Desarrollo de un marco de referencia para el control y supervisión remota de un sistema de potabilización de agua virtualizado, integrando tecnologías emergentes de sistemas ciberfísicos, realidad virtual y control sobre la red

Los sistemas tradicionales de control local en entornos industriales presentan varias ineficiencias debido a la obligación de contar con personal en el lugar, el extenso cableado, las dificultades para lograr un control centralizado en instalaciones físicas extensas, los retos a la hora de escalar c...

Full description

Autores:
Rueda Martinez, Juan David
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/29641
Acceso en línea:
http://hdl.handle.net/20.500.12749/29641
Palabra clave:
Cyber-physical systems
Networked Control Systems
Virtualization
Remote control
Water purification
Cloud
IoT
Virtual reality
WebSockets
Node.js
Unity
AWS
Automation
Mechatronics
Data transmission systems
Information networks
Computer simulation
Software development
Automatización
Mecatrónica
Sistemas de transmisión de datos
Redes de información
Simulación por computadores
Desarrollo de software
Sistemas ciberfísicos
Sistemas de control en red
Virtualización
Control remoto
Purificación de agua
Nube
Internet de las cosas
Realidad virtual
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_ba02f5cfc60b5c22badfa993f0716116
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/29641
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de un marco de referencia para el control y supervisión remota de un sistema de potabilización de agua virtualizado, integrando tecnologías emergentes de sistemas ciberfísicos, realidad virtual y control sobre la red
dc.title.translated.spa.fl_str_mv Development of a framework for remote control and supervision of a virtualized water potabilization system, integrating emerging technologies like Cyber-Physical Systems, Virtual Reality, and Networked Control Systems
title Desarrollo de un marco de referencia para el control y supervisión remota de un sistema de potabilización de agua virtualizado, integrando tecnologías emergentes de sistemas ciberfísicos, realidad virtual y control sobre la red
spellingShingle Desarrollo de un marco de referencia para el control y supervisión remota de un sistema de potabilización de agua virtualizado, integrando tecnologías emergentes de sistemas ciberfísicos, realidad virtual y control sobre la red
Cyber-physical systems
Networked Control Systems
Virtualization
Remote control
Water purification
Cloud
IoT
Virtual reality
WebSockets
Node.js
Unity
AWS
Automation
Mechatronics
Data transmission systems
Information networks
Computer simulation
Software development
Automatización
Mecatrónica
Sistemas de transmisión de datos
Redes de información
Simulación por computadores
Desarrollo de software
Sistemas ciberfísicos
Sistemas de control en red
Virtualización
Control remoto
Purificación de agua
Nube
Internet de las cosas
Realidad virtual
title_short Desarrollo de un marco de referencia para el control y supervisión remota de un sistema de potabilización de agua virtualizado, integrando tecnologías emergentes de sistemas ciberfísicos, realidad virtual y control sobre la red
title_full Desarrollo de un marco de referencia para el control y supervisión remota de un sistema de potabilización de agua virtualizado, integrando tecnologías emergentes de sistemas ciberfísicos, realidad virtual y control sobre la red
title_fullStr Desarrollo de un marco de referencia para el control y supervisión remota de un sistema de potabilización de agua virtualizado, integrando tecnologías emergentes de sistemas ciberfísicos, realidad virtual y control sobre la red
title_full_unstemmed Desarrollo de un marco de referencia para el control y supervisión remota de un sistema de potabilización de agua virtualizado, integrando tecnologías emergentes de sistemas ciberfísicos, realidad virtual y control sobre la red
title_sort Desarrollo de un marco de referencia para el control y supervisión remota de un sistema de potabilización de agua virtualizado, integrando tecnologías emergentes de sistemas ciberfísicos, realidad virtual y control sobre la red
dc.creator.fl_str_mv Rueda Martinez, Juan David
dc.contributor.advisor.none.fl_str_mv Roa Prada, Sebastián
dc.contributor.author.none.fl_str_mv Rueda Martinez, Juan David
dc.contributor.cvlac.spa.fl_str_mv Roa Prada, Sebastián [295523]
dc.contributor.googlescholar.spa.fl_str_mv Roa Prada, Sebastián [xXcp5HcAAAAJ]
dc.contributor.orcid.spa.fl_str_mv Roa Prada, Sebastián [0000-0002-1079-9798]
dc.contributor.scopus.spa.fl_str_mv Roa Prada, Sebastián [24333336800]
dc.contributor.researchgate.spa.fl_str_mv Roa Prada, Sebastián [Sebastian_Roa-Prada]
dc.contributor.apolounab.spa.fl_str_mv Roa Prada, Sebastián [sebastián-roa-prada]
dc.subject.keywords.spa.fl_str_mv Cyber-physical systems
Networked Control Systems
Virtualization
Remote control
Water purification
Cloud
IoT
Virtual reality
WebSockets
Node.js
Unity
AWS
Automation
Mechatronics
Data transmission systems
Information networks
Computer simulation
Software development
topic Cyber-physical systems
Networked Control Systems
Virtualization
Remote control
Water purification
Cloud
IoT
Virtual reality
WebSockets
Node.js
Unity
AWS
Automation
Mechatronics
Data transmission systems
Information networks
Computer simulation
Software development
Automatización
Mecatrónica
Sistemas de transmisión de datos
Redes de información
Simulación por computadores
Desarrollo de software
Sistemas ciberfísicos
Sistemas de control en red
Virtualización
Control remoto
Purificación de agua
Nube
Internet de las cosas
Realidad virtual
dc.subject.lemb.spa.fl_str_mv Automatización
Mecatrónica
Sistemas de transmisión de datos
Redes de información
Simulación por computadores
Desarrollo de software
dc.subject.proposal.spa.fl_str_mv Sistemas ciberfísicos
Sistemas de control en red
Virtualización
Control remoto
Purificación de agua
Nube
Internet de las cosas
Realidad virtual
description Los sistemas tradicionales de control local en entornos industriales presentan varias ineficiencias debido a la obligación de contar con personal en el lugar, el extenso cableado, las dificultades para lograr un control centralizado en instalaciones físicas extensas, los retos a la hora de escalar con la integración de nuevos componentes y los elevados costes operativos. Estos sistemas exigen la asistencia presencial de ingenieros expertos para supervisar, mantener y controlar los procesos, lo que conlleva costosos desplazamientos y un incremento de los tiempos de respuesta. Este trabajo presenta el desarrollo de un sistema ciberfísico (CPS) que permite el control y la supervisión remota de una planta de purificación de agua virtualizada como caso de estudio, utilizando Sistemas de Control en Red (NCS), ingeniería de plataforma de extremo a extremo y Realidad Virtual (VR). El sistema también introduce un marco flexible con potencial de adaptación a otros campos, como la salud, donde la precisión, la estabilidad y las intervenciones remotas a tiempo son esenciales. Dados los recientes avances en cirugías robóticas a distancia, que ilustran la capacidad de los enfoques basados en NCS para facilitar operaciones precisas a través de largas distancias, la tecnología de este proyecto demuestra aplicaciones prometedoras en tareas remotas críticas más allá de la automatización industrial. Este trabajo presenta dos aplicaciones de software para potenciar la interacción del usuario con el proceso industrial. La primera es una aplicación web creada en React.js. Se construyó utilizando librerías como Lightweight Charts para la visualización de datos en tiempo real y Three.js para renderizar un modelo 3D interactivo del tanque. Esta aplicación proporciona una interfaz fácil de usar para supervisar y controlar el equipo industrial en tiempo real, que permite a los usuarios escalar, rotar y examinar el modelo 3D desde varias perspectivas, capacitándolo con características comunes que se encuentran en un software CAD. La segunda aplicación es un entorno de realidad virtual creado en Unity. Permite controlar y supervisar a distancia el proceso simulado de purificación del agua en el contexto de un metaverso, ofreciendo así una experiencia inmersiva al usuario.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-06-11T18:43:26Z
dc.date.available.none.fl_str_mv 2025-06-11T18:43:26Z
dc.date.issued.none.fl_str_mv 2025-06-10
dc.type.eng.fl_str_mv Thesis
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.local.spa.fl_str_mv Tesis
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/29641
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/29641
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aarsen, W. (19 de December de 2019). siemens. Obtenido de Software Development for Cyber-Physical Systems: https://blogs.sw.siemens.com/polarion/software- development-for-cyber-physical-systems/
Adedeji, K. B., & Hamam, Y. (2020). Cyber-Physical Systems for Water Supply Network Management: Basics, Challenges, and Roadmap. Sustainability.
