Análisis de nuevos índices de las señales electrocardiográficas y de flujo respiratorio para predecir el éxito o fracaso del proceso de extubación de pacientes asistidos por ventilación mecánica

La insuficiencia respiratoria aguda (IRA) es una afección en la que los pulmones no pueden realizar un intercambio adecuado de gases, lo que frecuentemente requiere el uso de ventilación mecánica (VM). El proceso de extubación, o retiro de la ventilación, es delicado y debe realizarse en el momento...

Full description

Autores:
González Acevedo, Hernando
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2025
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/29727
Acceso en línea:
http://hdl.handle.net/20.500.12749/29727
Palabra clave:
Engineering
Mechanical ventilation
Spontaneous breathing test
Time-frequency analysis
Poincaré diagram
Machine learning
Deep learning
Neural networks (Computer science)
Signal processing
Patient monitoring
Vital signs
Artificial respiration (Equipment and supplies)
Respirators (Medical Equipment)
Ingeniería
Redes neuronales (Computadores)
Procesamiento de señales
Monitoreo del paciente
Signos vitales
Respiración artificial (Equipo y accesorios)
Respiradores (Equipo médico)
Ventilación mecánica
Prueba de respiración espontánea
Análisis tiempo-frecuencia
Diagrama de poincaré
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_7e143d71e2b20c8a79387f0ec203d034
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/29727
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Análisis de nuevos índices de las señales electrocardiográficas y de flujo respiratorio para predecir el éxito o fracaso del proceso de extubación de pacientes asistidos por ventilación mecánica
dc.title.translated.spa.fl_str_mv Analysis of new indices of electrocardiographic and respiratory flow signals to predict the success or failure of the extubation process in mechanically ventilated patients
title Análisis de nuevos índices de las señales electrocardiográficas y de flujo respiratorio para predecir el éxito o fracaso del proceso de extubación de pacientes asistidos por ventilación mecánica
spellingShingle Análisis de nuevos índices de las señales electrocardiográficas y de flujo respiratorio para predecir el éxito o fracaso del proceso de extubación de pacientes asistidos por ventilación mecánica
Engineering
Mechanical ventilation
Spontaneous breathing test
Time-frequency analysis
Poincaré diagram
Machine learning
Deep learning
Neural networks (Computer science)
Signal processing
Patient monitoring
Vital signs
Artificial respiration (Equipment and supplies)
Respirators (Medical Equipment)
Ingeniería
Redes neuronales (Computadores)
Procesamiento de señales
Monitoreo del paciente
Signos vitales
Respiración artificial (Equipo y accesorios)
Respiradores (Equipo médico)
Ventilación mecánica
Prueba de respiración espontánea
Análisis tiempo-frecuencia
Diagrama de poincaré
title_short Análisis de nuevos índices de las señales electrocardiográficas y de flujo respiratorio para predecir el éxito o fracaso del proceso de extubación de pacientes asistidos por ventilación mecánica
title_full Análisis de nuevos índices de las señales electrocardiográficas y de flujo respiratorio para predecir el éxito o fracaso del proceso de extubación de pacientes asistidos por ventilación mecánica
title_fullStr Análisis de nuevos índices de las señales electrocardiográficas y de flujo respiratorio para predecir el éxito o fracaso del proceso de extubación de pacientes asistidos por ventilación mecánica
title_full_unstemmed Análisis de nuevos índices de las señales electrocardiográficas y de flujo respiratorio para predecir el éxito o fracaso del proceso de extubación de pacientes asistidos por ventilación mecánica
title_sort Análisis de nuevos índices de las señales electrocardiográficas y de flujo respiratorio para predecir el éxito o fracaso del proceso de extubación de pacientes asistidos por ventilación mecánica
dc.creator.fl_str_mv González Acevedo, Hernando
dc.contributor.advisor.none.fl_str_mv Arizmendi Pereira, Carlos Julio
Giraldo Giraldo, Beatriz
dc.contributor.author.none.fl_str_mv González Acevedo, Hernando
dc.contributor.cvlac.spa.fl_str_mv González Acevedo, Hernando [0000544655]
Arizmendi Pereira, Carlos Julio [1381550]
dc.contributor.googlescholar.spa.fl_str_mv González Acevedo, Hernando [V8tga0cAAAAJ]
Arizmendi Pereira, Carlos Julio [JgT_je0AAAAJ]
dc.contributor.orcid.spa.fl_str_mv González Acevedo, Hernando [0000-0001-6242-3939]
Giraldo Giraldo, Beatriz [0000-0002-9910-8577]
dc.contributor.scopus.spa.fl_str_mv González Acevedo, Hernando [55821231500]
dc.contributor.researchgate.spa.fl_str_mv González Acevedo, Hernando [Hernando-Gonzalez]
Arizmendi Pereira, Carlos Julio [Carlos_Arizmendi2]
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación Control y Mecatrónica - GICYM
dc.contributor.apolounab.spa.fl_str_mv Gonzalez Acevedo, Hernando [hernando-gonzalez-acevedo-2]
Arizmendi Pereira, Carlos Julio [carlos-julio-arizmendi-pereira]
dc.subject.keywords.spa.fl_str_mv Engineering
Mechanical ventilation
Spontaneous breathing test
Time-frequency analysis
Poincaré diagram
Machine learning
Deep learning
Neural networks (Computer science)
Signal processing
Patient monitoring
Vital signs
Artificial respiration (Equipment and supplies)
Respirators (Medical Equipment)
topic Engineering
Mechanical ventilation
Spontaneous breathing test
Time-frequency analysis
Poincaré diagram
Machine learning
Deep learning
Neural networks (Computer science)
Signal processing
Patient monitoring
Vital signs
Artificial respiration (Equipment and supplies)
Respirators (Medical Equipment)
Ingeniería
Redes neuronales (Computadores)
Procesamiento de señales
Monitoreo del paciente
Signos vitales
Respiración artificial (Equipo y accesorios)
Respiradores (Equipo médico)
Ventilación mecánica
Prueba de respiración espontánea
Análisis tiempo-frecuencia
Diagrama de poincaré
dc.subject.lemb.spa.fl_str_mv Ingeniería
Redes neuronales (Computadores)
Procesamiento de señales
Monitoreo del paciente
Signos vitales
Respiración artificial (Equipo y accesorios)
Respiradores (Equipo médico)
dc.subject.proposal.spa.fl_str_mv Ventilación mecánica
Prueba de respiración espontánea
Análisis tiempo-frecuencia
Diagrama de poincaré
description La insuficiencia respiratoria aguda (IRA) es una afección en la que los pulmones no pueden realizar un intercambio adecuado de gases, lo que frecuentemente requiere el uso de ventilación mecánica (VM). El proceso de extubación, o retiro de la ventilación, es delicado y debe realizarse en el momento adecuado para evitar complicaciones. Hasta un 25% de los pacientes reintubados, tras una extubación fallida, enfrentan riesgos mayores, como infecciones nosocomiales y atrofia muscular. Dado el impacto de una extubación fallida en los resultados clínicos, surge la necesidad de desarrollar herramientas más precisas para predecir el éxito del destete. El objetivo de esta tesis es proponer nuevos índices basados en señales electrocardiográficas y de flujo respiratorio para mejorar la predicción del éxito o fracaso de la extubación tras una Prueba de Respiración Espontánea (SBT, por sus siglas en inglés Spontaneous Breathing Trial). Para ello, se analizan descriptores extraídos en el dominio del tiempo, frecuencia, diagramas de Poincaré y tiempo-frecuencia, con el fin de caracterizar la dinámica cardiorrespiratoria durante la extubación. Además, se emplean técnicas de procesamiento de señales y algoritmos de clasificación basados en aprendizaje automático (ML, por sus siglas en ingles Machine Learning) y aprendizaje profundo (DL, por sus siglas en inglés Deep Learning) para optimizar la predicción del desenlace del procedimiento. Los índices propuestos constituyen una herramienta de apoyo en entornos clínicos, como soporte a decisiones más objetivas e informadas en el proceso de destete de la VM.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-06-13T16:34:35Z
