Secondary voltage control based on adaptive neural pi controllers

This paper’s aim is to present the performance of a Bspline neural network controller to regulate the reactive power provision from synchronous machines. Due to the fact that power systems work with nonstationary parameters and changing settings, adaptive control schemes are preferred. Control techn...

Full description

Autores:
Tapia, Ruben
Rivas, Ivan
Ramírez Arredondo, Juan Manuel
Correa Gutiérrez, Rosa Elvira
Tipo de recurso:
Article of journal
Fecha de publicación:
2010
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/37598
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/37598
http://bdigital.unal.edu.co/27682/
Palabra clave:
Neural networks
adaptive PI parameters
online training.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_07966a3f5c3a9ac351133b09650e3bb1
oai_identifier_str oai:repositorio.unal.edu.co:unal/37598
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Tapia, Rubenbb1b2535-e848-4e8f-a3d3-1ce36d903208300Rivas, Ivana4cc685d-c814-4490-baf3-8a08e91f7f30300Ramírez Arredondo, Juan Manuel6a31cb48-00c0-492c-98b4-cd4b39b3c4be300Correa Gutiérrez, Rosa Elviraddfec507-0347-4017-8601-8b2e69f622c93002019-06-28T01:51:33Z2019-06-28T01:51:33Z2010https://repositorio.unal.edu.co/handle/unal/37598http://bdigital.unal.edu.co/27682/This paper’s aim is to present the performance of a Bspline neural network controller to regulate the reactive power provision from synchronous machines. Due to the fact that power systems work with nonstationary parameters and changing settings, adaptive control schemes are preferred. Control technology must ensure its performance in terms of power system’s operation to address the diversity of loads and the optimal utilization of the available resources. The B-spline neural network is an efficient tool to implement the adaptive control voltage, with the possibility of carrying out this task on-line taking into account the systems' nonlinearities. The reactive power dispatch is based on the premise that each machine must provide a proportion according to its nominal operating capacity. The applicability of the proposal is demonstrated by simulation on a 9buses 3-machines power system.application/pdfspaUniversidad Nacional de Colombia Sede Medellínhttp://revistas.unal.edu.co/index.php/dyna/article/view/25551Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaDyna; Vol. 77, núm. 163 (2010); 194-200 DYNA; Vol. 77, núm. 163 (2010); 194-200 2346-2183 0012-7353Tapia, Ruben and Rivas, Ivan and Ramírez Arredondo, Juan Manuel and Correa Gutiérrez, Rosa Elvira (2010) Secondary voltage control based on adaptive neural pi controllers. Dyna; Vol. 77, núm. 163 (2010); 194-200 DYNA; Vol. 77, núm. 163 (2010); 194-200 2346-2183 0012-7353 .Secondary voltage control based on adaptive neural pi controllersArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTNeural networksadaptive PI parametersonline training.ORIGINAL25551-89773-1-PB.pdfapplication/pdf295486https://repositorio.unal.edu.co/bitstream/unal/37598/1/25551-89773-1-PB.pdf594245ae2636491c6ad0c0292fc3f427MD51THUMBNAIL25551-89773-1-PB.pdf.jpg25551-89773-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg8692https://repositorio.unal.edu.co/bitstream/unal/37598/2/25551-89773-1-PB.pdf.jpg9cb1a6af9f8a2b6b25711dc2c8cfb81dMD52unal/37598oai:repositorio.unal.edu.co:unal/375982024-01-11 23:06:15.556Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Secondary voltage control based on adaptive neural pi controllers
title Secondary voltage control based on adaptive neural pi controllers
spellingShingle Secondary voltage control based on adaptive neural pi controllers
Neural networks
adaptive PI parameters
online training.
title_short Secondary voltage control based on adaptive neural pi controllers
title_full Secondary voltage control based on adaptive neural pi controllers
title_fullStr Secondary voltage control based on adaptive neural pi controllers
title_full_unstemmed Secondary voltage control based on adaptive neural pi controllers
title_sort Secondary voltage control based on adaptive neural pi controllers
dc.creator.fl_str_mv Tapia, Ruben
Rivas, Ivan
Ramírez Arredondo, Juan Manuel
Correa Gutiérrez, Rosa Elvira
dc.contributor.author.spa.fl_str_mv Tapia, Ruben
Rivas, Ivan
Ramírez Arredondo, Juan Manuel
Correa Gutiérrez, Rosa Elvira
dc.subject.proposal.spa.fl_str_mv Neural networks
adaptive PI parameters
online training.
topic Neural networks
adaptive PI parameters
online training.
description This paper’s aim is to present the performance of a Bspline neural network controller to regulate the reactive power provision from synchronous machines. Due to the fact that power systems work with nonstationary parameters and changing settings, adaptive control schemes are preferred. Control technology must ensure its performance in terms of power system’s operation to address the diversity of loads and the optimal utilization of the available resources. The B-spline neural network is an efficient tool to implement the adaptive control voltage, with the possibility of carrying out this task on-line taking into account the systems' nonlinearities. The reactive power dispatch is based on the premise that each machine must provide a proportion according to its nominal operating capacity. The applicability of the proposal is demonstrated by simulation on a 9buses 3-machines power system.
publishDate 2010
dc.date.issued.spa.fl_str_mv 2010
dc.date.accessioned.spa.fl_str_mv 2019-06-28T01:51:33Z
dc.date.available.spa.fl_str_mv 2019-06-28T01:51:33Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/37598
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/27682/
url https://repositorio.unal.edu.co/handle/unal/37598
http://bdigital.unal.edu.co/27682/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/dyna/article/view/25551
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Dyna
Dyna
dc.relation.ispartofseries.none.fl_str_mv Dyna; Vol. 77, núm. 163 (2010); 194-200 DYNA; Vol. 77, núm. 163 (2010); 194-200 2346-2183 0012-7353
dc.relation.references.spa.fl_str_mv Tapia, Ruben and Rivas, Ivan and Ramírez Arredondo, Juan Manuel and Correa Gutiérrez, Rosa Elvira (2010) Secondary voltage control based on adaptive neural pi controllers. Dyna; Vol. 77, núm. 163 (2010); 194-200 DYNA; Vol. 77, núm. 163 (2010); 194-200 2346-2183 0012-7353 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/37598/1/25551-89773-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/37598/2/25551-89773-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 594245ae2636491c6ad0c0292fc3f427
9cb1a6af9f8a2b6b25711dc2c8cfb81d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089651702464512