Afifi-Sabet, K. (17 de October de 2024). Live Science. Obtenido de https://www.livescience.com/technology/communications/future-6g-data-speeds- could-hit-1-tbps-up-to-10-000-times-faster-than-5g-after-transmission-breakthrough
Afifi-Sabet, K. (17 de Octubre de 2024). Wireless data speeds hit 938 Gbps a new record and 10,000 times faster than 5G. Obtenido de https://www.livescience.com/technology/communications/future-6g-data-speeds- could-hit-1-tbps-up-to-10-000-times-faster-than-5g-after-transmission-breakthrough
Aguida, M. A., Ouchani, S., & Benmalek, M. (2020,). A Review on Cyber-Physical Systems: Models and Architectures. 2020 IEEE 29th International Conference on Enabling Technologies Infrastructure for Collaborative Enterprises (WETICE),. Bayonne, Spain: HAL.
ARANDA-ESCOLÁSTICO, E., GUINALDO, M., MIS´KOWICZ, M., & DORMIDO, S. (2023). Event-Based Control in Industry Practice. IEEE INDUSTRIAL ELECTRONICS MAGAZINE
Aschenbrenner, D., Maltry, N., Kimmel, J., Albert, M., Scharnagl, J., & Schilling, K. (2016). ARTab - using Virtual and Augmented Reality Methods for an improved Situation Awareness for Telemaintenance. IFAC-PapersOnLine, 204-209.
AWS. (2024). ACM. Obtenido de AWS docs: https://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html
AWS. (2024). ALB. Obtenido de AWS docs: https://docs.aws.amazon.com/es_es/elasticloadbalancing/latest/application/introduct ion.html
AWS. (2024). Auto Scaling. Obtenido de AWS docs: https://docs.aws.amazon.com/es_es/autoscaling/ec2/userguide/what-is-amazon-ec2- auto-scaling.html
AWS. (2024). CloudFront. Obtenido de AWS docs: https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introducti on.html
AWS. (2024). MQTT. Obtenido de https://aws.amazon.com/es/what- is/mqtt/#:~:text=El%20protocolo%20MQTT%20se%20inventó,supervisar%20los% 20oleoductos%20vía%20satélite
AWS. (2024). RDS. Obtenido de AWS docs: https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
AWS. (2024). Route 53. Obtenido de AWS docs: https://docs.aws.amazon.com/Route53/latest/APIReference/Welcome.html
AWS. (2024). S3. Obtenido de AWS docs: https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
AWS. (2024). VPC. Obtenido de AWS docs: https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
Baheti, R., & Gill, H. (2011). Cyber-physical Systems. IEEE. The Impact of Control Technology.
Bahill, A. (2003 ). A simple adaptive Smith-predictor for controlling time-delay systems: A tutorial. IEEE Control Systems Magazine.
Batista, A. P., & Jota, F. G. (2018). Performance improvement of an NCS closed over the internet with an adaptive Smith Predictor. Control Engineering Practice, 34-43.
Boulila, N. (2019). Guidelines for Modeling Cyber-Physical Systems A Three-Layered Architecture for Cyber Physical Systems. Muenchen, Germany: Siemens AG.
Bucchiarone, A. (2022). Gamification and virtual reality for digital twin learning and training: architecture and challenges. Virtual Reality & Intelligent Hardware, 471- 486.
Castro, D. d., Sales, A. M., Farias, N. J., Medeiros, R. L., Silva, V. J., & Junior, V. F. (2023). Monitoring and Controlling Industrial Cyber-Physical Systems with Digital Twin and Augmented Reality. 2023 IEEE International Conference on Consumer Electronics (ICCE). Las Vegas, NV, USA: IEEE.
Chandrashekar, N. D., King, K (2023) Design & development of Virtual Reality Empowered Cyber-Security Training Testbed for IoT Systems. 3rd Intelligent Cybersecurity Conference (ICSC). San Antonio, TX, USA: IEEE.
Chang, E., Lee, Y., Billinghurst, M., & Yoo, B. (2024). Efficient VR-AR communication method using virtual replicas in XR remote collaboration. International Journal of Human-Computer Studies, Volume 190.
Chow, R. A., & Mo-Yuen, G. a. (2008). Overview of Networked Control Systems. En D. L. Fei-Yue Wang, Networked Control Systems. Theory and Applications. North Carolina State University, Raleigh: Springer.
Chow, R. A.-Y. (2008). Overview of Networked Control Systems. Raleigh, North Carolina State: Springer.
Christofides, P. D., Liu, J., & Peña, D. M. (2011). Networked and Distributed Predictive Control. London: Springer.
Colorado, C. C. (2021). Water Treatment Plant Process. Obtenido de https://www.canoncity.org/180/Water-Treatment-Plant- Process#:~:text=The%205%20major%20unit%20processes,enters%20the%20vario us%20treatment%20processes
Copestake, J. (12 de Jun de 2024). CGTN. Obtenido de https://newseu.cgtn.com/news/2024- 06-12/Chinese-team-perform-world-first-robotic-surgery-from-Rome-in-Beijing- 1um4yx45Ixq/p.html
Coward, S. (3 de December de 2018 ). 5 water industry challenges, and how industry 4.0 solves them. Obtenido de sageautomation: https://www.sageautomation.com/blog/5- water-industry-challenges-and-how-industry-4.0-solves-them
Create, O. (2016). Water Treatment Technologies for Large-scale Water Supply. Obtenido de https://www.open.edu/openlearncreate/mod/oucontent/view.php?id=80015&printab le=1
cvedetails. (2024). Siemens : Vulnerability Statistics. Obtenido de https://www.cvedetails.com/vendor/109/Siemens.html
Defty, T. W. (2022). A Holonic Human Cyber-Physical System in Healthcare. Stellenbosch University.
Deng, L. (2024). Digital Technology and Intelligent Operation and Maintenance Plan for Large Venue Sound Reinforcement System. InternationalJournalofArtificialIntelligenceandTechnologyResearch, Vol. 3 (2024): Vol 3 .
Dini, P. D., Elhanashi, A., & Saponara, S. (2024, June 1). Overview of AI-Models and Tools in Embedded IIoT Applications. Electronics (Switzerland).
Engineering, a. N. (2011). Cyber-Physical Systems Driving force for innovation in mobility, health, energy and production. acatech POSITION PAPER.
Eskandar, K. (2024). El impacto de la terapia de exposición a la realidad virtual en el tratamiento del TEPT y los trastornos de ansiedad. Debates em Psiquiatria.
Farah, T., Shojol, M., Hassan, M., & Alam, D. (2016). Assessment of vulnerabilities of web applications of Bangladesh: A case study of XSS & CSRF. Sixth International Conference on Digital Information and Communication Technology and its Applications (DICTAP). Konya, Turkey.