dc.date.available.none.fl_str_mv 2025-06-13T16:34:35Z
dc.date.issued.none.fl_str_mv 2025-06-11
dc.type.eng.fl_str_mv Thesis
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.local.spa.fl_str_mv Tesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/29727
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/29727
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv L. D. J. Bos and L. B. Ware, “Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes,” 2022. doi: 10.1016/S0140-6736(22)01485-4
N. Rittayamai and L. Brochard, “Recent advances in mechanical ventilation in patients with acute respiratory distress syndrome,” European Respiratory Review, vol. 24, no. 135, 2015, doi: 10.1183/09059180.00012414
S. M. Sison, G. K. Sivakumar, C. Caufield-Noll, W. B. Greenough, E. S. Oh, and P. Galiatsatos, “Mortality outcomes of patients on chronic mechanical ventilation in different care settings: A systematic review,” 2021. doi: 10.1016/j.heliyon.2021.e06230
W. Windisch et al., “Prolonged weaning from mechanical ventilation results from specialized weaning: Centers—a registry-based study from the WeanNet initiative,” Dtsch Arztebl Int, vol. 117, no. 12, 2020, doi: 10.3238/arztebl.2020.0197
F. C. Trudzinski et al., “Risk Factors for Prolonged Mechanical Ventilation and Weaning Failure: A Systematic Review,” Respiration, vol. 101, no. 10, 2022, doi: 10.1159/000525604
M. Mezidi et al., “Pressure support and positive end-expiratory pressure versus T-piece during spontaneous breathing trial in difficult weaning from mechanical ventilation: study protocol for the SBT-ICU study,” Trials, vol. 23, no. 1, 2022, doi: 10.1186/s13063-022-06896-4
S. S. Batah and A. T. Fabro, “Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians,” 2021. doi: 10.1016/j.rmed.2020.106239
P. C. Hsu et al., “Risk factors for prolonged mechanical ventilation in critically ill patients with influenza-related acute respiratory distress syndrome,” Respir Res, vol. 25, no. 1, 2024, doi: 10.1186/s12931-023-02648-3
P. Vignon, “Cardiopulmonary interactions during ventilator weaning,” 2023. doi: 10.3389/fphys.2023.1275100
P. Armañac-Julián et al., “Cardiopulmonary coupling indices to assess weaning readiness from mechanical ventilation,” Sci Rep, vol. 11, no. 1, 2021, doi: 10.1038/s41598-021-95282-2
P. Manickam et al., “Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare,” 2022. doi: 10.3390/bios12080562
J. E. Daza-Arana, H. Lozada-Ramos, D. F. Ávila-Hernández, L. T. Ordoñez-Mora, and D. P. Sánchez, “Prolonged Mechanical Ventilation Following Coronary Artery Bypass Graft in Santiago De Cali, Colombia,” Vasc Health Risk Manag, vol. 18, 2022, doi: 10.2147/VHRM.S367108
K. Kaier, T. Heister, J. Wolff, and M. Wolkewitz, “Mechanical ventilation and the daily cost of ICU care,” BMC Health Serv Res, vol. 20, no. 1, 2020, doi: 10.1186/s12913-020-05133-5
H. Yadav, B. T. Thompson, and O. Gajic, “Is acute respiratory distress syndrome a preventable disease?,” 2017. doi: 10.1164/rccm.201609-1767CI
G. Bellani et al., “Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries,” JAMA - Journal of the American Medical Association, vol. 315, no. 8, 2016, doi: 10.1001/jama.2016.0291
K. E. A. Burns et al., “Ventilator Weaning and Discontinuation Practices for Critically Ill Patients,” in JAMA - Journal of the American Medical Association, 2021. doi: 10.1001/jama.2021.2384
L. Jiebing et al., “Influencing factors of weaning outcome of intensive care unit patients with planned extubation,” Chinese Critical Care Medicine, vol. 33, no. 5, 2021, doi: 10.3760/cma.j.cn121430-20200410-00280
A. W. Thille, F. Boissier, H. Ben Ghezala, K. Razazi, A. Mekontso-Dessap, and C. Brun-Buisson, “Risk factors for and prediction by caregivers of extubation failure in ICU patients: A prospective study,” Crit Care Med, vol. 43, no. 3, 2015, doi: 10.1097/CCM.0000000000000748
L. Rose, M. J. Schultz, C. R. Cardwell, P. Jouvet, D. F. McAuley, and B. Blackwood, “Automated versus non-automated weaning for reducing the duration of mechanical ventilation for critically ill adults and children: A cochrane systematic review and meta-analysis,” Crit Care, vol. 19, no. 1, 2015, doi: 10.1186/s13054-015-0755-6
T. Pham, M. Dres, and R. Coudroy, “Weaning the Simple and Complex Patients,” in Mechanical Ventilation from Pathophysiology to Clinical Evidence, 2022. doi: 10.1007/978-3-030-93401-9_22
A. W. Thille et al., “T-piece versus pressure-support ventilation for spontaneous breathing trials before extubation in patients at high risk of reintubation: Protocol for 98 a multicentre, randomised controlled trial (TIP-EX),” BMJ Open, vol. 10, no. 11, 2020, doi: 10.1136/bmjopen-2020-042619
M. M. Dadam et al., “The Effect of Reconnection to Mechanical Ventilation for 1 Hour After Spontaneous Breathing Trial on Reintubation Among Patients Ventilated for More Than 12 Hours: A Randomized Clinical Trial,” Chest, vol. 160, no. 1, 2021, doi: 10.1016/j.chest.2021.02.064
P. A. F. Magalhães, C. A. Camillo, D. Langer, L. B. Andrade, M. do C. M. B. Duarte, and R. Gosselink, “Weaning failure and respiratory muscle function: What has been done and what can be improved?,” 2018. doi: 10.1016/j.rmed.2017.11.023
M. M. Musumeci et al., “Predictors of prolonged ventilator weaning and mortality in critically ill patients with COVID-19,” Jornal Brasileiro de Pneumologia, vol. 49, no. 4, 2023, doi: 10.36416/1806-3756/e20230131
Y. Igarashi, K. Ogawa, K. Nishimura, S. Osawa, H. Ohwada, and S. Yokobori, “Machine learning for predicting successful extubation in patients receiving mechanical ventilation,” 2022. doi: 10.3389/fmed.2022.961252
J. Menguy, K. De Longeaux, L. Bodenes, B. Hourmant, and E. L’Her, “Defining predictors for successful mechanical ventilation weaning, using a data-mining process and artificial intelligence,” Sci Rep, vol. 13, no. 1, 2023, doi: 10.1038/s41598-023-47452-7
M. T. Kwong, G. W. Colopy, A. M. Weber, A. Ercole, and J. H. M. Bergmann, “The efficacy and effectiveness of machine learning for weaning in mechanically ventilated patients at the intensive care unit: a systematic review,” Biodes Manuf, vol. 2, no. 1, pp. 31–40, Mar. 2019, doi: 10.1007/S42242-018-0030-1/TABLES/4
M. H. Hsieh, M. J. Hsieh, C. M. Chen, C. C. Hsieh, C. M. Chao, and C. C. Lai, “An artificial neural network model for predicting successful extubation in intensive care units,” J Clin Med, vol. 7, no. 9, 2018, doi: 10.3390/jcm7090240
H. J. Kuo, H. W. Chiu, C. N. Lee, T. T. Chen, C. C. Chang, and M. Y. Bien, “Improvement in the prediction of ventilator weaning outcomes by an artificial neural network in a medical ICU,” Respir Care, vol. 60, no. 11, 2015, doi: 10.4187/respcare.03648
M. H. Hsieh et al., “Predicting weaning difficulty for planned extubation patients with an artificial neural network,” Medicine, vol. 98, no. 40, 2019
K.-H. Cheng et al., “The Feasibility of a Machine Learning Approach in Predicting Successful Ventilator Mode Shifting for Adult Patients in the Medical Intensive Care Unit,” Medicina (B Aires), vol. 58, no. 3, p. 360, 2022
C. I. Ossai and N. Wickramasinghe, “Intelligent decision support with machine learning for efficient management of mechanical ventilation in the intensive care unit–A critical overview,” Int J Med Inform, vol. 150, p. 104469, 2021
T. Stivi, D. Padawer, N. Dirini, A. Nachshon, B. M. Batzofin, and S. Ledot, “Using Artificial Intelligence to Predict Mechanical Ventilation Weaning Success in Patients with Respiratory Failure, Including Those with Acute Respiratory Distress Syndrome,” 2024. doi: 10.3390/jcm13051505
A. Muniasamy and A. Alasiry, “Deep learning: The impact on future eLearning,” International Journal of Emerging Technologies in Learning, vol. 15, no. 1, 2020, doi: 10.3991/IJET.V15I01.11435
N. Kim, W. Seo, J. ho Kim, S. Y. Choi, and S. M. Park, “WavelNet: A novel convolutional neural network architecture for arrhythmia classification from electrocardiograms,” Comput Methods Programs Biomed, vol. 231, 2023, doi: 10.1016/j.cmpb.2023.107375
B. Wang et al., “Arrhythmia Disease Diagnosis Based on ECG Time-Frequency Domain Fusion and Convolutional Neural Network,” IEEE J Transl Eng Health Med, vol. 11, 2023, doi: 10.1109/JTEHM.2022.3232791
M. F. Qureshi, Z. Mushtaq, M. Z. U. Rehman, and E. N. Kamavuako, “Spectral Image-Based Multiday Surface Electromyography Classification of Hand Motions Using CNN for Human-Computer Interaction,” IEEE Sens J, vol. 22, no. 21, 2022, doi: 10.1109/JSEN.2022.3204121
J. Li, L. Wei, Y. Wen, X. Liu, and H. Wang, “Hand gesture recognition based improved multi-channels CNN architecture using EMG sensors,” Journal of Intelligent and Fuzzy Systems, vol. 43, no. 1, 2022, doi: 10.3233/JIFS-212390
J. Zhang and K. Li, “A multi-view CNN encoding for motor imagery EEG signals,” Biomed Signal Process Control, vol. 85, 2023, doi: 10.1016/j.bspc.2023.105063
B. Zali-Vargahan, A. Charmin, H. Kalbkhani, and S. Barghandan, “Deep time-frequency features and semi-supervised dimension reduction for subject-independent emotion recognition from multi-channel EEG signals,” Biomed Signal Process Control, vol. 85, 2023, doi: 10.1016/j.bspc.2023.104806
Y. Jia, C. Kaul, T. Lawton, R. Murray-Smith, and I. Habli, “Prediction of weaning from mechanical ventilation using convolutional neural networks,” Artif Intell Med, vol. 117, p. 102087, 2021
J. E. Park et al., “Development of a Machine Learning Model for Predicting Weaning Outcomes Based Solely on Continuous Ventilator Parameters during Spontaneous 100 Breathing Trials,” Bioengineering, vol. 10, no. 10, 2023, doi: 10.3390/bioengineering10101163
G. H. Kim et al., “FT-GAT: Graph neural network for predicting spontaneous breathing trial success in patients with mechanical ventilation.,” Comput Methods Programs Biomed, vol. 240, 2023, doi: 10.1016/j.cmpb.2023.107673
S. Khonsary, “Guyton and Hall: Textbook of Medical Physiology,” Surg Neurol Int, vol. 8, no. 1, 2017, doi: 10.4103/sni.sni_327_17
G. F. Baker, G. J. Tortora, and N. P. A. Nostakos, “Principles of Anatomy and Physiology,” Am J Nurs, vol. 76, no. 3, 1976, doi: 10.2307/3423898
P. Pelosi et al., “Personalized mechanical ventilation in acute respiratory distress syndrome,” 2021. doi: 10.1186/s13054-021-03686-3
A. F. Cumpstey, A. H. Oldman, D. S. Martin, A. Smith, and M. P. W. Grocott, “Oxygen Targets During Mechanical Ventilation in the ICU: A Systematic Review and Meta-Analysis,” 2022. doi: 10.1097/CCE.0000000000000652
K. E. A. Burns et al., “Non-invasive ventilation versus invasive weaning in critically ill adults: a systematic review and meta-analysis,” Thorax, vol. 77, no. 8, 2022, doi: 10.1136/thoraxjnl-2021-216993
A. Tanaka et al., “Association between early tracheostomy and patient outcomes in critically ill patients on mechanical ventilation: a multicenter cohort study,” J Intensive Care, vol. 10, no. 1, 2022, doi: 10.1186/s40560-022-00610-x
A. W. Thille et al., “Spontaneous-Breathing Trials with Pressure-Support Ventilation or a T-Piece,” New England Journal of Medicine, vol. 387, no. 20, 2022, doi: 10.1056/nejmoa2209041
S. J. Na, R.-E. Ko, J. Nam, M. G. Ko, and K. Jeon, “Comparison between pressure support ventilation and T-piece in spontaneous breathing trials,” Respir Res, vol. 23, no. 1, pp. 1–11, 2022
A. Arcentales, P. Caminal, I. Diaz, S. Benito, and B. F. Giraldo, “Classification of patients undergoing weaning from mechanical ventilation using the coherence between heart rate variability and respiratory flow signal,” Physiol Meas, vol. 36, no. 7, 2015, doi: 10.1088/0967-3334/36/7/1439
S. Sateesh Kamat and S. S. Kamath, “A Prospective Comparative study between the Tobin Index and Integrative Weaning Index to predict the outcome of trials of weaning from mechanical ventilation Introduction,” vol. 21, p. 2022, [Online]. Available: http://ymerdigital.com
G. C. Funk et al., “Incidence and outcome of weaning from mechanical ventilation according to new categories,” European Respiratory Journal, vol. 35, no. 1, 2010, doi: 10.1183/09031936.00056909
A. W. Thille, J. C. M. Richard, and L. Brochard, “The decision to extubate in the intensive care unit,” 2013. doi: 10.1164/rccm.201208-1523CI
B. Rochwerg et al., “Official ERS/ATS clinical practice guidelines: Noninvasive ventilation for acute respiratory failure,” 2017. doi: 10.1183/13993003.02426-2016
Ministerio de Salud y Protección Social, “Resolución 3100 de 2019,” 2019
A. Gallego Cuiñas and E. Martínez, “Comité científico,” in Queridos todos, 2016. doi: 10.3726/978-3-0352-6365-7/12
Congreso de la República de Colombia., “Ley 23 De 1981,” Congreso de la República de Colombia., vol. 1981, no. 35, 1981
P. R. Newswire, “Global Ventilator Market : Analysis and Forecast, 2021-2030,” 2020
R. L. Dellaca, C. Veneroni, and R. Farre, “Trends in mechanical ventilation: Are we ventilating our patients in the best possible way?,” Breathe, vol. 13, no. 2, 2017, doi: 10.1183/20734735.007817
A. S. Neto, R. R. Filho, L. L. Rocha, and M. J. Schultz, “Recent advances in mechanical ventilation in patients without acute respiratory distress syndrome,” F1000Prime Rep, vol. 6, 2014, doi: 10.12703/P6-115
F. Bagherzadeh-Khiabani, A. Ramezankhani, F. Azizi, F. Hadaegh, E. W. Steyerberg, and D. Khalili, “A tutorial on variable selection for clinical prediction models: feature selection methods in data mining could improve the results,” J Clin Epidemiol, vol. 71, 2016, doi: 10.1016/j.jclinepi.2015.10.002
C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electronic Markets, vol. 31, no. 3, 2021, doi: 10.1007/s12525-021-00475-2
L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J Big Data, vol. 8, no. 1, 2021, doi: 10.1186/s40537-021-00444-8
I. D. Mienye, T. G. Swart, and G. Obaido, “Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and Applications,” Information, vol. 15, no. 9, p. 517, Aug. 2024, doi: 10.3390/info15090517
L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,” Neurocomputing, vol. 415, 2020, doi: 10.1016/j.neucom.2020.07.061
O. Rainio, J. Teuho, and R. Klén, “Evaluation metrics and statistical tests for machine learning,” Sci Rep, vol. 14, no. 1, 2024, doi: 10.1038/s41598-024-56706-x
B. Boashash, “Estimating and Interpreting The Instantaneous Frequency of a Signal—Part 1: Fundamentals,” Proceedings of the IEEE, vol. 80, no. 4, 1992, doi: 10.1109/5.135376
B. Boashash, “Estimating and Interpreting the Instantaneous Frequency of a Signal—Part 2: Algorithms and Applications,” Proceedings of the IEEE, vol. 80, no. 4, 1992, doi: 10.1109/5.135378
A. Phinyomark, S. Thongpanja, H. Hu, P. Phukpattaranont, and C. Limsakul, “The Usefulness of Mean and Median Frequencies in Electromyography Analysis,” in Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges, 2012. doi: 10.5772/50639
Y. N. Pan, J. Chen, and X. L. Li, “Spectral entropy: A complementary index for rolling element bearing performance degradation assessment,” Proc Inst Mech Eng C J Mech Eng Sci, vol. 223, no. 5, 2009, doi: 10.1243/09544062JMES1224
P. Sandhya, V. Spoorthy, S. G. Koolagudi, and N. V. Sobhana, “Spectral Features for Emotional Speaker Recognition,” in Proceedings of 2020 3rd International Conference on Advances in Electronics, Computers and Communications, ICAECC 2020, 2020. doi: 10.1109/ICAECC50550.2020.9339502
G. W. Divine, H. J. Norton, A. E. Barón, and E. Juarez-Colunga, “The Wilcoxon–Mann–Whitney Procedure Fails as a Test of Medians,” American Statistician, vol. 72, no. 3, 2018, doi: 10.1080/00031305.2017.1305291
J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, “A comprehensive survey on support vector machine classification: Applications, challenges and trends,” Neurocomputing, vol. 408, 2020, doi: 10.1016/j.neucom.2019.10.118
J. Nalepa and M. Kawulok, “Selecting training sets for support vector machines: a review,” 2019. doi: 10.1007/s10462-017-9611-1
J. Wu, X. Y. Chen, H. Zhang, L. D. Xiong, H. Lei, and S. H. Deng, “Hyperparameter optimization for machine learning models based on Bayesian optimization,” Journal of Electronic Science and Technology, vol. 17, no. 1, 2019, doi: 10.11989/JEST.1674-862X.80904120
F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, 2011
A. Jaffar, N. M. Thamrin, M. S. A. M. Ali, M. F. Misnan, A. I. M. Yassin, and N. M. Zan, “Spatial interpolation method comparison for physico-chemical parameters of river water in Klang River using MATLAB,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 4, 2022, doi: 10.11591/eei.v11i4.3615
A. K. Golińska, “Poincaré plots in analysis of selected biomedical signals,” Studies in Logic, Grammar and Rhetoric, vol. 35, no. 48, 2013, doi: 10.2478/slgr-2013-0031
B. Wang, D. Liu, X. Gao, and Y. Luo, “Three-Dimensional Poincaré Plot Analysis for Heart Rate Variability,” Complexity, vol. 2022, 2022, doi: 10.1155/2022/3880047
J. Rodriguez, A. Voss, P. Caminal, A. Bayes-Genis, and B. F. Giraldo, “Characterization and classification of patients with different levels of cardiac death risk by using Poincaré plot analysis,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2017. doi: 10.1109/EMBC.2017.8037078
U. Usman, “On Consistency and Limitation of Independent t-test Kolmogorov Smirnov Test and Mann Whitney U test,” IOSR Journal of Mathematics, vol. 12, no. 04, 2016, doi: 10.9790/5728-1204052227
M. Masrour, A. Zare, A. Presedo, and M. H. Nabian, “Intrathecal baclofen efficacy for managing motor function and spasticity severity in patients with cerebral palsy: a systematic review and meta-analysis,” BMC Neurol, vol. 24, no. 1, Dec. 2024, doi: 10.1186/s12883-024-03647-7
J. Chakrabarty, M. T. Bhatt, S. Ravindranath, H. M. Shivaraja, and A. H. Mitra, “Yang–Tobin Index and Integrative Weaning Index as Predictors of Successful Weaning from Mechanical Ventilation in Intensive Care Unit,” Indian Journal of Respiratory Care, vol. 12, no. 4, 2024, doi: 10.5005/jp-journals-11010-1076
L. Qu and Y. Pei, “A Comprehensive Review on Discriminant Analysis for Addressing Challenges of Class-Level Limitations, Small Sample Size, and Robustness,” Jul. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/pr12071382
R. Suhendra et al., “Evaluation of Gradient Boosted Classifier in Atopic Dermatitis Severity Score Classification,” Heca Journal of Applied Sciences, vol. 1, no. 2, 2023, doi: 10.60084/hjas.v1i2.85
A. Fajar, R. Sarno, C. Fatichah, R. I. Susilo, and G. Pangestu, “Cyclical Learning Rate Optimization on Deep Learning Model for Brain Tumor Segmentation,” IEEE Access, vol. 11, 2023, doi: 10.1109/ACCESS.2023.3326475
C. A. Rabbath and D. Corriveau, “A comparison of piecewise cubic Hermite interpolating polynomials, cubic splines and piecewise linear functions for the approximation of projectile aerodynamics,” Defence Technology, vol. 15, no. 5, 2019, doi: 10.1016/j.dt.2019.07.016
E. L. Dan, M. Dinsoreanu, and R. C. Muresan, “Accuracy of Six Interpolation Methods Applied on Pupil Diameter Data,” in 2020 22nd IEEE International Conference on Automation, Quality and Testing, Robotics - THETA, AQTR 2020 - Proceedings, 2020. doi: 10.1109/AQTR49680.2020.9129915
E. A. Martinez-Rios, B. B. Rogelio, N. T. Sergio, and P. M. Hector, “Applications of the Generalized Morse Wavelets: A Review,” 2023. doi: 10.1109/ACCESS.2022.3232729
S. J. Ward, R. Layouni, S. Arshavsky-Graham, E. Segal, and S. M. Weiss, “Morlet Wavelet Filtering and Phase Analysis to Reduce the Limit of Detection for Thin Film Optical Biosensors,” ACS Sens, vol. 6, no. 8, 2021, doi: 10.1021/acssensors.1c00787
B. Koonce, Convolutional neural networks with swift for tensorflow: Image recognition and dataset categorization. 2021. doi: 10.1007/978-1-4842-6168-2
N. Shawki, R. R. Nunez, I. Obeid, and J. Picone, “On Automating Hyperparameter Optimization for Deep Learning Applications,” in 2021 IEEE Signal Processing in Medicine and Biology Symposium, SPMB 2021 - Proceedings, 2021. doi: 10.1109/SPMB52430.2021.9672266
H. González, C. Arizmendi, and B. F. Giraldo, “Design of a Classifier to Determine the Optimal Moment of Weaning of Patients undergoing to the T-tube Test,” in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, 2022, pp. 422–425
L. Donisi et al., “Bidimensional and Tridimensional Poincaré Maps in Cardiology: A Multiclass Machine Learning Study,” Electronics (Switzerland), vol. 11, no. 3, 2022, doi: 10.3390/electronics11030448
G. Garcia-Isla, V. Corino, and L. Mainardi, “Poincaré plot image and rhythm-specific atlas for atrial bigeminy and atrial fibrillation detection,” IEEE J Biomed Health Inform, vol. 25, no. 4, 2021, doi: 10.1109/JBHI.2020.3012339
A. R. Baptistella et al., “Prediction of extubation outcome in mechanically ventilated patients: Development and validation of the Extubation Predictive Score (ExPreS),” PLoS One, vol. 16, no. 3, p. e0248868, 2021
F. Torrini et al., “Prediction of extubation outcome in critically ill patients: a systematic review and meta-analysis,” Crit Care, vol. 25, no. 1, 2021, doi: 10.1186/s13054-021-03802-3
T. Uchiyama, N. Sogi, K. Niinuma, and K. Fukui, “Visually explaining 3D-CNN predictions for video classification with an adaptive occlusion sensitivity analysis,” in Proceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023, 2023. doi: 10.1109/WACV56688.2023.00156
H. González, C. J. Arizmendi, and B. F. Giraldo, “Development of a Deep Learning Model for the Prediction of Ventilator Weaning,” International journal of online and biomedical engineering, vol. 20, no. 11, pp. 161–178, Aug. 2024, doi: 10.3991/ijoe.v20i11.49453
Z. Xu et al., “Pathological findings of COVID-19 associated with acute respiratory distress syndrome,” Lancet Respir Med, vol. 8, no. 4, 2020, doi: 10.1016/S2213-2600(20)30076-X.
dc.relation.uriapolo.spa.fl_str_mv https://apolo.unab.edu.co/en/persons/carlos-julio-arizmendi-pereira
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Colombia
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Doctorado en Ingeniería
dc.publisher.programid.none.fl_str_mv DING-1502
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/29727/1/2025_Tesis_Hernando_Gonzalez_Acevedo.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/29727/5/Licencia.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/29727/4/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/29727/6/2025_Tesis_Hernando_Gonzalez_Acevedo.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/29727/7/Licencia.pdf.jpg
bitstream.checksum.fl_str_mv c8b6ca3c7f750574039d919404389392
291a7ef397c66b7b82fa707148823bca
3755c0cfdb77e29f2b9125d7a45dd316
f09b7cbf3ee53f9001fdcb1afb8a23c3
dc6b7266c99c9a8cc9fe73a241cd4f0f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1837097655808819200
spelling Arizmendi Pereira, Carlos Julio79e0125f-b191-4144-999b-281177ddaaf9Giraldo Giraldo, Beatrizf065668e-e27a-45e4-9e6f-251c3517bdc8González Acevedo, Hernandoa0391c07-7794-4d89-8b62-bd75fbb4534fGonzález Acevedo, Hernando [0000544655]Arizmendi Pereira, Carlos Julio [1381550]González Acevedo, Hernando [V8tga0cAAAAJ]Arizmendi Pereira, Carlos Julio [JgT_je0AAAAJ]González Acevedo, Hernando [0000-0001-6242-3939]Giraldo Giraldo, Beatriz [0000-0002-9910-8577]González Acevedo, Hernando [55821231500]González Acevedo, Hernando [Hernando-Gonzalez]Arizmendi Pereira, Carlos Julio [Carlos_Arizmendi2]Grupo de Investigación Control y Mecatrónica - GICYMGonzalez Acevedo, Hernando [hernando-gonzalez-acevedo-2]Arizmendi Pereira, Carlos Julio [carlos-julio-arizmendi-pereira]ColombiaUNAB Campus Bucaramanga2025-06-13T16:34:35Z2025-06-13T16:34:35Z2025-06-11http://hdl.handle.net/20.500.12749/29727instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLa insuficiencia respiratoria aguda (IRA) es una afección en la que los pulmones no pueden realizar un intercambio adecuado de gases, lo que frecuentemente requiere el uso de ventilación mecánica (VM). El proceso de extubación, o retiro de la ventilación, es delicado y debe realizarse en el momento adecuado para evitar complicaciones. Hasta un 25% de los pacientes reintubados, tras una extubación fallida, enfrentan riesgos mayores, como infecciones nosocomiales y atrofia muscular. Dado el impacto de una extubación fallida en los resultados clínicos, surge la necesidad de desarrollar herramientas más precisas para predecir el éxito del destete. El objetivo de esta tesis es proponer nuevos índices basados en señales electrocardiográficas y de flujo respiratorio para mejorar la predicción del éxito o fracaso de la extubación tras una Prueba de Respiración Espontánea (SBT, por sus siglas en inglés Spontaneous Breathing Trial). Para ello, se analizan descriptores extraídos en el dominio del tiempo, frecuencia, diagramas de Poincaré y tiempo-frecuencia, con el fin de caracterizar la dinámica cardiorrespiratoria durante la extubación. Además, se emplean técnicas de procesamiento de señales y algoritmos de clasificación basados en aprendizaje automático (ML, por sus siglas en ingles Machine Learning) y aprendizaje profundo (DL, por sus siglas en inglés Deep Learning) para optimizar la predicción del desenlace del procedimiento. Los índices propuestos constituyen una herramienta de apoyo en entornos clínicos, como soporte a decisiones más objetivas e informadas en el proceso de destete de la VM.Programa de Becas de Excelencia Doctoral del BicentenarioINTRODUCCIÓN 15 1. FUNDAMENTACIÓN DE LA INVESTIGACIÓN 17 1.1 PROBLEMA DE INVESTIGACIÓN 17 1.2 PREGUNTA DE INVESTIGACIÓN 18 1.3 HIPÓTESIS DE INVESTIGACIÓN 18 1.4 JUSTIFICACIÓN DE LA INVESTIGACIÓN 19 1.5 ESTADO DEL ARTE 20 2. OBJETIVOS DE LA TESIS 24 2.1 OBJETIVO PRINCIPAL 24 2.2 OBJETIVOS ESPECÍFICOS 24 3. MARCO TEÓRICO 25 3.1 SISTEMA CARDIOVASCULAR 25 3.2 SISTEMA RESPIRATORIO 25 3.3 INSUFICIENCIA RESPIRATORIA AGUDA 28 3.4 VENTILACIÓN MECÁNICA 29 3.5 BASE DE DATOS WEANDB 32 3.6 MARCO NORMATIVO 33 3.7 BENCHMARKING DE EMPRESAS Y TECNOLOGÍAS 34 4. DESCRIPTORES PARA PREDECIR EL ÉXITO O FRACASO DE UN PROCESO DE EXTUBACIÓN 36 4.1 TECNICAS DE INTELIGENCIA ARTIFICIAL IMPLEMENTADAS PARA LA PREDICCIÓN DE LA EXTUBACIÓN 36 4.1.1 Preprocesamiento de la base de datos 36 4.1.2 Preparación de los datos 37 4.1.3 Sistema de clasificación 40 4.2 PROCESAMIENTO DE SEÑALES DE FLUJO RESPIRATORIO Y ELECTROCARDIOGRÁFICAS 45 4.3 SELECCIÓN DE CARACTERÍSTICAS PARA UN SISTEMA DE CLASIFICACIÓN A PARTIR DE DATOS ESTADÍSTICOS DE LAS SERIES TEMPORALES 46 4.4 SELECCIÓN DE CARACTERÍSTICAS PARA UN SISTEMA DE CLASIFICACIÓN A PARTIR DE UN ANÁLISIS EN FRECUENCIA UTILIZANDO LA TRANSFORMADA DE FOURIER NO UNIFORME 48 4.4.1 Características en el dominio de la frecuencia 50 4.4.2 Sistema de clasificación 53 4.5 PREDICCIÓN DEL ÉXITO DE LA RETIRADA DEL RESPIRADOR EN PACIENTES MEDIANTE DIAGRAMA DE POINCARÉ 54 4.6 PREDICCIÓN DEL FRACASO DEL DESTETE MEDIANTE ANÁLISIS DE TIEMPO-FRECUENCIA DE SEÑALES ELECTROCARDIOGRÁFICAS Y DE FLUJO RESPIRATORIO 64 4.6.1 Análisis tiempo-frecuencia: Transformada de Wavelet 67 4.6.2 Sistema de clasificación 70 5. RESULTADOS 72 5.1 MODELO DE CLASIFICACIÓN BASADO EN DATOS ESTADÍSTICOS DE LAS SERIES TEMPORALES 72 5.2 MODELO DE CLASIFICACIÓN BASADO EN CARACTERÍSTICAS DEL ESPECTRO EN FRECUENCIA UTILIZANDO LA TRANSFORMADA DE FOURIER NO UNIFORME 74 5.3 MODELO DE CLASIFICACIÓN BASADO EN CARACTERÍSTICAS DEL DIAGRAMA DE POINCARÉ 75 5.4 MODELO DE CLASIFICACIÓN BASADO EN CARACTERÍSTICAS DEL DIAGRAMA TIEMPO-FRECUENCIA OBTENIDO MEDIANTE LA TRANSFORMADA DE FOURIER NO UNIFORME 78 5.5 MODELO DE CLASIFICACIÓN BASADO EN CARACTERÍSTICAS DEL DIAGRAMA TIEMPO-FRECUENCIA OBTENIDO MEDIANTE LA TRANSFORMADA DE WAVELET 81 5.6 ANALISIS ESTADÍSTICO 85 6. CONCLUSIONES 93 7. RECOMENDACIONES 95 8. REFERENCIAS BIBLIOGRÁFICAS 96 9. ANEXOS 106DoctoradoAcute respiratory failure (ARF) is a condition in which the lungs are unable to perform adequate gas exchange, often necessitating the use of mechanical ventilation (MV). The extubation process, or weaning from ventilation, is delicate and must be performed at the appropriate time to avoid complications. Up to 25% of reintubated patients, after failed extubation, face increased risks, such as nosocomial infections and muscle atrophy. Given the impact of failed extubation on clinical outcomes, there is a need for more accurate tools to predict weaning success. The aim of this thesis is to propose new indexes based on electrocardiographic and respiratory flow signals to improve the prediction of extubation success or failure after a Spontaneous Breathing Trial (SBT). For this purpose, descriptors extracted in the time, frequency, Poincaré diagrams and time-frequency domain are analyzed to characterize cardiorespiratory dynamics during extubation. In addition, signal processing techniques and classification algorithms based on machine learning (ML) and deep learning (DL) are used to optimize the prediction of the outcome of the procedure. The proposed indexes constitute a support tool in the clinical setting, as support for more objective and informed decision making in the MV weaning process.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Análisis de nuevos índices de las señales electrocardiográficas y de flujo respiratorio para predecir el éxito o fracaso del proceso de extubación de pacientes asistidos por ventilación mecánicaAnalysis of new indices of electrocardiographic and respiratory flow signals to predict the success or failure of the extubation process in mechanically ventilated patientsThesisinfo:eu-repo/semantics/doctoralThesisTesishttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TDDoctorado en IngenieríaUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaDoctorado en IngenieríaDING-1502EngineeringMechanical ventilationSpontaneous breathing testTime-frequency analysisPoincaré diagramMachine learningDeep learningNeural networks (Computer science)Signal processingPatient monitoringVital signsArtificial respiration (Equipment and supplies)Respirators (Medical Equipment)IngenieríaRedes neuronales (Computadores)Procesamiento de señalesMonitoreo del pacienteSignos vitalesRespiración artificial (Equipo y accesorios)Respiradores (Equipo médico)Ventilación mecánicaPrueba de respiración espontáneaAnálisis tiempo-frecuenciaDiagrama de poincaréL. D. J. Bos and L. B. Ware, “Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes,” 2022. doi: 10.1016/S0140-6736(22)01485-4N. Rittayamai and L. Brochard, “Recent advances in mechanical ventilation in patients with acute respiratory distress syndrome,” European Respiratory Review, vol. 24, no. 135, 2015, doi: 10.1183/09059180.00012414S. M. Sison, G. K. Sivakumar, C. Caufield-Noll, W. B. Greenough, E. S. Oh, and P. Galiatsatos, “Mortality outcomes of patients on chronic mechanical ventilation in different care settings: A systematic review,” 2021. doi: 10.1016/j.heliyon.2021.e06230W. Windisch et al., “Prolonged weaning from mechanical ventilation results from specialized weaning: Centers—a registry-based study from the WeanNet initiative,” Dtsch Arztebl Int, vol. 117, no. 12, 2020, doi: 10.3238/arztebl.2020.0197F. C. Trudzinski et al., “Risk Factors for Prolonged Mechanical Ventilation and Weaning Failure: A Systematic Review,” Respiration, vol. 101, no. 10, 2022, doi: 10.1159/000525604M. Mezidi et al., “Pressure support and positive end-expiratory pressure versus T-piece during spontaneous breathing trial in difficult weaning from mechanical ventilation: study protocol for the SBT-ICU study,” Trials, vol. 23, no. 1, 2022, doi: 10.1186/s13063-022-06896-4S. S. Batah and A. T. Fabro, “Pulmonary pathology of ARDS in COVID-19: A pathological review for clinicians,” 2021. doi: 10.1016/j.rmed.2020.106239P. C. Hsu et al., “Risk factors for prolonged mechanical ventilation in critically ill patients with influenza-related acute respiratory distress syndrome,” Respir Res, vol. 25, no. 1, 2024, doi: 10.1186/s12931-023-02648-3P. Vignon, “Cardiopulmonary interactions during ventilator weaning,” 2023. doi: 10.3389/fphys.2023.1275100P. Armañac-Julián et al., “Cardiopulmonary coupling indices to assess weaning readiness from mechanical ventilation,” Sci Rep, vol. 11, no. 1, 2021, doi: 10.1038/s41598-021-95282-2P. Manickam et al., “Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare,” 2022. doi: 10.3390/bios12080562J. E. Daza-Arana, H. Lozada-Ramos, D. F. Ávila-Hernández, L. T. Ordoñez-Mora, and D. P. Sánchez, “Prolonged Mechanical Ventilation Following Coronary Artery Bypass Graft in Santiago De Cali, Colombia,” Vasc Health Risk Manag, vol. 18, 2022, doi: 10.2147/VHRM.S367108K. Kaier, T. Heister, J. Wolff, and M. Wolkewitz, “Mechanical ventilation and the daily cost of ICU care,” BMC Health Serv Res, vol. 20, no. 1, 2020, doi: 10.1186/s12913-020-05133-5H. Yadav, B. T. Thompson, and O. Gajic, “Is acute respiratory distress syndrome a preventable disease?,” 2017. doi: 10.1164/rccm.201609-1767CIG. Bellani et al., “Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries,” JAMA - Journal of the American Medical Association, vol. 315, no. 8, 2016, doi: 10.1001/jama.2016.0291K. E. A. Burns et al., “Ventilator Weaning and Discontinuation Practices for Critically Ill Patients,” in JAMA - Journal of the American Medical Association, 2021. doi: 10.1001/jama.2021.2384L. Jiebing et al., “Influencing factors of weaning outcome of intensive care unit patients with planned extubation,” Chinese Critical Care Medicine, vol. 33, no. 5, 2021, doi: 10.3760/cma.j.cn121430-20200410-00280A. W. Thille, F. Boissier, H. Ben Ghezala, K. Razazi, A. Mekontso-Dessap, and C. Brun-Buisson, “Risk factors for and prediction by caregivers of extubation failure in ICU patients: A prospective study,” Crit Care Med, vol. 43, no. 3, 2015, doi: 10.1097/CCM.0000000000000748L. Rose, M. J. Schultz, C. R. Cardwell, P. Jouvet, D. F. McAuley, and B. Blackwood, “Automated versus non-automated weaning for reducing the duration of mechanical ventilation for critically ill adults and children: A cochrane systematic review and meta-analysis,” Crit Care, vol. 19, no. 1, 2015, doi: 10.1186/s13054-015-0755-6T. Pham, M. Dres, and R. Coudroy, “Weaning the Simple and Complex Patients,” in Mechanical Ventilation from Pathophysiology to Clinical Evidence, 2022. doi: 10.1007/978-3-030-93401-9_22A. W. Thille et al., “T-piece versus pressure-support ventilation for spontaneous breathing trials before extubation in patients at high risk of reintubation: Protocol for 98 a multicentre, randomised controlled trial (TIP-EX),” BMJ Open, vol. 10, no. 11, 2020, doi: 10.1136/bmjopen-2020-042619M. M. Dadam et al., “The Effect of Reconnection to Mechanical Ventilation for 1 Hour After Spontaneous Breathing Trial on Reintubation Among Patients Ventilated for More Than 12 Hours: A Randomized Clinical Trial,” Chest, vol. 160, no. 1, 2021, doi: 10.1016/j.chest.2021.02.064P. A. F. Magalhães, C. A. Camillo, D. Langer, L. B. Andrade, M. do C. M. B. Duarte, and R. Gosselink, “Weaning failure and respiratory muscle function: What has been done and what can be improved?,” 2018. doi: 10.1016/j.rmed.2017.11.023M. M. Musumeci et al., “Predictors of prolonged ventilator weaning and mortality in critically ill patients with COVID-19,” Jornal Brasileiro de Pneumologia, vol. 49, no. 4, 2023, doi: 10.36416/1806-3756/e20230131Y. Igarashi, K. Ogawa, K. Nishimura, S. Osawa, H. Ohwada, and S. Yokobori, “Machine learning for predicting successful extubation in patients receiving mechanical ventilation,” 2022. doi: 10.3389/fmed.2022.961252J. Menguy, K. De Longeaux, L. Bodenes, B. Hourmant, and E. L’Her, “Defining predictors for successful mechanical ventilation weaning, using a data-mining process and artificial intelligence,” Sci Rep, vol. 13, no. 1, 2023, doi: 10.1038/s41598-023-47452-7M. T. Kwong, G. W. Colopy, A. M. Weber, A. Ercole, and J. H. M. Bergmann, “The efficacy and effectiveness of machine learning for weaning in mechanically ventilated patients at the intensive care unit: a systematic review,” Biodes Manuf, vol. 2, no. 1, pp. 31–40, Mar. 2019, doi: 10.1007/S42242-018-0030-1/TABLES/4M. H. Hsieh, M. J. Hsieh, C. M. Chen, C. C. Hsieh, C. M. Chao, and C. C. Lai, “An artificial neural network model for predicting successful extubation in intensive care units,” J Clin Med, vol. 7, no. 9, 2018, doi: 10.3390/jcm7090240H. J. Kuo, H. W. Chiu, C. N. Lee, T. T. Chen, C. C. Chang, and M. Y. Bien, “Improvement in the prediction of ventilator weaning outcomes by an artificial neural network in a medical ICU,” Respir Care, vol. 60, no. 11, 2015, doi: 10.4187/respcare.03648M. H. Hsieh et al., “Predicting weaning difficulty for planned extubation patients with an artificial neural network,” Medicine, vol. 98, no. 40, 2019K.-H. Cheng et al., “The Feasibility of a Machine Learning Approach in Predicting Successful Ventilator Mode Shifting for Adult Patients in the Medical Intensive Care Unit,” Medicina (B Aires), vol. 58, no. 3, p. 360, 2022C. I. Ossai and N. Wickramasinghe, “Intelligent decision support with machine learning for efficient management of mechanical ventilation in the intensive care unit–A critical overview,” Int J Med Inform, vol. 150, p. 104469, 2021T. Stivi, D. Padawer, N. Dirini, A. Nachshon, B. M. Batzofin, and S. Ledot, “Using Artificial Intelligence to Predict Mechanical Ventilation Weaning Success in Patients with Respiratory Failure, Including Those with Acute Respiratory Distress Syndrome,” 2024. doi: 10.3390/jcm13051505A. Muniasamy and A. Alasiry, “Deep learning: The impact on future eLearning,” International Journal of Emerging Technologies in Learning, vol. 15, no. 1, 2020, doi: 10.3991/IJET.V15I01.11435N. Kim, W. Seo, J. ho Kim, S. Y. Choi, and S. M. Park, “WavelNet: A novel convolutional neural network architecture for arrhythmia classification from electrocardiograms,” Comput Methods Programs Biomed, vol. 231, 2023, doi: 10.1016/j.cmpb.2023.107375B. Wang et al., “Arrhythmia Disease Diagnosis Based on ECG Time-Frequency Domain Fusion and Convolutional Neural Network,” IEEE J Transl Eng Health Med, vol. 11, 2023, doi: 10.1109/JTEHM.2022.3232791M. F. Qureshi, Z. Mushtaq, M. Z. U. Rehman, and E. N. Kamavuako, “Spectral Image-Based Multiday Surface Electromyography Classification of Hand Motions Using CNN for Human-Computer Interaction,” IEEE Sens J, vol. 22, no. 21, 2022, doi: 10.1109/JSEN.2022.3204121J. Li, L. Wei, Y. Wen, X. Liu, and H. Wang, “Hand gesture recognition based improved multi-channels CNN architecture using EMG sensors,” Journal of Intelligent and Fuzzy Systems, vol. 43, no. 1, 2022, doi: 10.3233/JIFS-212390J. Zhang and K. Li, “A multi-view CNN encoding for motor imagery EEG signals,” Biomed Signal Process Control, vol. 85, 2023, doi: 10.1016/j.bspc.2023.105063B. Zali-Vargahan, A. Charmin, H. Kalbkhani, and S. Barghandan, “Deep time-frequency features and semi-supervised dimension reduction for subject-independent emotion recognition from multi-channel EEG signals,” Biomed Signal Process Control, vol. 85, 2023, doi: 10.1016/j.bspc.2023.104806Y. Jia, C. Kaul, T. Lawton, R. Murray-Smith, and I. Habli, “Prediction of weaning from mechanical ventilation using convolutional neural networks,” Artif Intell Med, vol. 117, p. 102087, 2021J. E. Park et al., “Development of a Machine Learning Model for Predicting Weaning Outcomes Based Solely on Continuous Ventilator Parameters during Spontaneous 100 Breathing Trials,” Bioengineering, vol. 10, no. 10, 2023, doi: 10.3390/bioengineering10101163G. H. Kim et al., “FT-GAT: Graph neural network for predicting spontaneous breathing trial success in patients with mechanical ventilation.,” Comput Methods Programs Biomed, vol. 240, 2023, doi: 10.1016/j.cmpb.2023.107673S. Khonsary, “Guyton and Hall: Textbook of Medical Physiology,” Surg Neurol Int, vol. 8, no. 1, 2017, doi: 10.4103/sni.sni_327_17G. F. Baker, G. J. Tortora, and N. P. A. Nostakos, “Principles of Anatomy and Physiology,” Am J Nurs, vol. 76, no. 3, 1976, doi: 10.2307/3423898P. Pelosi et al., “Personalized mechanical ventilation in acute respiratory distress syndrome,” 2021. doi: 10.1186/s13054-021-03686-3A. F. Cumpstey, A. H. Oldman, D. S. Martin, A. Smith, and M. P. W. Grocott, “Oxygen Targets During Mechanical Ventilation in the ICU: A Systematic Review and Meta-Analysis,” 2022. doi: 10.1097/CCE.0000000000000652K. E. A. Burns et al., “Non-invasive ventilation versus invasive weaning in critically ill adults: a systematic review and meta-analysis,” Thorax, vol. 77, no. 8, 2022, doi: 10.1136/thoraxjnl-2021-216993A. Tanaka et al., “Association between early tracheostomy and patient outcomes in critically ill patients on mechanical ventilation: a multicenter cohort study,” J Intensive Care, vol. 10, no. 1, 2022, doi: 10.1186/s40560-022-00610-xA. W. Thille et al., “Spontaneous-Breathing Trials with Pressure-Support Ventilation or a T-Piece,” New England Journal of Medicine, vol. 387, no. 20, 2022, doi: 10.1056/nejmoa2209041S. J. Na, R.-E. Ko, J. Nam, M. G. Ko, and K. Jeon, “Comparison between pressure support ventilation and T-piece in spontaneous breathing trials,” Respir Res, vol. 23, no. 1, pp. 1–11, 2022A. Arcentales, P. Caminal, I. Diaz, S. Benito, and B. F. Giraldo, “Classification of patients undergoing weaning from mechanical ventilation using the coherence between heart rate variability and respiratory flow signal,” Physiol Meas, vol. 36, no. 7, 2015, doi: 10.1088/0967-3334/36/7/1439S. Sateesh Kamat and S. S. Kamath, “A Prospective Comparative study between the Tobin Index and Integrative Weaning Index to predict the outcome of trials of weaning from mechanical ventilation Introduction,” vol. 21, p. 2022, [Online]. Available: http://ymerdigital.comG. C. Funk et al., “Incidence and outcome of weaning from mechanical ventilation according to new categories,” European Respiratory Journal, vol. 35, no. 1, 2010, doi: 10.1183/09031936.00056909A. W. Thille, J. C. M. Richard, and L. Brochard, “The decision to extubate in the intensive care unit,” 2013. doi: 10.1164/rccm.201208-1523CIB. Rochwerg et al., “Official ERS/ATS clinical practice guidelines: Noninvasive ventilation for acute respiratory failure,” 2017. doi: 10.1183/13993003.02426-2016Ministerio de Salud y Protección Social, “Resolución 3100 de 2019,” 2019A. Gallego Cuiñas and E. Martínez, “Comité científico,” in Queridos todos, 2016. doi: 10.3726/978-3-0352-6365-7/12Congreso de la República de Colombia., “Ley 23 De 1981,” Congreso de la República de Colombia., vol. 1981, no. 35, 1981P. R. Newswire, “Global Ventilator Market : Analysis and Forecast, 2021-2030,” 2020R. L. Dellaca, C. Veneroni, and R. Farre, “Trends in mechanical ventilation: Are we ventilating our patients in the best possible way?,” Breathe, vol. 13, no. 2, 2017, doi: 10.1183/20734735.007817A. S. Neto, R. R. Filho, L. L. Rocha, and M. J. Schultz, “Recent advances in mechanical ventilation in patients without acute respiratory distress syndrome,” F1000Prime Rep, vol. 6, 2014, doi: 10.12703/P6-115F. Bagherzadeh-Khiabani, A. Ramezankhani, F. Azizi, F. Hadaegh, E. W. Steyerberg, and D. Khalili, “A tutorial on variable selection for clinical prediction models: feature selection methods in data mining could improve the results,” J Clin Epidemiol, vol. 71, 2016, doi: 10.1016/j.jclinepi.2015.10.002C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electronic Markets, vol. 31, no. 3, 2021, doi: 10.1007/s12525-021-00475-2L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” J Big Data, vol. 8, no. 1, 2021, doi: 10.1186/s40537-021-00444-8I. D. Mienye, T. G. Swart, and G. Obaido, “Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and Applications,” Information, vol. 15, no. 9, p. 517, Aug. 2024, doi: 10.3390/info15090517L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,” Neurocomputing, vol. 415, 2020, doi: 10.1016/j.neucom.2020.07.061O. Rainio, J. Teuho, and R. Klén, “Evaluation metrics and statistical tests for machine learning,” Sci Rep, vol. 14, no. 1, 2024, doi: 10.1038/s41598-024-56706-xB. Boashash, “Estimating and Interpreting The Instantaneous Frequency of a Signal—Part 1: Fundamentals,” Proceedings of the IEEE, vol. 80, no. 4, 1992, doi: 10.1109/5.135376B. Boashash, “Estimating and Interpreting the Instantaneous Frequency of a Signal—Part 2: Algorithms and Applications,” Proceedings of the IEEE, vol. 80, no. 4, 1992, doi: 10.1109/5.135378A. Phinyomark, S. Thongpanja, H. Hu, P. Phukpattaranont, and C. Limsakul, “The Usefulness of Mean and Median Frequencies in Electromyography Analysis,” in Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges, 2012. doi: 10.5772/50639Y. N. Pan, J. Chen, and X. L. Li, “Spectral entropy: A complementary index for rolling element bearing performance degradation assessment,” Proc Inst Mech Eng C J Mech Eng Sci, vol. 223, no. 5, 2009, doi: 10.1243/09544062JMES1224P. Sandhya, V. Spoorthy, S. G. Koolagudi, and N. V. Sobhana, “Spectral Features for Emotional Speaker Recognition,” in Proceedings of 2020 3rd International Conference on Advances in Electronics, Computers and Communications, ICAECC 2020, 2020. doi: 10.1109/ICAECC50550.2020.9339502G. W. Divine, H. J. Norton, A. E. Barón, and E. Juarez-Colunga, “The Wilcoxon–Mann–Whitney Procedure Fails as a Test of Medians,” American Statistician, vol. 72, no. 3, 2018, doi: 10.1080/00031305.2017.1305291J. Cervantes, F. Garcia-Lamont, L. Rodríguez-Mazahua, and A. Lopez, “A comprehensive survey on support vector machine classification: Applications, challenges and trends,” Neurocomputing, vol. 408, 2020, doi: 10.1016/j.neucom.2019.10.118J. Nalepa and M. Kawulok, “Selecting training sets for support vector machines: a review,” 2019. doi: 10.1007/s10462-017-9611-1J. Wu, X. Y. Chen, H. Zhang, L. D. Xiong, H. Lei, and S. H. Deng, “Hyperparameter optimization for machine learning models based on Bayesian optimization,” Journal of Electronic Science and Technology, vol. 17, no. 1, 2019, doi: 10.11989/JEST.1674-862X.80904120F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, 2011A. Jaffar, N. M. Thamrin, M. S. A. M. Ali, M. F. Misnan, A. I. M. Yassin, and N. M. Zan, “Spatial interpolation method comparison for physico-chemical parameters of river water in Klang River using MATLAB,” Bulletin of Electrical Engineering and Informatics, vol. 11, no. 4, 2022, doi: 10.11591/eei.v11i4.3615A. K. Golińska, “Poincaré plots in analysis of selected biomedical signals,” Studies in Logic, Grammar and Rhetoric, vol. 35, no. 48, 2013, doi: 10.2478/slgr-2013-0031B. Wang, D. Liu, X. Gao, and Y. Luo, “Three-Dimensional Poincaré Plot Analysis for Heart Rate Variability,” Complexity, vol. 2022, 2022, doi: 10.1155/2022/3880047J. Rodriguez, A. Voss, P. Caminal, A. Bayes-Genis, and B. F. Giraldo, “Characterization and classification of patients with different levels of cardiac death risk by using Poincaré plot analysis,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2017. doi: 10.1109/EMBC.2017.8037078U. Usman, “On Consistency and Limitation of Independent t-test Kolmogorov Smirnov Test and Mann Whitney U test,” IOSR Journal of Mathematics, vol. 12, no. 04, 2016, doi: 10.9790/5728-1204052227M. Masrour, A. Zare, A. Presedo, and M. H. Nabian, “Intrathecal baclofen efficacy for managing motor function and spasticity severity in patients with cerebral palsy: a systematic review and meta-analysis,” BMC Neurol, vol. 24, no. 1, Dec. 2024, doi: 10.1186/s12883-024-03647-7J. Chakrabarty, M. T. Bhatt, S. Ravindranath, H. M. Shivaraja, and A. H. Mitra, “Yang–Tobin Index and Integrative Weaning Index as Predictors of Successful Weaning from Mechanical Ventilation in Intensive Care Unit,” Indian Journal of Respiratory Care, vol. 12, no. 4, 2024, doi: 10.5005/jp-journals-11010-1076L. Qu and Y. Pei, “A Comprehensive Review on Discriminant Analysis for Addressing Challenges of Class-Level Limitations, Small Sample Size, and Robustness,” Jul. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/pr12071382R. Suhendra et al., “Evaluation of Gradient Boosted Classifier in Atopic Dermatitis Severity Score Classification,” Heca Journal of Applied Sciences, vol. 1, no. 2, 2023, doi: 10.60084/hjas.v1i2.85A. Fajar, R. Sarno, C. Fatichah, R. I. Susilo, and G. Pangestu, “Cyclical Learning Rate Optimization on Deep Learning Model for Brain Tumor Segmentation,” IEEE Access, vol. 11, 2023, doi: 10.1109/ACCESS.2023.3326475C. A. Rabbath and D. Corriveau, “A comparison of piecewise cubic Hermite interpolating polynomials, cubic splines and piecewise linear functions for the approximation of projectile aerodynamics,” Defence Technology, vol. 15, no. 5, 2019, doi: 10.1016/j.dt.2019.07.016E. L. Dan, M. Dinsoreanu, and R. C. Muresan, “Accuracy of Six Interpolation Methods Applied on Pupil Diameter Data,” in 2020 22nd IEEE International Conference on Automation, Quality and Testing, Robotics - THETA, AQTR 2020 - Proceedings, 2020. doi: 10.1109/AQTR49680.2020.9129915E. A. Martinez-Rios, B. B. Rogelio, N. T. Sergio, and P. M. Hector, “Applications of the Generalized Morse Wavelets: A Review,” 2023. doi: 10.1109/ACCESS.2022.3232729S. J. Ward, R. Layouni, S. Arshavsky-Graham, E. Segal, and S. M. Weiss, “Morlet Wavelet Filtering and Phase Analysis to Reduce the Limit of Detection for Thin Film Optical Biosensors,” ACS Sens, vol. 6, no. 8, 2021, doi: 10.1021/acssensors.1c00787B. Koonce, Convolutional neural networks with swift for tensorflow: Image recognition and dataset categorization. 2021. doi: 10.1007/978-1-4842-6168-2N. Shawki, R. R. Nunez, I. Obeid, and J. Picone, “On Automating Hyperparameter Optimization for Deep Learning Applications,” in 2021 IEEE Signal Processing in Medicine and Biology Symposium, SPMB 2021 - Proceedings, 2021. doi: 10.1109/SPMB52430.2021.9672266H. González, C. Arizmendi, and B. F. Giraldo, “Design of a Classifier to Determine the Optimal Moment of Weaning of Patients undergoing to the T-tube Test,” in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), IEEE, 2022, pp. 422–425L. Donisi et al., “Bidimensional and Tridimensional Poincaré Maps in Cardiology: A Multiclass Machine Learning Study,” Electronics (Switzerland), vol. 11, no. 3, 2022, doi: 10.3390/electronics11030448G. Garcia-Isla, V. Corino, and L. Mainardi, “Poincaré plot image and rhythm-specific atlas for atrial bigeminy and atrial fibrillation detection,” IEEE J Biomed Health Inform, vol. 25, no. 4, 2021, doi: 10.1109/JBHI.2020.3012339A. R. Baptistella et al., “Prediction of extubation outcome in mechanically ventilated patients: Development and validation of the Extubation Predictive Score (ExPreS),” PLoS One, vol. 16, no. 3, p. e0248868, 2021F. Torrini et al., “Prediction of extubation outcome in critically ill patients: a systematic review and meta-analysis,” Crit Care, vol. 25, no. 1, 2021, doi: 10.1186/s13054-021-03802-3T. Uchiyama, N. Sogi, K. Niinuma, and K. Fukui, “Visually explaining 3D-CNN predictions for video classification with an adaptive occlusion sensitivity analysis,” in Proceedings - 2023 IEEE Winter Conference on Applications of Computer Vision, WACV 2023, 2023. doi: 10.1109/WACV56688.2023.00156H. González, C. J. Arizmendi, and B. F. Giraldo, “Development of a Deep Learning Model for the Prediction of Ventilator Weaning,” International journal of online and biomedical engineering, vol. 20, no. 11, pp. 161–178, Aug. 2024, doi: 10.3991/ijoe.v20i11.49453Z. Xu et al., “Pathological findings of COVID-19 associated with acute respiratory distress syndrome,” Lancet Respir Med, vol. 8, no. 4, 2020, doi: 10.1016/S2213-2600(20)30076-X.https://apolo.unab.edu.co/en/persons/carlos-julio-arizmendi-pereiraORIGINAL2025_Tesis_Hernando_Gonzalez_Acevedo.pdf2025_Tesis_Hernando_Gonzalez_Acevedo.pdfTesisapplication/pdf4495585https://repository.unab.edu.co/bitstream/20.500.12749/29727/1/2025_Tesis_Hernando_Gonzalez_Acevedo.pdfc8b6ca3c7f750574039d919404389392MD51open accessLicencia.pdfLicencia.pdfLicenciaapplication/pdf403834https://repository.unab.edu.co/bitstream/20.500.12749/29727/5/Licencia.pdf291a7ef397c66b7b82fa707148823bcaMD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/29727/4/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD54open accessTHUMBNAIL2025_Tesis_Hernando_Gonzalez_Acevedo.pdf.jpg2025_Tesis_Hernando_Gonzalez_Acevedo.pdf.jpgIM Thumbnailimage/jpeg7038https://repository.unab.edu.co/bitstream/20.500.12749/29727/6/2025_Tesis_Hernando_Gonzalez_Acevedo.pdf.jpgf09b7cbf3ee53f9001fdcb1afb8a23c3MD56open accessLicencia.pdf.jpgLicencia.pdf.jpgIM Thumbnailimage/jpeg13004https://repository.unab.edu.co/bitstream/20.500.12749/29727/7/Licencia.pdf.jpgdc6b7266c99c9a8cc9fe73a241cd4f0fMD57metadata only access20.500.12749/29727oai:repository.unab.edu.co:20.500.12749/297272025-06-13 22:01:27.48open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg==