimientos presentaron un comportamiento óhmico a temperatura ambiente y exhibieron resistividades eléctricas superficiales dentro del rango de los semiconductores. La adición de Cr permitió disminuir esta resistividad de 490,1±43,4 Ωcm a 1,5±0,1 Ωcm. Respecto a las propiedades ópticas, estos se caracterizaron por exhibir una baja reflectancia, la cual no superó el 1,5 % en todo el rango del espectro estudiado y una alta absorción en la región UV, la cual disminuye para longitudes de ondas mayores. El aumento de la concentración de cromo disminuyó la energía de la brecha prohibida óptica (Gap óptico) de 2,9 eV a 2,3 eV, disminuyó la transmitancia, aumentó la absorción y no afectó la reflectancia de los recubrimientos en el rango de longitudes de onda evaluado. Mediante el método de Bhattacharyya calculó el índice de refracción (n) y coeficiente extinción (k) a partir del espectro de transmitancia. (Texto tomado de la fuente)This research work develops a study of the electrical and optical properties of TiAlCrN coatings with different Cr concentrations and thicknesses of 222±25 nm and 1040±40 nm. The coatings were deposited on glass substrates by reactive co-sputtering technique using TiAl and Cr targets, varying the power applied to the Cr target between 0W to 170W. Elemental chemical composition, microstructure, surface morphology and roughness were evaluated by Auger electron spectroscopy (AES), X-ray diffraction (XRD), scanning electron microscopy (SEM) and mechanical profilometry, respectively. The electrical resistivity was measured by the four-prong method and their optical properties were characterized by UV-Vis-NIR spectrophotometry. According to the results obtained, it was observed that the Cr concentration in the coating influences the chemical composition, microstructure, and morphology, affecting the electrical and optical properties of the TiAlCrN coatings. With a Cr variation between 0 at% and 21 at%, a phase transition from a single-phase hexagonal wurtzite-type structure to a single-phase cubic NaCl-type structure, passing through a two-phase hexagonal/cubic structure was presented. Likewise, the addition of Cr increased the crystallite size and with it the roughness of the coatings, the crystallite size varied between 30nm-46nm and 27nm- 66nm for the thinner and thicker coatings, respectively. The coatings showed an ohmic behavior at room temperature and exhibited surface electrical resistivities within the semiconductor range. The addition of Cr allowed decreasing this resistivity from 490.1±43.4 Ωcm to 1.5±0.1 Ωcm. Regarding the optical properties, the coatings exhibited low reflectance, which did not exceed 1.5 % in the whole range of the spectrum studied, and showed a high absorption in the UV region, which decreases for longer wavelengths. The addition of chromium decreased the optical Gap from 2.9 eV to 2.3 eV, decreased the transmittance, increased the absorption, and did not affect the reflectance of the coatings in the wavelength range evaluated. The refractive index (n) and extinction coefficient (k) were calculated using the Bhattacharyya method from the transmittance spectrum. (Texto tomado de la fuente)MaestríaMagíster en Ingeniería - Materiales y ProcesosMateriales nanoestructuradosIngeniería de Superficies126 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosDepartamento de Ingeniería Mecánica y MecatrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::537 - Electricidad y electrónicaPropiedades ópticasOptical propertiesTiAlCrNResistividad eléctricaPropiedades ópticas"Co-sputtering"Electrical resistivityOptical propertiesTiAlCrN"Co-sputtering"Propiedad eléctricaElectrical propertiesEstudio de las propiedades ópticas y eléctricas de películas delgadas de TiAlCrN depositadas por “co- sputtering” reactivoStudy of the optical and electrical properties of TiAlCrN thin films deposited by reactive “co-sputtering”.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMH. A. Jehn, “Multicomponent and multiphase hard coatings for tribological applications,” Surf. Coatings Technol., vol. 131, no. 1–3, pp. 433–440, Sep. 2000.J. Musil, “Hard and superhard nanocomposite coatings,” Surf. Coatings Technol., vol. 125, no. 1–3, pp. 322–330, Mar. 2000.S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: A review,” Surf. Coatings Technol., vol. 167, no. 2–3, pp. 113–119, 2003.J. Musil, “Hard Nanocomposite Films Prepared by Reactive Magnetron Sputtering,” in Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Dordrecht: Kluwer Academic Publishers, 2004, pp. 43–56.S. Hofmann, “Formation and diffusion properties of oxide films on metals and on nitride coatings studied with Auger electron spectroscopy and X-ray photoelectron spectroscopy,” Thin Solid Films, vol. 193–194, pp. 648–664, Dec. 1990.R. Hauert and J. Patscheider, “From Alloying to Nanocomposites— Improved Performance of Hard Coatings,” Adv. Eng. Mater., vol. 2, no. 5, pp. 247–259, 2000.G. S. Fox-Rabinovich et al., “Design and performance of AlTiN and TiAlCrN PVD coatings for machining of hard to cut materials,” Surf. Coatings Technol., vol. 204, no. 4, pp. 489–496, 2009.K. Yamamoto, T. Sato, K. Takahara, and K. Hanaguri, “Properties of (Ti,Cr,Al)N coatings with high Al content deposited by new plasma enhanced arc-cathode,” Surf. Coatings Technol., vol. 174–175, pp. 620– 626, 2003.J. Zhang, H. Lv, G. Cui, Z. Jing, and C. Wang, “Effects of bias voltage on the microstructure and mechanical properties of (Ti,Al,Cr)N hard films with N-gradient distributions,” Thin Solid Films, vol. 519, no. 15, pp. 4818–4823, 2011.G. S. Fox-Rabinovich, K. Yamomoto, S. C. Veldhuis, A. I. Kovalev, and G. K. Dosbaeva, “Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions,” Surf. Coatings Technol., vol. 200, no. 5–6, pp. 1804–1813, 2005.Y. X. Xu, H. Riedl, D. Holec, L. Chen, Y. Du, and P. H. Mayrhofer, “Thermal stability and oxidation resistance of sputtered Ti Al Cr N hard coatings,” Surf. Coatings Technol., vol. 324, pp. 48–56, 2017.P. L. Tam, Z. F. Zhou, P. W. Shum, and K. Y. Li, “Structural, mechanical, and tribological studies of Cr-Ti-Al-N coating with different chemical compositions,” Thin Solid Films, vol. 516, no. 16, pp. 5725–5731, 2008.F. Fernandes, M. Danek, T. Polcar, and A. Cavaleiro, “Tribological and cutting performance of TiAlCrN films with different Cr contents deposited with multilayered structure,” Tribol. Int., vol. 119, no. November 2017, pp. 345–353, 2018.F. Huang, G. Wei, J. a Barnard, and M. L. Weaver, “Microstructure and stress development in magnetron sputtered TiAlCr ( N ) films,” Surf. Coatings Technol., vol. 147, pp. 391–397, 2001.C. Zou, J. Zhang, W. Xie, L. Shao, and D. J. Fu, “Characterization and mechanical properties of Ti-Al-Cr-N nanocomposite coatings deposited by closed field unbalanced middle frequency magnetron sputtering,” Jpn. J. Appl. Phys., vol. 50, no. 12, pp. 1–5, 2011.Y. Xu, L. Chen, Z. Liu, F. Pei, and Y. Du, “Influence of Ti on the mechanical properties, thermal stability and oxidation resistance of Al-Cr-N coatings,” Vacuum, vol. 120, no. PA, pp. 127–131, 2015.Y. X. Xu et al., “Effect of CrN addition on the structure, mechanical and thermal properties of Ti-Al-N coating,” Surf. Coatings Technol., vol. 235, pp. 506–512, 2013.Musil J. ; Vlčekb J., “Magnetron sputtering of films with controlled texture and grain size,” Mater. Chem. Phys., vol. 54, no. 1–3, pp. 116–122, Jul. 1998.P. Sigmund, “Recollections of fifty years with sputtering,” Thin Solid Films, vol. 520, no. 19. Elsevier, pp. 6031–6049, 31-Jul-2012.C. W. Zou, J. Zhang, W. Xie, L. X. Shao, and D. J. Fu, “Structure and mechanical properties of Ti-Al-N coatings deposited by combined cathodic arc middle frequency magnetron sputtering,” J. Alloys Compd., vol. 509, no. 5, pp. 1989–1993, 2011.K. Valleti, D. Murali Krishna, and S. V. Joshi, “Functional multi-layer nitride coatings for high temperature solar selective applications,” Sol. Energy Mater. Sol. Cells, vol. 121, pp. 14–21, 2014.K. Valleti, D. M. Krishna, P. M. Reddy, and S. V Joshi, “Solar Energy Materials & Solar Cells High temperature stable solar selective coatings by cathodic arc PVD for heat collecting elements,” Sol. Energy Mater. Sol. Cells, vol. 145, pp. 447–453, 2016.N. Selvakumar and H. C. Barshilia, “Solar Energy Materials & Solar Cells Review of physical vapor deposited ( PVD ) spectrally selective coatings for mid- and high-temperature solar thermal applications,” vol. 98, pp. 1–23, 2012.U. Beck, G. Reiners, U. Kopacz, and H. A. Jehn, “Decorative hard coatings: interdependence of optical, stoichiometric and structural properties,” Surf. Coatings Technol., vol. 60, no. 1–3, pp. 389–395, 1993.K.-D. Bouzakis, N. Michailidis, G. Skordaris, E. Bouzakis, D. Biermann, and R. M’Saoubi, “Cutting with coated tools: Coating technologies, characterization methods and performance optimization,” CIRP Ann., vol. 61, no. 2, pp. 703–723, Jan. 2012.J. P. Manaud, A. Poulon, S. Gomez, and Y. Le Petitcorps, “A comparative study of CrN, ZrN, NbN and TaN layers as cobalt diffusion barriers for CVD diamond deposition on WC–Co tools,” Surf. Coatings Technol., vol. 202, no.2, pp. 222–231, Nov. 2007.C. A. Dimitriadis et al., “Characteristics of TiNx/n-Si Schottky diodes deposited by reactive magnetron sputtering,” J. Appl. Phys., vol. 85, no. 8, pp. 4238–4242, Apr. 1999.V. Cimalla, J. Pezoldt, and O. Ambacher, “Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications,” J. Phys. D. Appl. Phys., vol. 40, no. 20, pp. 6386–6434, Oct. 2007.G. M. Matenoglou, L. E. Koutsokeras, and P. Patsalas, “Plasma energy and work function of conducting transition metal nitrides for electronic applications,” Appl. Phys. Lett., vol. 94, no. 15, p. 152108, Apr. 2009. [30] L. Koutsokeras, “Growth, structure and electronic properties of ternary transition metal nitrides thin films,” 2010.P. Patsalas et al., “Conductive nitrides: Growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics,” Mater. Sci. Eng. R Reports, vol. 123, pp. 1–55, 2018.R. Jalali, M. Parhizkar, H. Bidadi, and H. Naghshara, “The effect of Al content , substrate temperature and nitrogen flow rate on optical band gap and optical features of nanostructured TiAlN thin films prepared by reactive magnetron sputtering,” 2016.X. Feng, H. Zhou, Z. Wan, and K. Zhang, “Effect of Ti content on structure and mechanical properties of Cr–Ti–N films,” Surf. Eng., vol. 33, no. 8, pp. 619–625, Aug. 2017.J. Xu, H. Umehara, and I. Kojima, “Effect of deposition parameters on composition, structures, density and topography of CrN films deposited by r.f. magnetron sputtering,” Appl. Surf. Sci., vol. 201, no. 1–4, pp. 208–218, Nov. 2002.C. Chokwatvikul, S. Larpkiattaworn, S. Surinphong, C. Busabok, and P. Termsuksawad, “Effect of nitrogen partial pressure on characteristic and mechanical properties of hard coating TiAlN Film,” J. Met. Mater. Miner., vol. 21, no. 1, Jun. 2011.H. J. Goldschmidt, Interstitial Alloys. Elsevier Science, 2013.P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical Properties and Plasmonic Performance of Titanium Nitride,” Materials (Basel)., vol. 8, no. 6, pp. 3128–3154, May 2015.J.-E. Sundgren, “Structure and properties of TiN coatings,” Thin Solid Films, vol. 128, no. 1–2, pp. 21–44, Jun. 1985.S. Yu, Q. Zeng, A. R. Oganov, G. Frapper, and L. Zhang, “Phase stability, chemical bonding and mechanical properties of titanium nitrides: a first- principles study,” Phys. Chem. Chem. Phys, vol. 17, p. 11763, 2015.V. Poulek, J. Musil, V. Valvoda, and R. Cerny, “Microhardness of Ti-N films containing the epsilon -Ti 2 N phase,” J. Phys. D. Appl. Phys., vol. 21, no. 11, pp. 1657–1658, Nov. 1988.M. Xu et al., “Optical properties of cubic Ti3N4, Zr3N4, and Hf3N4,” Appl. Phys. Lett., vol. 89, no. 15, p. 151908, Oct. 2006.M. S. R. N. Kiran, M. G. Krishna, and K. A. Padmanabhan, “Growth, surface morphology, optical properties and electrical resistivity of ε-TiN x (0.4 < x ≤ 0.5) films,” Appl. Surf. Sci., vol. 255, no. 5 PART 1, pp. 1934–1941, 2008.S. Yang, D. . Lewis, I. Wadsworth, J. Cawley, J. . Brooks, and W. . Münz, “Investigation of substoichiometric titanium nitride grown by unbalanced magnetron sputtering,” Surf. Coatings Technol., vol. 131, no. 1–3, pp. 228– 233, Sep. 2000.E. Restrepo, P. J. Arango, and S. Casanova, “ALGUNOS CONCEPTOS SOBRE NITRURO DE TITANIO Y EL CARBURO DE TITANIO,” Año, vol. 76, pp. 213–224, 2008.P. J. Clarke, “Magnetron dc reactive sputtering of titanium nitride and indium–tin oxide,” J. Vac. Sci. Technol., vol. 14, no. 1, pp. 141–142, Jan. 1977.P. . Mayrhofer, F. Kunc, J. Musil, and C. Mitterer, “A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings,” Thin Solid Films, vol. 415, no. 1–2, pp. 151–159, Aug. 2002.H. Yu, T. Tan, W. Wu, C. Tian, Y. An, and F. Sun, “Thermal stability of titanium nitride coatings prepared by the mixing technology with laser and plasma,” Curr. Appl. Phys., vol. 12, no. 1, pp. 152–154, Jan. 2012.C. Wei, J. F. Lin, T.-H. Jiang, and C.-F. Ai, “Tribological characteristics of titanium nitride and titanium carbonitride multilayer films: Part II. The effect of coating sequence on tribological properties,” Thin Solid Films, vol. 381, no. 1, pp. 104–118, Jan. 2001.H. E. Rebenne and D. G. Bhat, “Review of CVD TiN coatings for wear- resistant applications: deposition processes, properties and performance,” Surf. Coatings Technol., vol. 63, no. 1–2, pp. 1–13, Jan. 1994.N. Heide and J. W. Schultze, “Corrosion stability of TiN prepared by ion implantation and PVD,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 80–81, pp. 467–471, Jun. 1993.S. Piscanec, “Bioactivity of TiN-coated titanium implants,” Acta Mater., vol. 52, no. 5, pp. 1237–1245, Mar. 2004.D. A. Glocker and S. V. Ranade, Medical coatings and deposition technologies. 2016.A. Mumtaz and W. H. Class, “Color of titanium nitride prepared by reactive dc magnetron sputtering,” J. Vac. Sci. Technol., vol. 20, no. 3, pp. 345–348, Mar. 1982.S. M. Borah, H. Bailung, and J. Chutia, Decorative titanium nitride colored coatings on bell-metal by reactive cylindrical magnetron sputtering, progress in color., vol. 3, no. 2. 三省堂, 2010.S. Kanamori, “Investigation of reactively sputtered TiN films for diffusion barriers,” Thin Solid Films, vol. 136, no. 2, pp. 195–214, Feb. 1986.P. Ruterana et al., “The Microstructure of Ti/Al and TiN Ohmic Contacts to Gallium Nitride,” Phys. status solidi, vol. 176, no. 1, pp. 767–771, Nov. 1999.M. Birkholz et al., “Ultrathin TiN Membranes as a Technology Platform for CMOS-Integrated MEMS and BioMEMS Devices,” Adv. Funct. Mater., vol. 21, no. 9, pp. 1652–1656, May 2011.N. Savvides and B. Window, “Electrical transport, optical properties, and structure of TiN films synthesized by low‐energy ion assisted deposition,” J. Appl. Phys., vol. 64, no. 1, pp. 225–234, Jul. 1988.J. Martan and P. Beneš, “Thermal properties of cutting tool coatings at high temperatures,” Thermochim. Acta, vol. 539, pp. 51–55, Jul. 2012.J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum, D. Goldhaber-Gordon, and J. A. Dionne, “Fully CMOS-compatible titanium nitride nanoantennas,” Appl. Phys. Lett., vol. 108, no. 5, p. 51110, Feb. 2016.K. E. Andersson, M. K. Wahlström, and A. Roos, “High stability titanium nitride based solar control films,” Thin Solid Films, vol. 214, no. 2, pp. 213– 218, Jul. 1992.H. Z. Durusoy, Ö. Duyar, A. Aydinli, and F. Ay, “Influence of Substrate Temperature and Bias Voltage on the Optical Properties of Sputter Coated TiN Films,” Vacuum, vol. 70, pp. 1–4, 2002.Lanzhou Inst Chemical Physics Cas, “Titanium-nitride-based solar selective absorbing coating and preparing method thereof,” CN 106091446 A, 15- Jun-2016.H. Wang, Q. Chen, L. Wen, S. Song, X. Hu, and G. Xu, “Titanium-nitride- based integrated plasmonic absorber/emitter for solar thermophotovoltaic application,” Photonics Res., vol. 3, no. 6, p. 329, Dec. 2015.L. Roux, J. Hanus, J. C. Francois, and M. Sigrist, “The optical properties of titanium nitrides and carbides: Spectral selectivity and photothermal conversion of solar energy,” Sol. Energy Mater., vol. 7, no. 3, pp. 299–312, Dec. 1982.A. Tarniowy, R. Mania, and M. Rekas, “The effect of thermal treatment on the structure , optical and electrical properties of amorphous titanium nitride thin films,” pp. 93–100, 1997.H. Hamamura, H. Komiyama, and Y. Shimogaki, “TiN Films Prepared by Flow Modulation Chemical Vapor Deposition using TiCl 4 and NH 3,” Jpn. J. Appl. Phys., vol. 40, no. Part 1, No. 3A, pp. 1517–1521, Mar. 2001.G. Zhao, T. Zhang, T. Zhang, J. Wang, and G. Han, “Electrical and optical properties of titanium nitride coatings prepared by atmospheric pressure chemical vapor deposition,” J. Non. Cryst. Solids, vol. 354, no. 12–13, pp. 1272–1275, 2008.B. . Tay, X. Shi, H. . Yang, H. . Tan, D. Chua, and S. . Teo, “The effect of deposition conditions on the properties of TiN thin films prepared by filtered cathodic vacuum-arc technique,” Surf. Coatings Technol., vol. 111, no. 2–3, pp. 229–233, Jan. 1999.L. E. Koutsokeras et al., “Electronic properties of binary and ternary, hard and refractory transition metal nitrides,” Surf. Coatings Technol., vol. 204, no. 12–13, pp. 2038–2041, 2010.P. Patsalas, C. Charitidis, and S. Logothetidis, “The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films,” Surf. Coatings Technol., vol. 125, no. 1–3, pp. 335–340, Mar. 2000.S. Adachi and M. Takahashi, “Optical properties of TiN films deposited by direct current reactive sputtering,” J. Appl. Phys., vol. 87, no. 3, pp. 1264– 1269, 2000.P. Patsalas and S. Logothetidis, “Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films,” J. Appl. Phys., vol. 90, no. 9, pp. 4725–4734, Nov. 2001.M. N. Solovan, V. V. Brus, E. V. Maistruk, and P. D. Maryanchuk, “Electrical and optical properties of TiN thin films,” Inorg. Mater., vol. 50, no. 1, pp. 40– 45, 2014.J. Paulitsch, M. Schenkel, T. Zufraß, P. H. Mayrhofer, and W.-D. Münz, “Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit,” Thin Solid Films, vol. 518, no. 19, pp. 5558–5564, Jul. 2010.T. Q. Li, S. Noda, Y. Tsuji, T. Ohsawa, and H. Komiyama, “Initial growth and texture formation during reactive magnetron sputtering of TiN on Si(111),” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 20, no. 3, pp. 583–588, May 2002.Y. L. Jeyachandran, S. K. Narayandass, D. Mangalaraj, S. Areva, and J. A. Mielczarski, “Properties of titanium nitride films prepared by direct current magnetron sputtering,” Mater. Sci. Eng. A, vol. 445–446, pp. 223–236, Feb. 2007.N. K. Ponon et al., “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films, vol. 578, pp. 31–37, Mar. 2015.T.-S. Yeh, J.-M. Wu, and L.-J. Hu, “The properties of TiN thin films deposited by pulsed direct current magnetron sputtering,” Thin Solid Films, vol. 516, no. 21, pp. 7294–7298, Sep. 2008.L. Cunha, M. Andritschky, L. Rebouta, and R. Silva, “Corrosion of TiN, (TiAl)N and CrN hard coatings produced by magnetron sputtering,” Thin Solid Films, vol. 317, no. 1–2, pp. 351–355, Apr. 1998.H. Liang, J. Xu, D. Zhou, X. Sun, S. Chu, and Y. Bai, “Thickness dependent microstructural and electrical properties of TiN thin films prepared by DC reactive magnetron sputtering,” Ceram. Int., vol. 42, no. 2, pp. 2642–2647, Feb. 2016.H. Era, Y. Ide, A. Nino, and K. Kishitake, “TEM study on chromium nitride coatings deposited by reactive sputter method,” Surf. Coatings Technol., vol. 194, no. 2–3, pp. 265–270, May 2005.I. Milošev, H.-H. Strehblow, and B. Navinšek, “XPS in the study of high- temperature oxidation of CrN and TiN hard coatings,” Surf. Coatings Technol., vol. 74–75, pp. 897–902, Oct. 1995.J. A. Sue and T. P. Chang, “Friction and wear behavior of titanium nitride, zirconium nitride and chromium nitride coatings at elevated temperatures,” Surf. Coatings Technol., vol. 76–77, pp. 61–69, Nov. 1995.E. Broszeit, C. Friedrich, and G. Berg, “Deposition, properties and applications of PVD CrxN coatings,” Surf. Coatings Technol., vol. 115, no. 1, pp. 9–16, Jun. 1999.M. A. Djouadi, C. Nouveau, P. Beer, and M. Lambertin, “CrxNy hard coatings deposited with PVD method on tools for wood machining,” Surf. Coatings Technol., vol. 133–134, pp. 478–483, Nov. 2000.S. K. Pradhan, C. Nouveau, A. Vasin, and M.-A. Djouadi, “Deposition of CrN coatings by PVD methods for mechanical application,” Surf. Coatings Technol., vol. 200, no. 1–4, pp. 141–145, Oct. 2005.B. Navinšek, P. Panjan, and I. Milošev, “Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures,” Surf. Coatings Technol., vol. 97, no. 1–3, pp. 182–191, Dec. 1997.M. G. Brik and C.-G. Ma, “First-principles studies of the electronic and elastic properties of metal nitrides XN (X=Sc, Ti, V, Cr, Zr, Nb),” Comput. Mater. Sci., vol. 51, no. 1, pp. 380–388, Jan. 2012.D. Gall, C.-S. Shin, R. T. Haasch, I. Petrov, and J. E. Greene, “Band gap in epitaxial NaCl-structure CrN(001) layers,” J. Appl. Phys., vol. 91, no. 9, pp. 5882–5886, May 2002.A. Filippetti, W. E. Pickett, and B. M. Klein, “Competition between magnetic and structural transitions in CrN,” Phys. Rev. B, vol. 59, no. 10, pp. 7043– 7050, Mar. 1999.A. Filippetti and N. A. Hill, “Magnetic Stress as a Driving Force of Structural Distortions: The Case of CrN,” Phys. Rev. Lett., vol. 85, no. 24, pp. 5166– 5169, Dec. 2000.C. Constantin, M. B. Haider, D. Ingram, and A. R. Smith, “Metal/semiconductor phase transition in chromium nitride(001) grown by rf- plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett., vol. 85, no. 26, pp. 6371–6373, Dec. 2004.K. Kashiwagi, K. Kobayashi, A. Masuyama, and Y. Murayama, “Chromium nitride films synthesized by radio‐frequency reactive ion plating,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 4, no. 2, pp. 210–214, Mar. 1986.L. Shen, S. Xu, N. Sun, T. Cheng, and Q. Cui, “Synthesis of nanocrystalline CrN by arc discharge,” Mater. Lett., vol. 62, no. 10–11, pp. 1469–1471, Apr. 2008.J. Lin, J. J. Moore, W. D. Sproul, B. Mishra, Z. Wu, and J. Wang, “The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering,” Surf. Coatings Technol., vol. 204, no. 14, pp. 2230–2239, Apr. 2010.M. Novakovi, M. Popovi, and N. Bibi, “Structural , optical and electrical properties of reactively sputtered CrxNy films : Nitrogen influence on the phase formation,” pp. 45–51, 2017.G. A. Zhang, P. X. Yan, P. Wang, Y. M. Chen, and J. Y. Zhang, “Influence of nitrogen content on the structural, electrical and mechanical properties of CrNx thin films,” Mater. Sci. Eng. A, vol. 460–461, pp. 301–305, Jul. 2007.G. Wei, A. Rar, and J. . Barnard, “Composition, structure, and nanomechanical properties of DC-sputtered CrNx (0≤x≤1) thin films,” Thin Solid Films, vol. 398–399, pp. 460–464, Nov. 2001.A. Barata, L. Cunha, and C. Moura, “Characterisation of chromium nitride films produced by PVD techniques,” Thin Solid Films, vol. 398–399, pp. 501–506, Nov. 2001.E. Martinez, R. Sanjines, O. Banakh, and F. Levy, “Electrical, optical and mechanical properties of sputtered CrN and CrSiN thin films,” vol. 448, pp. 332–336, 2004.B. Subramanian, K. Prabakaran, and M. Jayachandran, “Influence of nitrogen flow rates on materials properties of CrNx films grown by reactive magnetron sputtering,” Bull. Mater. Sci., vol. 35, pp. 505–511, 2012.S. Logothetidis, P. Patsalas, K. Sarakinos, C. Charitidis, and C. Metaxa, “The effect of crystal structure and morphology on the optical properties of chromium nitride thin films,” Surf. Coatings Technol., vol. 180–181, pp. 637– 641, 2004.I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III– V compound semiconductors and their alloys,” J. Appl. Phys., vol. 89, no. 11, pp. 5815–5875, Jun. 2001.M. Ueno, A. Onodera, O. Shimomura, and K. Takemura, “X-ray observation of the structural phase transition of aluminum nitride under high pressure,” Phys. Rev. B, vol. 45, no. 17, pp. 10123–10126, May 1992.Z. Li et al., “Mechanically controlling the reversible phase transformation from zinc blende to wurtzite in AlN,” Mater. Res. Lett., vol. 5, no. 6, pp. 426– 432, Nov. 2017.A. Siegel, K. Parlinski, and U. D. Wdowik, “Ab initio calculation of structural phase transitions in AlN crystal,” Phys. Rev. B, vol. 74, no. 10, p. 104116, Sep. 2006.S. K. Yadav, J. Wang, and X.-Y. Liu, “First-principles modeling of zincblende AlN layer in Al-AlN-TiN multilayers,” Apr. 2016.A. Brudnik, A. Czapla, and E. Kusior, “AlN thin films prepared by optical emission spectroscopy-controlled reactive sputtering,” Thin Solid Films, vol. 478, no. 1–2, pp. 67–71, May 2005.Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature, vol. 441, no. 7091, pp. 325–328, May 2006.C. R. Miskys et al., “AlN/diamond heterojunction diodes,” Appl. Phys. Lett., vol. 82, no. 2, pp. 290–292, Jan. 2003.M.-A. Dubois and P. Muralt, “Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications,” Appl. Phys. Lett., vol. 74, no. 20, pp. 3032–3034, May 1999.F. Engelmark, G. F. Iriarte, I. V. Katardjiev, M. Ottosson, P. Muralt, and S. Berg, “Structural and electroacoustic studies of AlN thin films during low temperature radio frequency sputter deposition,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 19, no. 5, pp. 2664–2669, Sep. 2001.D. Liufu and K. C. Kao, “Piezoelectric, dielectric, and interfacial properties of aluminum nitride films,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 16, no. 4, pp. 2360–2366, Jul. 1998.P. Muralt, “AlN Thin Film Processing and Basic Properties,” in Piezoelectric MEMS Resonators, 2017, pp. 3–37.J. P. Kar, G. Bose, and S. Tuli, “Influence of nitrogen concentration on grain growth, structural and electrical properties of sputtered aluminum nitride films,” Scr. Mater., vol. 54, no. 10, pp. 1755–1759, May 2006.M.-A. Dubois, P. Muralt, and V. Plessky, “BAW resonators based on aluminum nitride thin films,” in 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027), 1999, vol. 2, pp. 907–910.V. Yantchev and I. Katardjiev, “Thin film Lamb wave resonators in frequency control and sensing applications: a review,” J. Micromechanics Microengineering, vol. 23, no. 4, p. 43001, Apr. 2013.C. Duquenne, M.-P. Besland, P. Y. Tessier, E. Gautron, Y. Scudeller, and D. Averty, “Thermal conductivity of aluminium nitride thin films prepared by reactive magnetron sputtering,” J. Phys. D. Appl. Phys., vol. 45, no. 1, p. 15301, Jan. 2012.T. Aubert, M. B. Assouar, O. Legrani, O. Elmazria, C. Tiusan, and S. Robert, “Highly textured growth of AlN films on sapphire by magnetron sputtering for high temperature surface acoustic wave applications,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 29, no. 2, p. 21010, Mar. 2011.L. La Spina, E. Iborra, H. Schellevis, M. Clement, J. Olivares, and L. K. Nanver, “Aluminum nitride for heatspreading in RF IC’s,” Solid. State. Electron., vol. 52, no. 9, pp. 1359–1363, Sep. 2008.M.-J. Lai, L.-B. Chang, T.-T. Yuan, and R.-M. Lin, “Improvement of crystal quality of AlN grown on sapphire substrate by MOCVD,” Cryst. Res. Technol., vol. 45, no. 7, pp. 703–706, May 2010.N. Azéma, J. Durand, R. Berjoan, C. Dupuy, J. L. Balladore, and L. Cot, “Plasma-enhanced chemical vapour deposition of A1N (1010) on Si (100): Microstructural study of the interlayers,” J. Cryst. Growth, vol. 129, no. 3–4, pp. 621–628, Apr. 1993.B. Liu, J. Gao, K. M. Wu, and C. Liu, “Preparation and rapid thermal annealing of AlN thin films grown by molecular beam epitaxy,” Solid State Commun., vol. 149, no. 17–18, pp. 715–717, May 2009.C.-S. Oh and C.-S. Han, “A Study on the Preferred Orientation Characteristics of AlN Thin Films by Reactive Evaporation Method using NH3,” Korean J. Met. Mater., vol. 50, no. 1, pp. 78–85, Jan. 2012.R. D. Vispute, J. Narayan, and J. D. Budai, “High quality optoelectronic grade epitaxial AlN films on α-Al2O3, Si and 6H-SiC by pulsed laser deposition,” Thin Solid Films, vol. 299, no. 1–2, pp. 94–103, May 1997.J. A. Perez Taborda, H. R. Landazuri, and L. P. V. Londono, “Correlation Between Optical, Morphological, and Compositional Properties of Aluminum Nitride Thin Films by Pulsed Laser Deposition,” IEEE Sens. J., vol. 16, no. 2, pp. 359–364, Jan. 2016.Q. X. Guo, M. Yoshitugu, T. Tanaka, M. Nishio, and H. Ogawa, “Microscopic investigations of aluminum nitride thin films grown by low-temperature reactive sputtering,” Thin Solid Films, vol. 483, no. 1–2, pp. 16–20, Jul. 2005.V. Dumitru, C. Morosanu, V. Sandu, and A. Stoica, “Optical and structural differences between RF and DC AlxNy magnetron sputtered films,” Thin Solid Films, vol. 359, no. 1, pp. 17–20, Jan. 2000.H. Cheng, Y. Sun, J. . Zhang, Y. . Zhang, S. Yuan, and P. Hing, “AlN films deposited under various nitrogen concentrations by RF reactive sputtering,” J. Cryst. Growth, vol. 254, no. 1–2, pp. 46–54, Jun. 2003.L. Vergara Herrero, “Películas delgadas de nitruro de aluminio depositadas por pulverización y su aplicación a dispositivos de ondas acústicas,” UNIVERSIDAD POLITÉCNICA DE MADRID E. T. S. I. DE TELECOMUNICACIÓN, 2005.C.-T. Chang, Y.-C. Yang, J.-W. Lee, and B.-S. Lou, “The influence of deposition parameters on the structure and properties of aluminum nitride coatings deposited by high power impulse magnetron sputtering,” Thin Solid Films, vol. 572, pp. 161–168, Dec. 2014.X.-H. Xu, H.-S. Wu, C.-J. Zhang, and Z.-H. Jin, “Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering,” Thin Solid Films, vol. 388, no. 1–2, pp. 62–67, Jun. 2001.P. Patsalas, G. Abadias, G. M. Matenoglou, L. E. Koutsokeras, and C. E. Lekka, “Electronic and crystal structure and bonding in Ti-based ternary solid solution nitrides and Ti–Cu–N nanocomposite films,” Surf. Coatings Technol., vol. 205, no. 5, pp. 1324–1330, Nov. 2010.G. M. Matenoglou et al., “Structure, stability and bonding of ternary transition metal nitrides,” Surf. Coatings Technol., vol. 204, no. 6–7, pp. 911–914, Dec. 2009.J. Y. Rauch, C. Rousselot, and N. Martin, “Structure and composition of TixAl1−xN thin films sputter deposited using a composite metallic target,” Surf. Coatings Technol., vol. 157, no. 2–3, pp. 138–143, Aug. 2002.A. Kimura, H. Hasegawa, K. Yamada, and T. Suzuki, “Effects of Al content on hardness, lattice parameter and microstructure of Ti1−xAlxN films,” Surf. Coatings Technol., vol. 120–121, pp. 438–441, Nov. 1999.K. Kutschej, P. H. Mayrhofer, M. Kathrein, P. Polcik, R. Tessadri, and C. Mitterer, “Structure, mechanical and tribological properties of sputtered Ti1– xAlxN coatings with 0.5≤x≤0.75,” Surf. Coatings Technol., vol. 200, no. 7, pp. 2358–2365, Dec. 2005.P. H. Mayrhofer, R. Rachbauer, D. Holec, F. Rovere, and J. M. Schneider, “Protective Transition Metal Nitride Coatings,” in Comprehensive Materials Processing, Elsevier, 2014, pp. 355–388.S. PalDey and S. C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti,Al)N: A review,” Mater. Sci. Eng. A, vol. 342, no. 1–2, pp. 58– 79, 2003.R. Wuhrer, W. Y. Yeung, M. R. Phillips, and G. McCredie, “Study on d.c. magnetron sputter deposition of titanium aluminium nitride thin films: effect of aluminium content on coating,” Thin Solid Films, vol. 290–291, pp. 339– 342, Dec. 1996.D. McIntyre, J. E. Greene, G. Håkansson, J. ‐E. Sundgren, and W. ‐D. Münz, “Oxidation of metastable single‐phase polycrystalline Ti 0.5 Al 0.5 N films: Kinetics and mechanisms,” J. Appl. Phys., vol. 67, no. 3, pp. 1542– 1553, Feb. 1990.A. S. Bhansali, R. Sinclair, and A. E. Morgan, “A thermodynamic approach for interpreting metallization layer stability and thin‐film reactions involving four elements: Application to integrated circuit contact metallurgy,” J. Appl. Phys., vol. 68, no. 3, pp. 1043–1049, Aug. 1990.S. Kassavetis, G. Abadias, G. Vourlias, G. Bantsis, S. Logothetidis, and P. Patsalas, “Optical properties of TixAl1 − xN thin films in the whole compositional range,” Surf. Coatings Technol., vol. 295, pp. 125–129, 2015.S. Kassavetis, D. V. Bellas, G. Abadias, E. Lidorikis, and P. Patsalas, “Plasmonic spectral tunability of conductive ternary nitrides,” Appl. Phys. Lett., vol. 108, no. 26, p. 263110, Jun. 2016.L. Rebouta et al., “Optical characterization of TiAlN/TiAlON/SiO2 absorber for solar selective applications,” Surf. Coatings Technol., vol. 211, pp. 41– 44, Oct. 2012.B. Subramanian, R. Ananthakumar, and M. Jayachandran, “Microstructural, mechanical and electrochemical corrosion properties of sputtered titanium- aluminum-nitride films for bio-implants,” Vacuum, vol. 85, no. 5, pp. 601– 609, 2010.Y. C. Chim, X. Z. Ding, X. T. Zeng, and S. Zhang, “Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc,” Thin Solid Films, vol. 517, no. 17, pp. 4845–4849, Jul. 2009.C. W. Kim and K. H. Kim, “Anti-oxidation properties of TiAlN film prepared by plasma-assisted chemical vapor deposition and roles of Al,” Thin Solid Films, vol. 307, no. 1–2, pp. 113–119, Oct. 1997.H. Ichimura and A. Kawana, “High-temperature oxidation of ion-plated TiN and TiAlN films,” J. Mater. Res., vol. 8, no. 5, pp. 1093–1100, May 1993.J. M. Lackner, W. Waldhauser, R. Ebner, J. Keckés, and T. Schöberl, “Room temperature deposition of (Ti,Al)N and (Ti,Al)(C,N) coatings by pulsed laser deposition for tribological applications,” Surf. Coatings Technol., vol. 177–178, pp. 447–452, Jan. 2004.N. Pliatsikas, A. Siozios, S. Kassavetis, G. Vourlias, and P. Patsalas, “Optical properties of nanostructured Al-rich Al1 − xTixN films,” Surf. Coatings Technol., vol. 257, pp. 63–69, Oct. 2014.A. Schüler et al., “Structural and optical properties of titanium aluminum nitride films (Ti1−xAlxN),” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 19, no. 3, pp. 922–929, 2001.S. Chen, D. Luo, and G. Zhao, “Investigation of the properties of TixCr1-xN coatings prepared by cathodic arc deposition,” Phys. Procedia, vol. 50, pp. 163–168, 2013.N. Witit-Anun and A. Teekhaboot, “Effect of Ti Sputtering Current on Structure of TiCrN Thin Films Prepared by Reactive DC Magnetron Co- Sputtering,” Key Eng. Mater., vol. 675–676, pp. 181–184, Jan. 2016.J. . Nainaparampil, J. . Zabinski, and A. Korenyi-Both, “Formation and characterization of multiphase film properties of (Ti–Cr)N formed by cathodic arc deposition,” Thin Solid Films, vol. 333, no. 1–2, pp. 88–94, Nov. 1998.B. Navinšek, P. Panjan, and A. Cvelbar, “Characterization of low temperature CrN and TiN (PVD) hard coatings,” Surf. Coatings Technol., vol. 74–75, pp. 155–161, Sep. 1995.Y. Otani and S. Hofmann, “High temperature oxidation behaviour of (Ti1−xCrx)N coatings,” Thin Solid Films, vol. 287, no. 1–2, pp. 188–192, Oct. 1996.Q. Wang, F. Zhou, and J. Yan, “Evaluating mechanical properties and crack resistance of CrN, CrTiN, CrAlN and CrTiAlN coatings by nanoindentation and scratch tests,” Surf. Coatings Technol., vol. 285, pp. 203–213, Jan. 2016.S. . Aouadi et al., “Characterization of titanium chromium nitride nanocomposite protective coatings,” Appl. Surf. Sci., vol. 229, no. 1–4, pp. 387–394, May 2004.C. H. Hsu, C. K. Lin, K. H. Huang, and K. L. Ou, “Improvement on hardness and corrosion resistance of ferritic stainless steel via PVD-(Ti,Cr)N coatings,” Surf. Coatings Technol., vol. 231, pp. 380–384, Sep. 2013.V. V. A. Thampi, A. Bendavid, and B. Subramanian, “Nanostructured TiCrN thin films by Pulsed Magnetron Sputtering for cutting tool applications,” Ceram. Int., vol. 42, no. 8, pp. 9940–9948, Jun. 2016.H. S. Choi, D. H. Han, W. H. Hong, and J. J. Lee, “(Titanium, chromium) nitride coatings for bipolar plate of polymer electrolyte membrane fuel cell,” J. Power Sources, vol. 189, no. 2, pp. 966–971, Apr. 2009.C. Paksunchai, S. Denchitcharoen, S. Chaiyakun, and P. Limsuwan, “Growth and characterization of nanostructured TiCrN films prepared by DC magnetron cosputtering,” J. Nanomater., vol. 2014, 2014.C. Paksunchai, C. Chantharangsi, S. Denchitcharoen, S. Chaiyakun, and P. Limsuwan, “Structure and morphology study of very thin TiCrN films deposited by unbalanced magnetron co-sputtering,” in Key Engineering Materials, 2019, vol. 798 KEM, pp. 152–157.N. Witit-anun, A. Buranawong, and S. Chaikhun, “Effect of nitrogen flow rate on structure of TiCrN thin films prepared from mosaic target by rective dc unbalanced magnetron sputtering,” Phranakhon Rajabhat Res. J. (Science Technol., vol. 13, pp. 38–49, 2018.L. Zhou, “Dissertation First-principles studies of CrN-based materials,” Technische Universität Wien, 2015.H. C. Barshilia, N. Selvakumar, B. Deepthi, and K. S. Rajam, “A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings,” Surf. Coatings Technol., vol. 201, no. 6, pp. 2193–2201, Dec. 2006.O. Banakh, P. E. Schmid, R. Sanjinés, and F. Lévy, “High-temperature oxidation resistance of Cr1-xAlxN thin films deposited by reactive magnetron sputtering,” Surf. Coatings Technol., vol. 163–164, pp. 57–61, Jan. 2003.W. Kalss, A. Reiter, V. Derflinger, C. Gey, and J. L. Endrino, “Modern coatings in high performance cutting applications,” Int. J. Refract. Met. Hard Mater., vol. 24, no. 5, pp. 399–404, Sep. 2006.M. Kawate, A. K. Hashimoto, and T. Suzuki, “Oxidation resistance of Cr1- xAlxN and Ti1-xAlxN films,” Surf. Coatings Technol., vol. 165, no. 2, pp. 163–167, Feb. 2003.J. Lin, B. Mishra, J. J. Moore, and W. D. Sproul, “A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses,” Surf. Coatings Technol., vol. 202, no. 14, pp. 3272–3283, Apr. 2008.L. Wang, G. Zhang, R. J. K. Wood, S. C. Wang, and Q. Xue, “Fabrication of CrAlN nanocomposite films with high hardness and excellent anti-wear performance for gear application,” Surf. Coatings Technol., vol. 204, no. 21– 22, pp. 3517–3524, Aug. 2010.K. Bobzin, E. Lugscheider, M. Maes, P. W. Gold, J. Loos, and M. Kuhn, “High-performance chromium aluminium nitride PVD coatings on roller bearings,” Surf. Coatings Technol., vol. 188–189, no. 1–3 SPEC.ISS., pp. 649–654, Nov. 2004.E. Lugscheider, K. Bobzin, S. Bärwulf, and T. Hornig, “Oxidation characteristics and surface energy of chromium-based hardcoatings for use in semisolid forming tools,” Surf. Coatings Technol., vol. 133–134, pp. 540– 547, Nov. 2000.E. Lugscheider, K. Bobzin, T. Hornig, and M. Maes, “Investigation of the residual stresses and mechanical properties of (Cr,Al)N arc PVD coatings used for semi-solid metal (SSM) forming dies,” in Thin Solid Films, 2002, vol. 420–421, pp. 318–323.J. Chen, C. Guo, J. Chen, J. He, Y. Ren, and L. Hu, “Microstructure, optical and electrical properties of CrAlN film as a novel material for high temperature solar selective absorber applications,” Mater. Lett., vol. 133, pp. 71–74, Oct. 2014.C. Zou, L. Huang, J. Wang, and S. Xue, “Effects of antireflection layers on the optical and thermal stability properties of a spectrally selective CrAlN- CrAlON based tandem absorber,” Sol. Energy Mater. Sol. Cells, vol. 137, pp. 243–252, Jun. 2015.K. Dejun, G. Haoyuan, W. Wenchang, F. Guizhong, Y. Cundong, and W. Jinchun, “A kind of apparatus and method preparing TiAlCrN multi-element coating,” CN103981496B, 2014.H. Zhou, J. Zheng, and Q. Wang, “A kind of AlTiCrN high-temperature wear resistant coating and preparation method thereof,” CN106086806B, 2016.W. Ruijun, X. Tianyang, W. Yiqi, L. Zhendong, Z. Hua, and M. Xiaobin, “A kind of titanium fire flame retardant coating and preparation method thereof,” CN109518139A, 2018.L. Min and L. Sheng, “A kind of composite Nano coating on saw blade surface,” CN107354438B, 2017.Z. Haibo, X. Guang, L. Hongzuo, L. Yating, D. Hao, and W. Hui, “AlTiCrN/MoN nano laminated coating being firmly combined with tool surfaces and preparation method thereof ,” CN103789726B, 2014.H. Hasegawa, T. Yamamoto, T. Suzuki, and K. Yamamoto, “The effects of deposition temperature and post-annealing on the crystal structure and mechanical property of TiCrAlN films with high Al contents,” Surf. Coatings Technol., vol. 200, no. 9, pp. 2864–2869, 2006.H. Lind et al., “Improving thermal stability of hard coating films via a concept of multicomponent alloying,” Appl. Phys. Lett., vol. 99, no. 9, pp. 2011–2014, 2011.S. Yang and D. G. Teer, “Properties and Performance Crtialn of Multilayer Hard Coatings Deposited Using Magnetron Sputter Ion Plating,” Surf. Eng., vol. 18, no. 5, pp. 391–396, Oct. 2002.P. H. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens, “Microstructural design of hard coatings,” Progress in Materials Science, vol. 51, no. 8. Pergamon, pp. 1032–1114, 01-Nov-2006.D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Film Formation, Adhesion, Surface Preparation and Contamination Control. 1998.K. Seshan, Handbook of Thin Film Deposition Processes and Techniques Principles, Methods, Equipment and Applicatios, Segunda. 2001.D. Satas and A. A. Tracton, Coatings Technology Handbook. 2001.ASM International, ASM Handbook Volume 5: Surface Engineering , vol. 5. .J. M. Albella M., Láminas delgadas y recubrimientos. Preparación, propiedades y aplicaciones. Madrid: Consejo Superior de Investigaciones Científicas, 2003.E. Santecchia, A. M. S. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, and S. Spigarelli, “Wear resistance investigation of titanium nitride- based coatings,” Ceramics International, vol. 41, no. 9. Elsevier Ltd, pp. 10349–10379, Nov-2015.O. L. Depablos Rivera, “Propiedades ópticas y eléctricas de películas delgadas de óxidos ternarios de bismuto y niobio,” Universidad Nacional Autónoma de México, México, 2017.R. F. Bunshah, Handbook of Hard Coatings. Deposition Technologies, Properties and Applications, First. 2000.J. Musil, “Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness,” Surf. Coatings Technol., vol. 207, pp. 50–65, 2012.J. D. La Fuente, J. Santiago, A. Román, C. Dumitrache, and D. Casasanto, Sculptured Thin Films: Nanoengineered Morphology and Optics, vol. 25, no. 9. 2014.J. A. Thornton, “The microstructure of sputter‐deposited coatings,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 4, no. 6, pp. 3059–3065, 1986.C. G. Granqvist, “Preparation of thin films and nanostructured coatings for clean tech applications: A primer,” Solar Energy Materials and Solar Cells, vol. 99. North-Holland, pp. 166–172, 01-Apr-2012.Barna P. B. and Adamik M., “Growth mechanisms of polycrystalline thin films,” Sci. Technol. Thin Film., pp. 1–28, 1995.J. Musil et al., “Morphology and microstructure of hard and superhard Zr-Cu- N nanocomposite coatings,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., vol. 41, no. 11, pp. 6529–6533, 2002.M. Diserens, J. Patscheider, and F. Lévy, “Improving the properties of titanium nitride by incorporation of silicon,” Surf. Coatings Technol., vol. 108–109, pp. 241–246, Oct. 1998.N. Kaiser, “Review of the fundamentals of thin-film growth,” Appl. Opt., vol. 41, no. 16, p. 3053, 2002.S. Hofmann, Auger- and X-Ray Photoelectron Spectroscopy in Materials Science, vol. 49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.J. F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES. Chichester, UK: John Wiley & Sons, Ltd, 2003.G. E. McGuire, Auger Electron Spectroscopy Reference Manual. Springer US, 1979.Y. Waseda, E. Matsubara, and K. Shinoda, X-Ray Diffraction Crystallography - Introduction, Examples and Solved Problems. Springer Berlin Heidelberg, 2011.V. Uvarov and I. Popov, “Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials,” Mater. Charact., vol. 58, no. 10, pp. 883–891, Oct. 2007.I. Miccoli, F. Edler, H. Pfnür, and C. Tegenkamp, “The 100th anniversary of the four-point probe technique: The role of probe geometries in isotropic and anisotropic systems,” Journal of Physics Condensed Matter, vol. 27, no. 22. Institute of Physics Publishing, p. 223201, 10-Jun-2015.E. M. Girotto and I. A. Santos, “Medidas de resistividade elétrica DC em sólidos: Como efetuá-las corretamente,” Quim. Nova, vol. 25, no. 4, pp. 639–647, 2002.M. Fox, Optical Properties of Solids. WORLD SCIENTIFIC, 2002.E. Hasani and D. Raoufi, “Influence of temperature and pressure on CdTe:Ag thin film,” Surf. Eng., vol. 34, no. 12, pp. 915–925, Dec. 2018.D. Raoufi and A. Taherniya, “The effect of substrate temperature on the microstructural, electrical and optical properties of Sn-doped indium oxide thin films,” EPJ Appl. Phys., vol. 70, no. 3, Jun. 2015.J. Tauc, R. Grigorovici, A. Vancu, J. Tauc, R. Grigorovici, and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium,” PSSBR, vol. 15, no. 2, pp. 627–637, 1966.S. R. Bhattacharyya, R. N. Gayen, R. Paul, and A. K. Pal, “Determination of optical constants of thin films from transmittance trace,” Thin Solid Films, vol. 517, no. 18, pp. 5530–5536, 2009.S. W. Xue, X. T. Zu, W. G. Zheng, H. X. Deng, and X. Xiang, “Effects of Al doping concentration on optical parameters of ZnO:Al thin films by sol-gel technique,” Phys. B Condens. Matter, vol. 381, no. 1–2, pp. 209–213, 2006.E. A. Brandes and G. B. Brook, Smithells Metals Reference Book: Seventh Edition. Elsevier Inc., 2013.M. Danek, F. Fernandes, A. Cavaleiro, and T. Polcar, “Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films,” Surf. Coatings Technol., vol. 313, pp. 158–167, Mar. 2017.W. Eckstein, “Sputtering Yields,” in Sputtering by Particle Bombardment, Springer Berlin Heidelberg, 2007, pp. 33–187.R. Forsén, M. Johansson, M. Odén, and N. Ghafoor, “Decomposition and phase transformation in TiCrAlN thin coatings,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 30, no. 6, p. 61506, 2012.S. Kassavetis, G. Abadias, G. Vourlias, G. Bantsis, S. Logothetidis, and P. Patsalas, “Optical properties of TixAl1 − xN thin films in the whole compositional range,” Surf. Coatings Technol., vol. 295, pp. 125–129, Jun. 2016.Y. X. Xu, H. Riedl, D. Holec, L. Chen, Y. Du, and P. H. Mayrhofer, “Thermal stability and oxidation resistance of sputtered Ti[sbnd]Al[sbnd]Cr[sbnd]N hard coatings,” Surf. Coatings Technol., vol. 324, pp. 48–56, Sep. 2017.T. Li, J. Xiong, Z. Guo, T. Yang, M. Yang, and H. Du, “Structures and properties of TiAlCrN coatings deposited on Ti(C,N)-based cermets with various WC contents,” Int. J. Refract. Met. Hard Mater., vol. 69, pp. 247– 253, Dec. 2017.K. Thomas, A. A. Taylor, R. Raghavan, V. Chawla, R. Spolenak, and J. Michler, “Microstructure and mechanical properties of metastable solid solution copper’tungsten films,” Thin Solid Films, 2017.P. Panjan, M. Čekada, M. Panjan, and D. Kek-Merl, “Growth defects in PVD hard coatings,” Vacuum, vol. 84, no. 1, pp. 209–214, 2009.Y. Wang et al., “Tuning the structure and preferred orientation in reactively sputtered copper oxide thin films,” Appl. Surf. Sci., vol. 335, pp. 85–91, Apr. 2015.J. T. Chen et al., “Characterization and temperature controlling property of TiAlN coatings deposited by reactive magnetron co-sputtering,” J. Alloys Compd., vol. 472, no. 1–2, pp. 91–96, Mar. 2009.Z. F. Zhou, P. L. Tam, P. W. Shum, and K. Y. Li, “High temperature oxidation of CrTiAlN hard coatings prepared by unbalanced magnetron sputtering,” Thin Solid Films, vol. 517, no. 17, pp. 5243–5247, Jul. 2009.Y. Shi, S. Long, S. Yang, and F. Pan, “Deposition of nano-scaled CrTiAlN multilayer coatings with different negative bias voltage on Mg alloy by unbalanced magnetron sputtering,” Vacuum, vol. 84, no. 7, pp. 962–968, Mar. 2010.L. Lu et al., “Microstructure and cutting performance of CrTiAlN coating for high-speed dry milling,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 24, no. 6, pp. 1800–1806, Jun. 2014.H. Zhou, J. Zheng, B. Gui, D. Geng, and Q. Wang, “AlTiCrN coatings deposited by hybrid HIPIMS/DC magnetron co-sputtering,” Vacuum, vol. 136, pp. 129–136, Feb. 2017.B. Schumacher, H.-G. Bach, P. Spitzer, and J. Obrzut, “Electrical Properties,” in Springer Handbook of Materials Measurement Methods, Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 431–484.V. Chawla, R. Chandra, and R. Jayaganthan, “Effect of phase transformation on structural, electrical and hydrophobic properties of nanocomposite Ti1-xAlxN films,” Journal of Alloys and Compounds, vol. 507, no. 2. Elsevier Ltd, pp. L47–L53, 08-Oct-2010.M. Zhou, Y. Makino, M. Nose, and K. Nogi, “Phase transition and properties of Ti-Al-N thin films prepared by r.f.-plasma assisted magnetron sputtering,” Thin Solid Films, vol. 339, no. 1–2, pp. 203–208, Feb. 1999.H. Marom, M. Ritterband, and M. Eizenberg, “The contribution of grain boundary scattering versus surface scattering to the resistivity of thin polycrystalline films,” Thin Solid Films, vol. 510, no. 1–2, pp. 62–67, 2006.G. M. Prieto-Novoa, E. N. Borja-Goyeneche, and J. J. Olaya-Florez, “Efecto del contenido de Ni en las propiedades ópticas y eléctricas de recubrimientos ZrTiSiNiN depositados por co-sputtering,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 43, no. 168, pp. 366–374, Sep. 2019.H. Luo et al., “A chemical solution approach to epitaxial metal nitride thin films,” Adv. Mater., vol. 21, no. 2, pp. 193–197, Jan. 2009.R. Jalali, M. Parhizkar, H. Bidadi, H. Naghshara, S. R. Hosseini, and M. Jafari, “The effect of Al content, substrate temperature and nitrogen flow rate on optical band gap and optical features of nanostructured TiAlN thin films prepared by reactive magnetron sputtering,” Appl. Phys. A Mater. Sci. Process., vol. 122, no. 11, p. 978, Nov. 2016.R. Apetz and M. P. B. Van Bruggen, “Transparent alumina: A light-scattering model,” J. Am. Ceram. Soc., vol. 86, no. 3, pp. 480–486, Mar. 2003.N. M. S, S. S, and M. D, “Structural and Optical Properties of Chromium Doped Aluminum Nitride Thin Films Prepared by Stacking of Cr Layer on AlN Thin Film,” Int. J. Eng. Trends Technol., vol. 9, no. 13, pp. 667–670, Mar. 2014.M. Singh, M. Goyal, and K. Devlal, “Size and shape effects on the band gap of semiconductor compound nanomaterials,” J. Taibah Univ. Sci., vol. 12, no. 4, pp. 470–475, Jul. 2018.G. Ramalingam et al., “Quantum Confinement Effect of 2D Nanomaterials,” in Quantum Dots - Fundamental and Applications, IntechOpen, 2020.H. C. Barshilia, N. Selvakumar, K. S. Rajam, and A. Biswas, “Optical properties and thermal stability of TiAlN/AlON tandem absorber prepared by reactive DC/RF magnetron sputtering,” Sol. Energy Mater. Sol. Cells, vol. 92, pp. 1425–1433, 2008.GeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79689/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1020756588-2021.pdf1020756588-2021.pdfTesis de Maestría en Ingeniería - Materiales y Procesosapplication/pdf2452735https://repositorio.unal.edu.co/bitstream/unal/79689/2/1020756588-2021.pdfe4b17f62d08396d482d72132d599ba94MD52THUMBNAIL1020756588-2021.pdf.jpg1020756588-2021.pdf.jpgGenerated Thumbnailimage/jpeg5743https://repositorio.unal.edu.co/bitstream/unal/79689/3/1020756588-2021.pdf.jpg817eb93078e41e3a4c389f875091dbdaMD53unal/79689oai:repositorio.unal.edu.co:unal/796892024-07-23 23:33:27.024Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==