Gamal, M., Sadek, N., Rizk, M. R., & Abou-elSaoud, A. K. (2016). Delay compensation using Smith predictor for wireless network control system. Alexandria Engineering Journal, 1421-1428.
Garcia, C. A., Naranjo, J. E., Ortiz, A., & Garcia, M. V. (2019). An Approach of Virtual Reality Environment for Technicians Training in Upstream Sector. IFAC- PapersOnLine, 285-291.
Gill, H. (2008). A Continuing Vision: Cyber-Physical Systems. National Science Foundation.
Givehchi, O., Imtiaz, J., Trsek, H., & Jasperneite, J. (2014). Control-as-a-service from the cloud: A case study for using virtualized PLCs. 10th IEEE Workshop on Factory Communication Systems (WFCS 2014). Toulouse, France.
Guo, Y., Liu, L., & Huang, W. (2024). Extending X-reality technologies to digital twin in cultural heritage risk management: a comparative evaluation from the perspective of situation awareness. Springer Open Heritage Science.
Gutiérrez, A. M., Díez-González, J., Verde, P., & Perez, H. (2023). Convergence of Virtual Reality and Digital Twin technologies to enhance digital industry 4.0. International Journal of Human-Computer Studies.
Habib, M. K., & I, C. C. (2022). CPS: Role, Characteristics, Architectures and Future Potentials. Procedia Computer Science, 1347-1358.
Havard, V., Jeanne, B., Lacomblez, M., & Baudry, D. (2019). Digital twin and virtual reality: a co-simulation environment for design and assessment of industrial workstations. En E. Rauch, Production & Manufacturing Research (págs. 472-489). Taylor & Francis.
Hincapie, C. P. (2018). Wireless Network Control Systems. De la teoria a la pråctica. Quito Ecuador: Universidad Politécnica Salesiana.
Imen, S., & Chang, N.-B. (2016). Developing a cyber-physical system for smart and sustainable drinking water infrastructure management. 2016 IEEE 13th International Conference on Networking, Sensing, and Control (ICNSC). Mexico City, Mexico: IEEE.
Jantunen, E., Gorostegui, U., Zurutuza, U., Albano, M., Ferreira, L. L., Heged, C., & Campos, J. (2018). Remote maintenance support with the aid of cyber-physical systems and cloud technology. CISTER Research Centre in Real-Time & Embedded Computing Systems.
Javaid, M., Haleem, A., Singh, R. P., & Suman, a. R. (2022). An integrated outlook of Cyber Physical Systems for Industry 4.0: Topical. Green Technologies and Sustainability.
Jin, C. (2022). Nonlinear Control of Induction Motor Based on Network Control System. Hindawi, Mobile Information Systems.
Kajal, K. (18 de October de 2024). 9000x faster internet in 6G tests, could download 20 movies a second. Obtenido de https://interestingengineering.com/innovation/6g- testing-hits-9000x-5g
Kajal, K. (18 de October de 2024). Interesting Engineering. Obtenido de https://interestingengineering.com/innovation/6g-testing-hits-9000x-5g
Khrueangsakun, S., Nuratch, S., & Boonpramuk, P. (2020). Design and Development of Cyber Physical System for Real-Time Web-based Visualization and Control of Robot Arm. 2020 5th International Conference on Control and Robotics Engineering (ICCRE). Osaka, Japan: IEEE.
Kravets, A. G., Bolshakov, A. A., & Shcherbakov, M. (2021). Cyber-Physical Systems: Design and Application for Industry 4.0. Springer.
Kumar, R., Kumar, R., & Nigam, M. J. (2022). Predictive Controller Based Delay Compensation Approaches in Networked Control System. Waknaghat, Solan, Himachal Pradesh: Jaypee University of Information Technology, Solan, H.P.
Kuok, K. K., Chiu, P. C., Bakri, M. K., Rahman, M. R., & Yun, C. M. (2024). Industrial revolution 4.0 in water supply, wastewater and stormwater management: opportunities, challenges, and impacts. Environmental Technology Reviews, Volume 13.
Lai, C.-L., & Hsu, P.-L. (2010). Design the Remote Control System With the Time-Delay Estimator and the Adaptive Smith Predictor. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS.
Lee, J., Bagheri, B., & Kao, H.-A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 18-23.
Losada, M. G., Rubio, F. R., & Bencomo, S. D. (2015). Asynchronous Control for Networked Systems. Switzerland: Springer Cham.
Madani, H. M., Djezzar, M., Mounir, H., ZIANOU, A. S., & MAIMOUR, M. (2022). Semantic Models and Machine Learning Approach in CPS :A Survey. International Workshop on Semantic IoT (SIoT-2022). Madrid, Spain.
Mahmoud, M. S., & Xia, Y. (2019). Netw En M. S. Mahmoud, & Y. Xia, Networked Control Systems Cloud Control and Secure Control (págs. 37-89). Butterworth Heinemann.
Mahmouda, M. S., & Sabihb, M. (2014,). Networked event-triggered control: an introduction and research trends. International Journal of General Systems.
Masoni, R., Ferrise, F., Bordegoni, M., Gattullo, M., Uva, A. E., Fiorentino, M., . . . Donato, M. D. (2017). Supporting Remote Maintenance in Industry 4.0 through Augmented Reality. Procedia Manufacturing, 1296-1302.
Mejdi, H., Elmadssia, S., & Ezzedine, T. (2023). A Study of a Networked Control System under Time Delay. IEEE International Symposium on Networks, Computers and Communications.
Michaelide, S., T. V., & Henze, M. (2024). Secure Integration of 5G in Industrial Networks: State of the Art, Challenges and Opportunities. arxiv cs.
Mishra, S., Jha, A., Verma, V., Appasani, B., Abdelaziz, A., & Bizon, N. (2021). An Optimized Triggering Algorithm for Event-Triggered Control of Networked Control Systems. Mathematics .
Mourtzis, D., Zogopoulos, V., & Vlachou, E. (2017). Augmented Reality Application to Support Remote Maintenance as a Service in the Robotics Industry. Procedia CIRP, 46-51.
NPM. (2024). nodes7. Obtenido de https://www.npmjs.com/package/nodes7
Oyama, E., Tokoil, K., Suzuki, R., Nakamura, S., Shiroma, N., Watanabe, N., . . . Omori, T. (2020). Augmented reality and mixed reality behavior navigation system for telexistence remote assistance. Advanced Robotics, 1223-1241 .
Papcun, P., Kajáti, E., Liu, C., Zhong, R. Y., & Zolotová, I. (2018). Cloud-based Control of Industrial Cyber-Physical Systems. The 48th International Conference on Computers and Industrial Engineering (CIE 48). Auckland, New Zealand.
Pivoto, D. G., Almeida, L. F., Righi, R. d., Rodrigues, J. J., Lugli, A. B., & Alberti, A. M. (2021). Cyber-physical systems architectures for industrial internet of things applications in Industry 4.0: A literature review. Journal of Manufacturing Systems, 176-192.
Pricop, E., Fattahi, J., Dutta, N., & Ibrahim, M. (2020). Recent Developments on Industrial Control Systems Resilience. Springer Cham, Studies in Systems, Decision and Control.
PTC. (2024). Vuforia Chalk: Remote Assistance Powered by Augmented Reality. Obtenido de PTC Vuforia: https://www.ptc.com/en/products/vuforia/vuforia-chalk
RABBITMQ. (2024). amqp. Obtenido de https://www.rabbitmq.com/tutorials/amqp- concepts
Redelinghuys, A. J., Basson, A. H., & Kruger, K. (2019). A six-layer architecture for the digital twin: a manufacturing case study implementation. Journal of Intelligent Manufacturing.
Redelinghuys, A. J., Basson, A. H., & Kruger, K. (2019). Cybersecurity Considerations for Industrie 4.0. International Conference on Competitive Manufacturing (págs. 266- 271). Stellenbosch, South Africa: COMA.
Roldán, J. J., Crespo, E., Martín-Barrio, A., Peña-Tapia, E., & Barrientos, A. (2019). A training system for Industry 4.0 operators in complex assemblies based on virtual reality and process mining. Robotics and Computer-Integrated Manufacturing, 305- 316.
Sadiku, M. N., Wang, Y., Cui, S., & Musa, S. M. (2017). Cyber-Physical Systems: A Literature Review. European Scientific Journal, Vol.13, No.36.
Santoso, H., Baroroh, D., & Darmawan, A. (2021). FUTURE APPLICATION OF MULTISENSORY MIXED REALITY IN THE HUMAN CYBER PHYSICAL SYSTEM. South African Journal of Industrial Engineering, págs. 44-56.
She, M., & Wu, W. (2023). Efficient Output Feedback MPC for NCS With Data Dropout and Bounded Disturbance via Adaptive Event-Triggered Control. IEEE Journals & Magazines Volume: 11, 118161 - 118169.
SIEMENS. (05 de 12 de 2019). ¿Qué características especiales, ventajas y propiedades ofrece el protocolo S7? Obtenido de https://support.industry.siemens.com/cs/document/26483647/¿qué-características- especiales-ventajas-y-propiedades-ofrece-el-protocolo-s7-?dti=0&lc=es-CO
Silmukari, J. (2019). Remote assistance for service. Laurea University of Applied Sciences.
Society, N. G. (26 de January de 2024). How Climate Change Impacts Water Access. Obtenido de NATIONAL GEOGRAPHIC: https://education.nationalgeographic.org/resource/how-climate-change-impacts- water-access/
Song, H., Rawat, D. B., Jeschke, S., & Brecher, C. (2017). Cyber-Physical Systems Foundations, Principles and Applications. Elsevier.
Stefan, H., Mortimer, M., Horan, B., & Kenny, G. (2023). Evaluating the preliminary effectiveness of industrial virtual reality safety training for ozone generator isolation procedure. Safety Science, Volume 163.
Stumpp, N., Aschenbrenner, D., Stahl, M., & Aßmuth, A. (2019). PLASMA -- Platform for Service Management in Digital Remote Maintenance Applications. Proc of the 10th International Conference on Cloud Computing, GRIDs, and Virtualization, Venice, Italy.
Terkaj, W., Urgo, M., Kovács, P., Tóth, E., & Mondellini, M. (2024). A framework for virtual learning in industrial engineering education: development of a reconfigurable virtual learning factory application. Springer Nature Link, Virtual Reality.
TradingView. (2024). LightWeight Charts. Obtenido de https://www.tradingview.com/lightweight-charts/
TRAPPEY, A. J., TRAPPEY, C. V., GOVINDARAJAN, U. H., SUN, J. J., & CHUANG, A. C. (2016). A Review of Technology Standards and Patent Portfolios for Enabling Cyber-Physical Systems in Advanced Manufacturing. SPECIAL SECTION ON INDUSTRY 4.0.
Vázquez-Hurtado, C., Altamirano-Avila, E., Roman-Flores, A., & Vargas-Martinez, A. (2023). Towards a Mixed Virtual Reality Environment Implementation to Enable Industrial Robot Programming Competencies within a Cyber-Physical Factory. 2023 IEEE Global Engineering Education Conference (EDUCON). Kuwait, Kuwait: IEEE.
Vorraber, W., Gasser, J., Webb, H., Neubacher, D., & Url, P. (2020). Assessing augmented reality in production: remote-assisted maintenance with HoloLens. Procedia CIRP, 139-144.
Wan, K., Hughes, D., Man, K. L., Krilavicius, T., & Zou, S. (2011). Investigation on Composition Mechanisms for Cyber Physical Systems. INTERNATIONAL JOURNAL OF DESIGN, ANALYSIS AND TOOLS FOR CIRCUITS AND SYSTEMS, VOL. 2, NO. 1.
Wang, P., Bai, X., Billinghurst, M., Zhang, S., Zhang, X., Wang, S., . . . Ji, H. (2021). AR/MR Remote Collaboration on Physical Tasks: A Review. Robotics and Computer- Integrated Manufacturing.
Wang, Z., Song, H., Watkins, D. W., Ong, K. G., Xue, P., & Yang, Q. (2015). Cyber-physical systems for water sustainability: challenges and opportunities. IEEE Communications Magazine.
Wolfartsberger, J., Zimmermann, R., Obermeier, G., & Niedermayr, D. (2023). Analyzing the potential of virtual reality-supported training for industrial assembly tasks. Computers in Industry, Volume 147.
Xu, X., & Ji, T. (2024). Exploring the Integration of Cloud Manufacturing and Cyber- Physical Systems in the Era of Industry 4.0 An OPC UA Approach. Electronic.
Yang, S. H., Dai, C., & Knott, R. P. (2007). Remote Maintenance of Control System Performance over the Internet. Control Engineering Practice.
Yun, H., & Jun, M. B. (2022). Immersive and interactive cyber-physical system (I2CPS) and virtual reality interface for human involved robotic manufacturing. Journal of Manufacturing Systems, 234-248.
Zermane, H., & Mouss, H. (2017). Development of an internet and fuzzy based control system of manufacturing process. International Journal of Automation and Computing, 706 71.
Zhang, J., Chai, S., & Zhang, B. (2019). Model-based event-triggered dynamic output. International Journal of Systems Science, 20-34.
dc.relation.uriapolo.spa.fl_str_mv https://apolo.unab.edu.co/en/persons/sebasti%C3%A1n-roa-prada
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Bucaramanga (Santander, Colombia)
dc.coverage.temporal.spa.fl_str_mv 2022 - 2024
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Maestría en Automatización Industrial y Mecatrónica
dc.publisher.programid.none.fl_str_mv MAI-2382
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/29641/8/Tesis.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/29641/4/paper-completo.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/29641/5/entregables-finales.zip
https://repository.unab.edu.co/bitstream/20.500.12749/29641/7/Licencia.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/29641/6/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/29641/9/Tesis.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/29641/10/paper-completo.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/29641/11/Licencia.pdf.jpg
bitstream.checksum.fl_str_mv 67ad810a0012056bef6b26bcff6f226c
bc0eaaf0565996cdbfe249565cc9703e
3a79aae92126538d5ac0750126b94da8
0fea0b6723d95b96449530eed78100d1
3755c0cfdb77e29f2b9125d7a45dd316
73cda876bebd26ee0c98d66229c955cb
d2e71dce4e2cb7501322ea4bc2853bf8
1924e022d4d090f36621decd3dcc80fa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1837097592281890816
spelling Roa Prada, Sebastiándd399662-c4ef-4825-81c2-4d5982b995c7Rueda Martinez, Juan Davidc7285243-4d00-40a0-a4f8-f1d86c7ca680Roa Prada, Sebastián [295523]Roa Prada, Sebastián [xXcp5HcAAAAJ]Roa Prada, Sebastián [0000-0002-1079-9798]Roa Prada, Sebastián [24333336800]Roa Prada, Sebastián [Sebastian_Roa-Prada]Roa Prada, Sebastián [sebastián-roa-prada]Bucaramanga (Santander, Colombia)2022 - 2024UNAB Campus Bucaramanga2025-06-11T18:43:26Z2025-06-11T18:43:26Z2025-06-10http://hdl.handle.net/20.500.12749/29641instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLos sistemas tradicionales de control local en entornos industriales presentan varias ineficiencias debido a la obligación de contar con personal en el lugar, el extenso cableado, las dificultades para lograr un control centralizado en instalaciones físicas extensas, los retos a la hora de escalar con la integración de nuevos componentes y los elevados costes operativos. Estos sistemas exigen la asistencia presencial de ingenieros expertos para supervisar, mantener y controlar los procesos, lo que conlleva costosos desplazamientos y un incremento de los tiempos de respuesta. Este trabajo presenta el desarrollo de un sistema ciberfísico (CPS) que permite el control y la supervisión remota de una planta de purificación de agua virtualizada como caso de estudio, utilizando Sistemas de Control en Red (NCS), ingeniería de plataforma de extremo a extremo y Realidad Virtual (VR). El sistema también introduce un marco flexible con potencial de adaptación a otros campos, como la salud, donde la precisión, la estabilidad y las intervenciones remotas a tiempo son esenciales. Dados los recientes avances en cirugías robóticas a distancia, que ilustran la capacidad de los enfoques basados en NCS para facilitar operaciones precisas a través de largas distancias, la tecnología de este proyecto demuestra aplicaciones prometedoras en tareas remotas críticas más allá de la automatización industrial. Este trabajo presenta dos aplicaciones de software para potenciar la interacción del usuario con el proceso industrial. La primera es una aplicación web creada en React.js. Se construyó utilizando librerías como Lightweight Charts para la visualización de datos en tiempo real y Three.js para renderizar un modelo 3D interactivo del tanque. Esta aplicación proporciona una interfaz fácil de usar para supervisar y controlar el equipo industrial en tiempo real, que permite a los usuarios escalar, rotar y examinar el modelo 3D desde varias perspectivas, capacitándolo con características comunes que se encuentran en un software CAD. La segunda aplicación es un entorno de realidad virtual creado en Unity. Permite controlar y supervisar a distancia el proceso simulado de purificación del agua en el contexto de un metaverso, ofreciendo así una experiencia inmersiva al usuario.Índice de Figuras ................................................................................................................ 8 Resumen .......................................................................................................................... 11 Abstract ........................................................................................................................... 13 Introducción ..................................................................................................................... 15 Antecedentes ................................................................................................................ 20 Planteamiento del problema ......................................................................................... 22 Objetivos ......................................................................................................................... 24 Objetivo general ........................................................................................................... 24 Objetivos específicos ................................................................................................... 24 Justificación ..................................................................................................................... 25 Marco teórico ................................................................................................................... 28 Asistencia remota (Remote assistance) ......................................................................... 28 Sistemas Ciberfísicos (CPS Cyber Physical Systems) ................................................... 29 Arquitecturas. ........................................................................................................... 33 CPS interactivos e inmersivos (Immersive and interactive CPS I2CPS) ................. 44 Proveedores de nube utilizados..................................................................................... 47 AWS ........................................................................................................................ 48 Azure ....................................................................................................................... 54 Protocolos de comunicación ......................................................................................... 55 MQTT ...................................................................................................................... 55 AMQP...................................................................................................................... 57 Protocolo S7 Siemens (Plataforma de soluciones de automatización) ....................... 59 WebSockets ............................................................................................................. 61 Sistemas de Control en Red. ......................................................................................... 64 Control remoto vs control local ................................................................................ 64 Ventajas de los NCS ................................................................................................. 65 Desventajas de los NCS............................................................................................ 67 Tipos de retardos de los NCS ................................................................................... 67 Tipos de estructuras de los NCS ............................................................................... 68 Imperfecciones (Mahmoud & Xia, 2019).................................................................. 71 Control basado en eventos. ....................................................................................... 75 Enfoques de control a través de redes ........................................................................... 78 Sistema con Retardo de Entrada (Input delay system) ............................................... 78 Sistema Markoviano ................................................................................................. 79 Sistema Conmutado.................................................................................................. 79 Sistema Estocástico .................................................................................................. 79 Control Predictivo .................................................................................................... 79 Predictor de Smith (Smith Predictor - SP)................................................................. 80 Aproximación de Padé para modelar el retardo de tiempo ........................................ 86 Caso de estudio ............................................................................................................ 88 Arquitectura del sistema de suministro de agua (SSA) .............................................. 88 Tratamiento de aguas residuales ............................................................................... 93 Realidad virtual (VR Virtual Reality) ........................................................................... 96 Meta Quest 2 ............................................................................................................ 96 Unity ........................................................................................................................ 97 Desarrollo web ............................................................................................................. 97 HTTP (Protocolo de Transferencia de Hipertexto) .................................................... 98 HTTPS (Protocolo de Transferencia de Hipertexto Seguro) ...................................... 98 JavaScript ................................................................................................................. 98 NodeJS ..................................................................................................................... 99 Three.JS ................................................................................................................... 99 Lightweight-charts ................................................................................................... 99 Estado del arte ............................................................................................................... 100 Realidad Virtual ......................................................................................................... 100 NCS en CPS ............................................................................................................... 102 Gemelos Digitales y Realidad Virtual en CPS ............................................................ 104 Asistencia remota en CPS .......................................................................................... 109 Ciberseguridad en CPS............................................................................................... 115 Desarrollo ...................................................................................................................... 117 Capa 1: Conexión inteligente - Smart Connection ...................................................... 117 Capa 2: Conversión Conversion .............................................................................. 118 Capa 3: Computación Computation ......................................................................... 118 Propuesta de arquitectura de software personalizada ............................................... 119 Integración e implementación de un Sistema de Control sobre la Red ..................... 124 Ciberseguridad ....................................................................................................... 146 Capa 4: Cognición Cognition .................................................................................. 147 Capa 5: Configuración Configuration ...................................................................... 147 Resultados ..................................................................................................................... 150 Conclusiones .................................................................................................................. 156 Bibliografía .................................................................................................................... 158MaestríaTraditional local control systems in industrial environments present several inefficiencies due to the requirement for on-site personnel, extensive wiring, difficulties in achieving centralized control across extensive physical facilities, challenges when scaling with the integration of new components, and high operational costs. Such systems demand that expert engineers be physically present to monitor, maintain, and control processes, leading to costly travel and increased response times. This paper presents the development of a cyber-physical system (CPS) enabling remote control and supervision of a virtualized water purification plant as a case study, utilizing Networked Control Systems (NCS), end-to-end platform engineering and Virtual Reality (VR). The system also introduces a flexible framework with potential for adaptation in other fields, such as healthcare, where precision, stability, and timely remote interventions are essential. Given recent advancements in remote robotic surgeries, which illustrate the capacity of NCS-based approaches to facilitate precise operations across distances, this project's technology demonstrates promising applications in critical remote tasks beyond industrial automation. This paper presents two software applications to enhance user interaction with the industrial process. The first one is a web application created in React.js. It was built using libraries such as Lightweight Charts for real-time data visualization and Three.js for rendering an interactive 3D model of the tank. This application provides a user-friendly interface for monitoring and controlling the industrial equipment in real time, that allows users to scale, rotate, and examine the 3D model from various perspectives, enabling it with common features commonly found in a CAD software. The second application is a VR environment crafted in Unity. It enables remote control and monitoring of the simulated water purification process within a metaverse context, thus offering an immersive user experienceModalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Desarrollo de un marco de referencia para el control y supervisión remota de un sistema de potabilización de agua virtualizado, integrando tecnologías emergentes de sistemas ciberfísicos, realidad virtual y control sobre la redDevelopment of a framework for remote control and supervision of a virtualized water potabilization system, integrating emerging technologies like Cyber-Physical Systems, Virtual Reality, and Networked Control SystemsThesisinfo:eu-repo/semantics/masterThesisTesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TMMagíster en Automatización Industrial y MecatrónicaUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaMaestría en Automatización Industrial y MecatrónicaMAI-2382Cyber-physical systemsNetworked Control SystemsVirtualizationRemote controlWater purificationCloudIoTVirtual realityWebSocketsNode.jsUnityAWSAutomationMechatronicsData transmission systemsInformation networksComputer simulationSoftware developmentAutomatizaciónMecatrónicaSistemas de transmisión de datosRedes de informaciónSimulación por computadoresDesarrollo de softwareSistemas ciberfísicosSistemas de control en redVirtualizaciónControl remotoPurificación de aguaNubeInternet de las cosasRealidad virtualAarsen, W. (19 de December de 2019). siemens. Obtenido de Software Development for Cyber-Physical Systems: https://blogs.sw.siemens.com/polarion/software- development-for-cyber-physical-systems/Adedeji, K. B., & Hamam, Y. (2020). Cyber-Physical Systems for Water Supply Network Management: Basics, Challenges, and Roadmap. Sustainability.Afifi-Sabet, K. (17 de October de 2024). Live Science. Obtenido de https://www.livescience.com/technology/communications/future-6g-data-speeds- could-hit-1-tbps-up-to-10-000-times-faster-than-5g-after-transmission-breakthroughAfifi-Sabet, K. (17 de Octubre de 2024). Wireless data speeds hit 938 Gbps a new record and 10,000 times faster than 5G. Obtenido de https://www.livescience.com/technology/communications/future-6g-data-speeds- could-hit-1-tbps-up-to-10-000-times-faster-than-5g-after-transmission-breakthroughAguida, M. A., Ouchani, S., & Benmalek, M. (2020,). A Review on Cyber-Physical Systems: Models and Architectures. 2020 IEEE 29th International Conference on Enabling Technologies Infrastructure for Collaborative Enterprises (WETICE),. Bayonne, Spain: HAL.ARANDA-ESCOLÁSTICO, E., GUINALDO, M., MIS´KOWICZ, M., & DORMIDO, S. (2023). Event-Based Control in Industry Practice. IEEE INDUSTRIAL ELECTRONICS MAGAZINEAschenbrenner, D., Maltry, N., Kimmel, J., Albert, M., Scharnagl, J., & Schilling, K. (2016). ARTab - using Virtual and Augmented Reality Methods for an improved Situation Awareness for Telemaintenance. IFAC-PapersOnLine, 204-209.AWS. (2024). ACM. Obtenido de AWS docs: https://docs.aws.amazon.com/acm/latest/userguide/acm-overview.htmlAWS. (2024). ALB. Obtenido de AWS docs: https://docs.aws.amazon.com/es_es/elasticloadbalancing/latest/application/introduct ion.htmlAWS. (2024). Auto Scaling. Obtenido de AWS docs: https://docs.aws.amazon.com/es_es/autoscaling/ec2/userguide/what-is-amazon-ec2- auto-scaling.htmlAWS. (2024). CloudFront. Obtenido de AWS docs: https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Introducti on.htmlAWS. (2024). MQTT. Obtenido de https://aws.amazon.com/es/what- is/mqtt/#:~:text=El%20protocolo%20MQTT%20se%20inventó,supervisar%20los% 20oleoductos%20vía%20satéliteAWS. (2024). RDS. Obtenido de AWS docs: https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.htmlAWS. (2024). Route 53. Obtenido de AWS docs: https://docs.aws.amazon.com/Route53/latest/APIReference/Welcome.htmlAWS. (2024). S3. Obtenido de AWS docs: https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.htmlAWS. (2024). VPC. Obtenido de AWS docs: https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.htmlBaheti, R., & Gill, H. (2011). Cyber-physical Systems. IEEE. The Impact of Control Technology.Bahill, A. (2003 ). A simple adaptive Smith-predictor for controlling time-delay systems: A tutorial. IEEE Control Systems Magazine.Batista, A. P., & Jota, F. G. (2018). Performance improvement of an NCS closed over the internet with an adaptive Smith Predictor. Control Engineering Practice, 34-43.Boulila, N. (2019). Guidelines for Modeling Cyber-Physical Systems A Three-Layered Architecture for Cyber Physical Systems. Muenchen, Germany: Siemens AG.Bucchiarone, A. (2022). Gamification and virtual reality for digital twin learning and training: architecture and challenges. Virtual Reality & Intelligent Hardware, 471- 486.Castro, D. d., Sales, A. M., Farias, N. J., Medeiros, R. L., Silva, V. J., & Junior, V. F. (2023). Monitoring and Controlling Industrial Cyber-Physical Systems with Digital Twin and Augmented Reality. 2023 IEEE International Conference on Consumer Electronics (ICCE). Las Vegas, NV, USA: IEEE.Chandrashekar, N. D., King, K (2023) Design & development of Virtual Reality Empowered Cyber-Security Training Testbed for IoT Systems. 3rd Intelligent Cybersecurity Conference (ICSC). San Antonio, TX, USA: IEEE.Chang, E., Lee, Y., Billinghurst, M., & Yoo, B. (2024). Efficient VR-AR communication method using virtual replicas in XR remote collaboration. International Journal of Human-Computer Studies, Volume 190.Chow, R. A., & Mo-Yuen, G. a. (2008). Overview of Networked Control Systems. En D. L. Fei-Yue Wang, Networked Control Systems. Theory and Applications. North Carolina State University, Raleigh: Springer.Chow, R. A.-Y. (2008). Overview of Networked Control Systems. Raleigh, North Carolina State: Springer.Christofides, P. D., Liu, J., & Peña, D. M. (2011). Networked and Distributed Predictive Control. London: Springer.Colorado, C. C. (2021). Water Treatment Plant Process. Obtenido de https://www.canoncity.org/180/Water-Treatment-Plant- Process#:~:text=The%205%20major%20unit%20processes,enters%20the%20vario us%20treatment%20processesCopestake, J. (12 de Jun de 2024). CGTN. Obtenido de https://newseu.cgtn.com/news/2024- 06-12/Chinese-team-perform-world-first-robotic-surgery-from-Rome-in-Beijing- 1um4yx45Ixq/p.htmlCoward, S. (3 de December de 2018 ). 5 water industry challenges, and how industry 4.0 solves them. Obtenido de sageautomation: https://www.sageautomation.com/blog/5- water-industry-challenges-and-how-industry-4.0-solves-themCreate, O. (2016). Water Treatment Technologies for Large-scale Water Supply. Obtenido de https://www.open.edu/openlearncreate/mod/oucontent/view.php?id=80015&printab le=1cvedetails. (2024). Siemens : Vulnerability Statistics. Obtenido de https://www.cvedetails.com/vendor/109/Siemens.htmlDefty, T. W. (2022). A Holonic Human Cyber-Physical System in Healthcare. Stellenbosch University.Deng, L. (2024). Digital Technology and Intelligent Operation and Maintenance Plan for Large Venue Sound Reinforcement System. InternationalJournalofArtificialIntelligenceandTechnologyResearch, Vol. 3 (2024): Vol 3 .Dini, P. D., Elhanashi, A., & Saponara, S. (2024, June 1). Overview of AI-Models and Tools in Embedded IIoT Applications. Electronics (Switzerland).Engineering, a. N. (2011). Cyber-Physical Systems Driving force for innovation in mobility, health, energy and production. acatech POSITION PAPER.Eskandar, K. (2024). El impacto de la terapia de exposición a la realidad virtual en el tratamiento del TEPT y los trastornos de ansiedad. Debates em Psiquiatria.Farah, T., Shojol, M., Hassan, M., & Alam, D. (2016). Assessment of vulnerabilities of web applications of Bangladesh: A case study of XSS & CSRF. Sixth International Conference on Digital Information and Communication Technology and its Applications (DICTAP). Konya, Turkey.Gamal, M., Sadek, N., Rizk, M. R., & Abou-elSaoud, A. K. (2016). Delay compensation using Smith predictor for wireless network control system. Alexandria Engineering Journal, 1421-1428.Garcia, C. A., Naranjo, J. E., Ortiz, A., & Garcia, M. V. (2019). An Approach of Virtual Reality Environment for Technicians Training in Upstream Sector. IFAC- PapersOnLine, 285-291.Gill, H. (2008). A Continuing Vision: Cyber-Physical Systems. National Science Foundation.Givehchi, O., Imtiaz, J., Trsek, H., & Jasperneite, J. (2014). Control-as-a-service from the cloud: A case study for using virtualized PLCs. 10th IEEE Workshop on Factory Communication Systems (WFCS 2014). Toulouse, France.Guo, Y., Liu, L., & Huang, W. (2024). Extending X-reality technologies to digital twin in cultural heritage risk management: a comparative evaluation from the perspective of situation awareness. Springer Open Heritage Science.Gutiérrez, A. M., Díez-González, J., Verde, P., & Perez, H. (2023). Convergence of Virtual Reality and Digital Twin technologies to enhance digital industry 4.0. International Journal of Human-Computer Studies.Habib, M. K., & I, C. C. (2022). CPS: Role, Characteristics, Architectures and Future Potentials. Procedia Computer Science, 1347-1358.Havard, V., Jeanne, B., Lacomblez, M., & Baudry, D. (2019). Digital twin and virtual reality: a co-simulation environment for design and assessment of industrial workstations. En E. Rauch, Production & Manufacturing Research (págs. 472-489). Taylor & Francis.Hincapie, C. P. (2018). Wireless Network Control Systems. De la teoria a la pråctica. Quito Ecuador: Universidad Politécnica Salesiana.Imen, S., & Chang, N.-B. (2016). Developing a cyber-physical system for smart and sustainable drinking water infrastructure management. 2016 IEEE 13th International Conference on Networking, Sensing, and Control (ICNSC). Mexico City, Mexico: IEEE.Jantunen, E., Gorostegui, U., Zurutuza, U., Albano, M., Ferreira, L. L., Heged, C., & Campos, J. (2018). Remote maintenance support with the aid of cyber-physical systems and cloud technology. CISTER Research Centre in Real-Time & Embedded Computing Systems.Javaid, M., Haleem, A., Singh, R. P., & Suman, a. R. (2022). An integrated outlook of Cyber Physical Systems for Industry 4.0: Topical. Green Technologies and Sustainability.Jin, C. (2022). Nonlinear Control of Induction Motor Based on Network Control System. Hindawi, Mobile Information Systems.Kajal, K. (18 de October de 2024). 9000x faster internet in 6G tests, could download 20 movies a second. Obtenido de https://interestingengineering.com/innovation/6g- testing-hits-9000x-5gKajal, K. (18 de October de 2024). Interesting Engineering. Obtenido de https://interestingengineering.com/innovation/6g-testing-hits-9000x-5gKhrueangsakun, S., Nuratch, S., & Boonpramuk, P. (2020). Design and Development of Cyber Physical System for Real-Time Web-based Visualization and Control of Robot Arm. 2020 5th International Conference on Control and Robotics Engineering (ICCRE). Osaka, Japan: IEEE.Kravets, A. G., Bolshakov, A. A., & Shcherbakov, M. (2021). Cyber-Physical Systems: Design and Application for Industry 4.0. Springer.Kumar, R., Kumar, R., & Nigam, M. J. (2022). Predictive Controller Based Delay Compensation Approaches in Networked Control System. Waknaghat, Solan, Himachal Pradesh: Jaypee University of Information Technology, Solan, H.P.Kuok, K. K., Chiu, P. C., Bakri, M. K., Rahman, M. R., & Yun, C. M. (2024). Industrial revolution 4.0 in water supply, wastewater and stormwater management: opportunities, challenges, and impacts. Environmental Technology Reviews, Volume 13.Lai, C.-L., & Hsu, P.-L. (2010). Design the Remote Control System With the Time-Delay Estimator and the Adaptive Smith Predictor. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS.Lee, J., Bagheri, B., & Kao, H.-A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 18-23.Losada, M. G., Rubio, F. R., & Bencomo, S. D. (2015). Asynchronous Control for Networked Systems. Switzerland: Springer Cham.Madani, H. M., Djezzar, M., Mounir, H., ZIANOU, A. S., & MAIMOUR, M. (2022). Semantic Models and Machine Learning Approach in CPS :A Survey. International Workshop on Semantic IoT (SIoT-2022). Madrid, Spain.Mahmoud, M. S., & Xia, Y. (2019). Netw En M. S. Mahmoud, & Y. Xia, Networked Control Systems Cloud Control and Secure Control (págs. 37-89). Butterworth Heinemann.Mahmouda, M. S., & Sabihb, M. (2014,). Networked event-triggered control: an introduction and research trends. International Journal of General Systems.Masoni, R., Ferrise, F., Bordegoni, M., Gattullo, M., Uva, A. E., Fiorentino, M., . . . Donato, M. D. (2017). Supporting Remote Maintenance in Industry 4.0 through Augmented Reality. Procedia Manufacturing, 1296-1302.Mejdi, H., Elmadssia, S., & Ezzedine, T. (2023). A Study of a Networked Control System under Time Delay. IEEE International Symposium on Networks, Computers and Communications.Michaelide, S., T. V., & Henze, M. (2024). Secure Integration of 5G in Industrial Networks: State of the Art, Challenges and Opportunities. arxiv cs.Mishra, S., Jha, A., Verma, V., Appasani, B., Abdelaziz, A., & Bizon, N. (2021). An Optimized Triggering Algorithm for Event-Triggered Control of Networked Control Systems. Mathematics .Mourtzis, D., Zogopoulos, V., & Vlachou, E. (2017). Augmented Reality Application to Support Remote Maintenance as a Service in the Robotics Industry. Procedia CIRP, 46-51.NPM. (2024). nodes7. Obtenido de https://www.npmjs.com/package/nodes7Oyama, E., Tokoil, K., Suzuki, R., Nakamura, S., Shiroma, N., Watanabe, N., . . . Omori, T. (2020). Augmented reality and mixed reality behavior navigation system for telexistence remote assistance. Advanced Robotics, 1223-1241 .Papcun, P., Kajáti, E., Liu, C., Zhong, R. Y., & Zolotová, I. (2018). Cloud-based Control of Industrial Cyber-Physical Systems. The 48th International Conference on Computers and Industrial Engineering (CIE 48). Auckland, New Zealand.Pivoto, D. G., Almeida, L. F., Righi, R. d., Rodrigues, J. J., Lugli, A. B., & Alberti, A. M. (2021). Cyber-physical systems architectures for industrial internet of things applications in Industry 4.0: A literature review. Journal of Manufacturing Systems, 176-192.Pricop, E., Fattahi, J., Dutta, N., & Ibrahim, M. (2020). Recent Developments on Industrial Control Systems Resilience. Springer Cham, Studies in Systems, Decision and Control.PTC. (2024). Vuforia Chalk: Remote Assistance Powered by Augmented Reality. Obtenido de PTC Vuforia: https://www.ptc.com/en/products/vuforia/vuforia-chalkRABBITMQ. (2024). amqp. Obtenido de https://www.rabbitmq.com/tutorials/amqp- conceptsRedelinghuys, A. J., Basson, A. H., & Kruger, K. (2019). A six-layer architecture for the digital twin: a manufacturing case study implementation. Journal of Intelligent Manufacturing.Redelinghuys, A. J., Basson, A. H., & Kruger, K. (2019). Cybersecurity Considerations for Industrie 4.0. International Conference on Competitive Manufacturing (págs. 266- 271). Stellenbosch, South Africa: COMA.Roldán, J. J., Crespo, E., Martín-Barrio, A., Peña-Tapia, E., & Barrientos, A. (2019). A training system for Industry 4.0 operators in complex assemblies based on virtual reality and process mining. Robotics and Computer-Integrated Manufacturing, 305- 316.Sadiku, M. N., Wang, Y., Cui, S., & Musa, S. M. (2017). Cyber-Physical Systems: A Literature Review. European Scientific Journal, Vol.13, No.36.Santoso, H., Baroroh, D., & Darmawan, A. (2021). FUTURE APPLICATION OF MULTISENSORY MIXED REALITY IN THE HUMAN CYBER PHYSICAL SYSTEM. South African Journal of Industrial Engineering, págs. 44-56.She, M., & Wu, W. (2023). Efficient Output Feedback MPC for NCS With Data Dropout and Bounded Disturbance via Adaptive Event-Triggered Control. IEEE Journals & Magazines Volume: 11, 118161 - 118169.SIEMENS. (05 de 12 de 2019). ¿Qué características especiales, ventajas y propiedades ofrece el protocolo S7? Obtenido de https://support.industry.siemens.com/cs/document/26483647/¿qué-características- especiales-ventajas-y-propiedades-ofrece-el-protocolo-s7-?dti=0&lc=es-COSilmukari, J. (2019). Remote assistance for service. Laurea University of Applied Sciences.Society, N. G. (26 de January de 2024). How Climate Change Impacts Water Access. Obtenido de NATIONAL GEOGRAPHIC: https://education.nationalgeographic.org/resource/how-climate-change-impacts- water-access/Song, H., Rawat, D. B., Jeschke, S., & Brecher, C. (2017). Cyber-Physical Systems Foundations, Principles and Applications. Elsevier.Stefan, H., Mortimer, M., Horan, B., & Kenny, G. (2023). Evaluating the preliminary effectiveness of industrial virtual reality safety training for ozone generator isolation procedure. Safety Science, Volume 163.Stumpp, N., Aschenbrenner, D., Stahl, M., & Aßmuth, A. (2019). PLASMA -- Platform for Service Management in Digital Remote Maintenance Applications. Proc of the 10th International Conference on Cloud Computing, GRIDs, and Virtualization, Venice, Italy.Terkaj, W., Urgo, M., Kovács, P., Tóth, E., & Mondellini, M. (2024). A framework for virtual learning in industrial engineering education: development of a reconfigurable virtual learning factory application. Springer Nature Link, Virtual Reality.TradingView. (2024). LightWeight Charts. Obtenido de https://www.tradingview.com/lightweight-charts/TRAPPEY, A. J., TRAPPEY, C. V., GOVINDARAJAN, U. H., SUN, J. J., & CHUANG, A. C. (2016). A Review of Technology Standards and Patent Portfolios for Enabling Cyber-Physical Systems in Advanced Manufacturing. SPECIAL SECTION ON INDUSTRY 4.0.Vázquez-Hurtado, C., Altamirano-Avila, E., Roman-Flores, A., & Vargas-Martinez, A. (2023). Towards a Mixed Virtual Reality Environment Implementation to Enable Industrial Robot Programming Competencies within a Cyber-Physical Factory. 2023 IEEE Global Engineering Education Conference (EDUCON). Kuwait, Kuwait: IEEE.Vorraber, W., Gasser, J., Webb, H., Neubacher, D., & Url, P. (2020). Assessing augmented reality in production: remote-assisted maintenance with HoloLens. Procedia CIRP, 139-144.Wan, K., Hughes, D., Man, K. L., Krilavicius, T., & Zou, S. (2011). Investigation on Composition Mechanisms for Cyber Physical Systems. INTERNATIONAL JOURNAL OF DESIGN, ANALYSIS AND TOOLS FOR CIRCUITS AND SYSTEMS, VOL. 2, NO. 1.Wang, P., Bai, X., Billinghurst, M., Zhang, S., Zhang, X., Wang, S., . . . Ji, H. (2021). AR/MR Remote Collaboration on Physical Tasks: A Review. Robotics and Computer- Integrated Manufacturing.Wang, Z., Song, H., Watkins, D. W., Ong, K. G., Xue, P., & Yang, Q. (2015). Cyber-physical systems for water sustainability: challenges and opportunities. IEEE Communications Magazine.Wolfartsberger, J., Zimmermann, R., Obermeier, G., & Niedermayr, D. (2023). Analyzing the potential of virtual reality-supported training for industrial assembly tasks. Computers in Industry, Volume 147.Xu, X., & Ji, T. (2024). Exploring the Integration of Cloud Manufacturing and Cyber- Physical Systems in the Era of Industry 4.0 An OPC UA Approach. Electronic.Yang, S. H., Dai, C., & Knott, R. P. (2007). Remote Maintenance of Control System Performance over the Internet. Control Engineering Practice.Yun, H., & Jun, M. B. (2022). Immersive and interactive cyber-physical system (I2CPS) and virtual reality interface for human involved robotic manufacturing. Journal of Manufacturing Systems, 234-248.Zermane, H., & Mouss, H. (2017). Development of an internet and fuzzy based control system of manufacturing process. International Journal of Automation and Computing, 706 71.Zhang, J., Chai, S., & Zhang, B. (2019). Model-based event-triggered dynamic output. International Journal of Systems Science, 20-34.https://apolo.unab.edu.co/en/persons/sebasti%C3%A1n-roa-pradaORIGINALTesis.pdfTesis.pdfTesisapplication/pdf7584376https://repository.unab.edu.co/bitstream/20.500.12749/29641/8/Tesis.pdf67ad810a0012056bef6b26bcff6f226cMD58open accesspaper-completo.pdfpaper-completo.pdfPaper del proyectoapplication/pdf5710629https://repository.unab.edu.co/bitstream/20.500.12749/29641/4/paper-completo.pdfbc0eaaf0565996cdbfe249565cc9703eMD54open accessentregables-finales.zipentregables-finales.zipEntregables del proyecto, codigo, documentacion y aplicacionesapplication/zip339032519https://repository.unab.edu.co/bitstream/20.500.12749/29641/5/entregables-finales.zip3a79aae92126538d5ac0750126b94da8MD55open accessLicencia.pdfLicencia.pdfLicenciaapplication/pdf331889https://repository.unab.edu.co/bitstream/20.500.12749/29641/7/Licencia.pdf0fea0b6723d95b96449530eed78100d1MD57metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/29641/6/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD56open accessTHUMBNAILTesis.pdf.jpgTesis.pdf.jpgIM Thumbnailimage/jpeg4428https://repository.unab.edu.co/bitstream/20.500.12749/29641/9/Tesis.pdf.jpg73cda876bebd26ee0c98d66229c955cbMD59open accesspaper-completo.pdf.jpgpaper-completo.pdf.jpgIM Thumbnailimage/jpeg12156https://repository.unab.edu.co/bitstream/20.500.12749/29641/10/paper-completo.pdf.jpgd2e71dce4e2cb7501322ea4bc2853bf8MD510open accessLicencia.pdf.jpgLicencia.pdf.jpgIM Thumbnailimage/jpeg13265https://repository.unab.edu.co/bitstream/20.500.12749/29641/11/Licencia.pdf.jpg1924e022d4d090f36621decd3dcc80faMD511metadata only access20.500.12749/29641oai:repository.unab.edu.co:20.500.12749/296412025-06-11 22:00:50.593open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg==