Desarrollo de un sistema para el reconocimiento de dígitos en las lecturas de las pantallas ("displays") de instrumentos de presión mediante técnicas de procesamiento de imágenes, visión e inteligencia artificial para almacenamiento en una base de datos

La calibración de los manómetros de presión constituye un proceso imprescindible que asegura la trazabilidad, la fiabilidad y la seguridad en el ámbito industrial. Sin embargo, en gran parte de la instrumentación de presión no existen interfaces digitales de acceso para poder obtener las lecturas, l...

Full description

Autores:
Angulo Pineda, Jhon Alejandro
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/32357
Acceso en línea:
http://hdl.handle.net/20.500.12749/32357
Palabra clave:
Digital metrology
Computer vision
CNN
Pressure instruments
Engineering systems
Technological innovations
Software development
Image processing
Optical data processing
Ingeniería de sistemas
Innovaciones tecnológicas
Desarrollo de software
Procesamiento de imágenes
Procesamiento óptico de datos
Metrología digital
Visión por computador
OCR
YOLO
Instrumentos de presión
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_6ed9f833e2a31215f0a3b8e078d9f562
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/32357
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de un sistema para el reconocimiento de dígitos en las lecturas de las pantallas ("displays") de instrumentos de presión mediante técnicas de procesamiento de imágenes, visión e inteligencia artificial para almacenamiento en una base de datos
dc.title.translated.spa.fl_str_mv Development of a system for digit recognition in pressure instrument display readings using image processing, vision, and artificial intelligence techniques for database storage
title Desarrollo de un sistema para el reconocimiento de dígitos en las lecturas de las pantallas ("displays") de instrumentos de presión mediante técnicas de procesamiento de imágenes, visión e inteligencia artificial para almacenamiento en una base de datos
spellingShingle Desarrollo de un sistema para el reconocimiento de dígitos en las lecturas de las pantallas ("displays") de instrumentos de presión mediante técnicas de procesamiento de imágenes, visión e inteligencia artificial para almacenamiento en una base de datos
Digital metrology
Computer vision
CNN
Pressure instruments
Engineering systems
Technological innovations
Software development
Image processing
Optical data processing
Ingeniería de sistemas
Innovaciones tecnológicas
Desarrollo de software
Procesamiento de imágenes
Procesamiento óptico de datos
Metrología digital
Visión por computador
OCR
YOLO
Instrumentos de presión
title_short Desarrollo de un sistema para el reconocimiento de dígitos en las lecturas de las pantallas ("displays") de instrumentos de presión mediante técnicas de procesamiento de imágenes, visión e inteligencia artificial para almacenamiento en una base de datos
title_full Desarrollo de un sistema para el reconocimiento de dígitos en las lecturas de las pantallas ("displays") de instrumentos de presión mediante técnicas de procesamiento de imágenes, visión e inteligencia artificial para almacenamiento en una base de datos
title_fullStr Desarrollo de un sistema para el reconocimiento de dígitos en las lecturas de las pantallas ("displays") de instrumentos de presión mediante técnicas de procesamiento de imágenes, visión e inteligencia artificial para almacenamiento en una base de datos
title_full_unstemmed Desarrollo de un sistema para el reconocimiento de dígitos en las lecturas de las pantallas ("displays") de instrumentos de presión mediante técnicas de procesamiento de imágenes, visión e inteligencia artificial para almacenamiento en una base de datos
title_sort Desarrollo de un sistema para el reconocimiento de dígitos en las lecturas de las pantallas ("displays") de instrumentos de presión mediante técnicas de procesamiento de imágenes, visión e inteligencia artificial para almacenamiento en una base de datos
dc.creator.fl_str_mv Angulo Pineda, Jhon Alejandro
dc.contributor.advisor.none.fl_str_mv Arizmendi Pereira, Carlos Julio
dc.contributor.author.none.fl_str_mv Angulo Pineda, Jhon Alejandro
dc.contributor.cvlac.spa.fl_str_mv Angulo Pineda, Jhon Alejandro [0001357319]
Arizmendi Pereira, Carlos Julio [1381550]
dc.contributor.googlescholar.spa.fl_str_mv Angulo Pineda, Jhon Alejandro [Dhm18h4AAAAJ]
Arizmendi Pereira, Carlos Julio [JgT_je0AAAAJ]
dc.contributor.orcid.spa.fl_str_mv Angulo Pineda, Jhon Alejandro [0009-0007-6768-3554]
dc.contributor.researchgate.spa.fl_str_mv Angulo Pineda, Jhon Alejandro [Jhon-Angulo-Pineda]
Arizmendi Pereira, Carlos Julio [Carlos_Arizmendi2]
dc.contributor.apolounab.spa.fl_str_mv Arizmendi Pereira, Carlos Julio [carlos-julio-arizmendi-pereira]
dc.contributor.linkedin.spa.fl_str_mv Angulo Pineda, Jhon Alejandro [jhon-alejandro-a-a81118143]
dc.subject.keywords.spa.fl_str_mv Digital metrology
Computer vision
CNN
Pressure instruments
Engineering systems
Technological innovations
Software development
Image processing
Optical data processing
topic Digital metrology
Computer vision
CNN
Pressure instruments
Engineering systems
Technological innovations
Software development
Image processing
Optical data processing
Ingeniería de sistemas
Innovaciones tecnológicas
Desarrollo de software
Procesamiento de imágenes
Procesamiento óptico de datos
Metrología digital
Visión por computador
OCR
YOLO
Instrumentos de presión
dc.subject.lemb.spa.fl_str_mv Ingeniería de sistemas
Innovaciones tecnológicas
Desarrollo de software
Procesamiento de imágenes
Procesamiento óptico de datos
dc.subject.proposal.spa.fl_str_mv Metrología digital
Visión por computador
OCR
YOLO
Instrumentos de presión
description La calibración de los manómetros de presión constituye un proceso imprescindible que asegura la trazabilidad, la fiabilidad y la seguridad en el ámbito industrial. Sin embargo, en gran parte de la instrumentación de presión no existen interfaces digitales de acceso para poder obtener las lecturas, las cuales dependen de métodos manuales, lentos y propenso a errores de transcripción. Ante esta problemática, en el presente trabajo se presenta un sistema de reconocimiento automático de los dígitos de las pantallas digitales de los instrumentos de presión, investigando para ello técnicas de procesamiento de imágenes, de visión por computador y de inteligencia artificial. La metodología utilizada en este estudio incluye las etapas de adquisición y preprocesamiento de imagen, segmentación de regiones de interés, y OCR (del inglés Optical Character Recognition), usando modelos de aprendizaje profundo soportados en CNN (del inglés Convolutional Neural Network) y detección soportada en YOLO. Se llevó a cabo la implementación de este sistema desarrollando una base de datos local donde estarían guardados los registros con un sello temporal y clave de dispositivo y una interfaz gráfica que permita capturar, validar y enviar imágenes. Finalmente, la experimentación concluyó que el modelo CNN alcanza métricas por encima del 95 % en precisión, recall y F1-Score en los conjuntos de validación y de prueba, mientras que la implementación de YOLO permite la detección robusta de la región de los dígitos (dígitos en condiciones de variabilidad de la iluminación). También se muestra la reducción del tiempo que requiere el procesamiento del registro si se compara contra el procesamiento manual del registro, lo que mejora la eficiencia y disminuye el riesgo de errores de transcripción. Los resultados demuestran la viabilidad de esta propuesta como la alternativa no intrusiva para digitalizar los instrumentos de presión sin interfaces de comunicación estándar, a la vez que están absolutamente ligados a la optimización de los procesos metrológicos en la transición hacia laboratorios inteligentes y trazables en la Industria 4.0.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-12-01T20:52:35Z
dc.date.available.none.fl_str_mv 2025-12-01T20:52:35Z
dc.date.issued.none.fl_str_mv 2025-10-31
dc.type.eng.fl_str_mv Thesis
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.local.spa.fl_str_mv Tesis
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/32357
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/32357
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Akkoyun, F. (2022). A real-time video measurement system for quality control applications. Turkish Journal of Nature Science, 11(2), 22–26. https://doi.org/10.46810/tdfd.1086012
Al Baghdadi, M. F., & Manaa, M. E. (2022). Unmanned aerial vehicles and machine learning for detecting objects in real time. Bulletin of Electrical Engineering and Informatics, 11(6), 3490–3497. https://doi.org/10.11591/eei.v11i6.4185
Anbarasi, A., Jagadeesan, S., & Nithyasree, K. C. (2023). Converting structured forms to storable databases using form2db. En Proceedings of the 2023 International Conference on Smart Computing and Applications (ICSCAN 2023). IEEE. https://doi.org/10.1109/icscan58655.2023.10394829
Auad, M., Alves, S., Kakizaki, G., Reis, J. C. S., & Silva, M. M. (2024). A filtering and image preparation approach to enhance OCR for fiscal receipts. En Proceedings of the 37th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI 2024). IEEE. https://doi.org/10.1109/sibgrapi62404.2024.10716295
Auerswald, E. (s. f.). ssocr — Seven Segment Optical Character Recognition [Software]. Unix-AG, TU Kaiserslautern. Recuperado de https://www.unix-ag.uni-kl.de/~auerswal/ssocr/
Basov, M. V. (2023). Pressure sensor chip with new electrical circuit for 10 kPa range. arXiv preprint arXiv:2302.07101. https://doi.org/10.48550/arxiv.2302.07101
Basov, M., & Prigodskiy, D. (2021). Investigation of sensitive element for pressure sensor based on bipolar piezotransistor. Research Square preprint. https://doi.org/10.21203/rs.3.rs-677129/v1
Batra, P., Phalnikar, N., Kurmi, D., Tembhurne, J., Sahare, P., & Diwan, T. (2023). OCR MRD: Performance analysis of different optical character recognition engines for medical report digitization. Research Square preprint. https://doi.org/10.21203/rs.3.rs-2513255/v1
Belan, P. A., Araújo, S. A. D., & Librantz, A. F. H. (2012). Técnicas de visão computacional aplicadas no processo de calibração de instrumentos de medição com display numérico digital sem interface de comunicação de datos. Exacta, 10(1), 82–91. https://doi.org/10.5585/exacta.v10n1.3091
Bureau International des Poids et Mesures (BIPM). (2019). The International System of Units (SI) (9th ed.). https://www.bipm.org/en/publications/si-brochure
Bishop, D., & Chase, J. G. (2023). A luminance-based lighting design method: A framework for lighting design and review of luminance measures. Sustainability, 15(5), 4369. https://doi.org/10.3390/su15054369
Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. http://arxiv.org/abs/2004.10934
Boonsim, N., & Kanjaruek, S. (2023). An integrated technique for detecting seven-segment digits on medical devices. En Proceedings of the 27th International Computer Science and Engineering Conference (ICSEC 2023). IEEE. https://doi.org/10.1109/icsec59635.2023.10329763
Bulatov, K., Matalov, D., & Arlazarov, V. V. (2020). MIDV-2019: Challenges of the modern mobile-based document OCR. arXiv preprint arXiv:1910.04009. https://arxiv.org/abs/1910.04009
Çelik, A. (2021). Eğik karakter tanıma başarısını arttırmak için yeni bir yöntemin kullanılması [Using a new method to improve italic character recognition success]. Harran Üniversitesi Mühendislik Dergisi, 6(1), 1–11. https://doi.org/10.46578/humder.720001
Chaitanya, U., Alisetti, E., Ballam, H., & Dodda, M. (2023). Digital image text recognition using machine learning algorithms. International Journal for Research in Applied Science & Engineering Technology, 11(6), 3583–3590. https://doi.org/10.22214/ijraset.2023.54383
Chaiyapet, P., & Wattana, B. (2024). Development of tracking and backward tracing system for automotive parts using optical character recognition technique. En Proceedings of the 2024 International STEM Education Conference (ISTEM-ED 2024). IEEE. https://doi.org/10.1109/istem-ed62750.2024.10663114
Chen, Y., Lu, D., Xing, H., Ding, H., Luo, J., Liu, H., Kong, X., & Xu, F. (2024). Recent progress in MEMS fiber-optic Fabry–Perot pressure sensors. Sensors, 24(4), 1079. https://doi.org/10.3390/s24041079
Cheng, Y., Yang, R., Zhang, Z., Suo, J., & Dai, Q. (2022). A dual sensor computational camera for high quality dark videography. arXiv preprint arXiv:2204.04987. https://arxiv.org/abs/2204.04987
Coelho, G. E., Pinheiro, A., Silva Ribeiro, Á., Simões, C., & Lages Martins, L. (2024). Automating flowmeter calibration process: Digital measurements from numerical displays using open-source optical character recognition tools. Acta IMEKO, 13(3), 1–6. https://doi.org/10.21014/actaimeko.v13i3.1767
Constantino, L. P., Camacho, J. I., & Acquarone, A. (2014). Análisis de incertidumbre en calibración de medidores de presión según DKD-R 6-1: Cinco métodos de cálculo. Innotec, 9, 7–13. https://doi.org/10.26461/09.01
DAkkS. (2023). DAkkS and PTB start test phase for digitisation project [Comunicado de prensa], 01 march, 2023. https://www.dakks.de/en/pressrelease/dakks-and-ptb-start-test-phase-for-digitisation-project.html
DAkkS. (2023). Digital accreditation symbol and digital calibration certificate: DAkkS and PTB prepare introduction [Comunicado de prensa], 26 september, 2023. https://www.dakks.de/en/pressrelease/digital-accreditation-symbol-and-digital-calibration-certificate-dakks-and-ptb-prepare-introduction.html
DAkkS. (2024). Digital accreditation symbol: Contribution to trustworthy chains of evidence at international level [Comunicado de prensa], 23 may, 2024. https://www.dakks.de/en/pressrelease/digital-accreditation-symbol-contribution-to-trustworthy-chains-of-evidence-at-international-level.html
Du, Y., Xu, K., Yu, Y., Huang, F., & Guo, Y. (2021). PP-OCRv2: Bag of tricks for ultra lightweight OCR system. arXiv preprint arXiv:2109.03144. https://arxiv.org/pdf/2109.03144.pdf
Dumberger, S., Edlinger, R., & Froschauer, R. (2020). Proceedings, 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) : Vienna, Austria - Hybrid, 08-11 September, 2020. IEEE. https://doi.org/10.1109/ETFA46521.2020.9211895
Eichstädt, S., Gruber, M., Vedurmudi, A. P., Seeger, B., Bruns, T., & Kok, G. (2021). Towards smart traceability for digital sensors and the industrial internet of things. Sensors, 21(6), 2019. https://doi.org/10.3390/s21062019
El Helou, M., Benfriha, K., Al-Ahmari, A. M., Wardle, P., Talhi, E., Loubère, S., El Zant, C., & Charrier, Q. (2022). A modular smart vision system for industrial inspection and control of conformity. Smart and Sustainable Manufacturing Systems, 6(1), 177–189. https://doi.org/10.1520/SSMS20220003
Engel, T. (2023). GEMIMEG-II — How metrology can go digital. Measurement Science and Technology, 34(10), 104002. https://doi.org/10.1088/1361-6501/ace468
Epstein, S. E. (2021). Pressure and its measurement. En Encyclopedia of Smart Materials. Springer. https://doi.org/10.1007/978-981-19-1550-5_46-1
EURAMET. (2022). Development of digital calibration certificates. EURAMET. Recuperado de https://www.euramet.org/technical-committees/tc-projects/details/project/development-of-digital-calibration-certificates
Garnique, L. A. V., Cabrera, H. I. M., Chavarry, K. L. V., & Barco, M. J. V. (s. f.). Visión artificial: Aplicación de filtros y segmentación en imágenes de hojas de café. Revista de Ciencia, Tecnología e Innovación. https://doi.org/10.26495/icti.v1i2.198
Gener, S., Dattilo, P., Gajaria, D., Fusco, A., & Akoglu, A. (2022). GPGPU-based high throughput image pre-processing towards large-scale optical character recognition. En Proceedings of the 2022 ACS/IEEE International Conference on Computer Systems and Applications (AICCSA 2022). IEEE. https://doi.org/10.1109/AICCSA56895.2022.10017481
Ghanam, M., Woias, P., & Goldschmidtböing, F. (2025). MEMS pressure sensors with novel TSV design for extreme temperature environments. Sensors, 25(3), 636. https://doi.org/10.3390/s25030636
González, R. C., & Woods, R. E. (2018). Digital image processing (4th ed.). Pearson. Vista previa disponible en: https://api.pageplace.de/preview/DT0400.9781292223070_A37747583/preview-9781292223070_A37747583.pdf
Goodfellow Ian, Bengio Yoshua, & Courville Aaron. (2016). Book Review: Deep Learning. Healthcare Informatics Research, 22(4), 351. https://doi.org/10.4258/hir.2016.22.4.351
Gorai, S. K., & Pradhan, S. (2025). Bridging the gap: OCR techniques for noisy and distorted texts. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 11(1), 695–703. https://doi.org/10.32628/cseit2511111
Gupta, N., & Jalal, A. S. (2021). Traditional to transfer learning progression on scene text detection and recognition: A survey. Artificial Intelligence Review, 1–46. https://doi.org/10.1007/S10462-021-10091-3
Grzeczka, G., & Klebba, M. (2020). Automated calibration system for digital multimeters not equipped with a communication interface. Sensors (Switzerland), 20(13), 1–16. https://doi.org/10.3390/s20133650
Gushima, K., & Kashima, T. (2023). Automatic generation of seven-segment display images for digital meter reading. PHM Asia Pacific, 4(1). https://doi.org/10.36001/phmap.2023.v4i1.3612
Hackel, S., Schönhals, S., Doering, L., Engel, T., & Baumfalk, R. (2023). The Digital Calibration Certificate (DCC) for an End-to-End Digital Quality Infrastructure for Industry 4.0. Sci, 5(1). https://doi.org/10.3390/sci5010011
Hashmi, A. W., Mali, H. S., Meena, A., Hashmi, M. F., & Bokde, N. D. (2023). Surface characteristics measurement using computer vision: A review. Computer Modeling in Engineering & Sciences, 135(2), 917–947. https://doi.org/10.32604/cmes.2023.021223
Hendrycks, D., & Gimpel, K. (2023). Gaussian Error Linear Units (GELUs). http://arxiv.org/abs/1606.08415
Hou, Q., Zhou, D., & Feng, J. (2021). Coordinate attention for efficient mobile network design. En Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021) (pp. 13713–13722). IEEE. https://doi.org/10.48550/arXiv.2103.02907
Hussain, M. (2024). YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time Vision. http://arxiv.org/abs/2407.02988
Idris, A. A., & Taha, D. B. (2022). Implementation of OCR using convolutional neural network (CNN): A survey. Journal of Education and Science, 31(3), 27–41. https://doi.org/10.33899/edusj.2022.133711.1236
Іванова, В., Chivarov, N., & Staikova, M. (2023). Combining software algorithms and machine learning in business data processing. IFAC-PapersOnLine, 58(3), 198–202. https://doi.org/10.1016/j.ifacol.2024.07.150
International Laboratory Accreditation Cooperation (ILAC). (s. f.). Signatory contact details: Organismo Nacional de Acreditación de Colombia (ONAC). Recuperado el 18 de agosto de 2025, de: https://ilac.org/signatorydetail/?id=140&id1xx=0&id2xx=0&id3xx=0&q=
International Organization for Standardization (ISO/IEC). (2017). ISO/IEC 17025:2017 — General requirements for the competence of testing and calibration laboratories. https://www.iso.org/standard/66912.html
IQS Directory. (2025). Uses and types of pressure gauges. Recuperado el 18 de agosto de 2025, de: https://www.iqsdirectory.com/articles/pressure-gauge.html
JaidedAI. (2020). EasyOCR (v.1.x) [Repositorio de software]. GitHub. https://github.com/JaidedAI/EasyOCR
Jain, J., & Gupta, M. (2024). AI-driven machine learning-enhanced OCR for automation and accessibility. Journal of AI Research and Development. https://doi.org/10.21428/e90189c8.0d085420
Jamwal, A., Zhao, Z., & Lee, J. (2021). Industry 4.0 technologies for manufacturing sustainability: A systematic review and implications. Applied Sciences, 11(12), 5725. https://doi.org/10.3390/app11125725
Javed, Y., Mansoor, M., & Shah, I. A. (2019). A review of principles of MEMS pressure sensing with its aerospace applications. Sensor Review, 39(5), 652–664. https://doi.org/10.1108/SR-06-2018-0135
Joint Committee for Guides in Metrology (JCGM). (2008). Evaluation of measurement data – Guide to the expression of uncertainty in measurement (GUM). BIPM. https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf
Joint Committee for Guides in Metrology (JCGM). (2012). Vocabulario internacional de metrología: Conceptos fundamentales y generales, y términos asociados (VIM) (3.ª ed.). Centro Español de Metrología. https://www.cem.es/sites/default/files/vim-cem-2012web.pdf
Jena, S., & Gupta, A. (2021). Review on pressure sensors: A perspective from mechanical to microelectro-mechanical systems. Sensor Review, 41(3), 320–329. https://doi.org/10.1108/SR-03-2021-0106
Jocher, G. (2020). YOLOv5 by Ultralytics (Version 7.0) [Software]. Zenodo. https://doi.org/10.5281/zenodo.3908559
Jocher, G. (2022). ultralytics/yolov5: v7.0 — YOLOv5 SOTA Realtime Instance Segmentation [Software]. Zenodo. https://doi.org/10.5281/zenodo.7347926
Jwo, J.-S., Lin, C.-S., Lee, C.-H., & Wang, C. (2021). A lightweight application for reading digital measurement and inputting condition assessment in manufacturing industry. Mobile Information Systems, 2021, Article ID 5555833, 1–10. https://doi.org/10.1155/2021/5555833
Karabiber, F., Arena, P., Fiore, S. D., Vagliasindi, G., Fortuna, L., & Arik, S. (2009). Implementation of a new segmentation algorithm using the Eye-RIS CMOS vision system. En Proceedings of SPIE — Microelectronics: Design, Technology, and Packaging. https://doi.org/10.1117/12.821730
Karanth, K. V. U., Sujan, A. T., Kumar, Y. R. T., Joshi, S., Rani, K. P. A., & Gowrishankar, S. (2023). Breaking barriers in text analysis: Leveraging lightweight OCR and innovative technologies for efficient text analysis. En Proceedings of the 2023 International Conference on Advanced Computing and Robotics Systems (ICACRS 2023). IEEE. https://doi.org/10.1109/icacrs58579.2023.10404305
Karrach, L., & Pivarčiová, E. (2023). Using a convolutional neural network for machine written character recognition. TEM Journal, 12(3), 1042–1050. https://doi.org/10.18421/TEM123-03
Kavya, T. S., Jang, Y.-M., Tsogtbaatar, E., Peng, T., & Cho, S.-B. (2020). An objective image quality evaluation and its applications for low illumination and sudden illumination changes. International Journal of Engineering Research and Technology, 13(5), 1057–1064. https://doi.org/10.37624/IJERT/13.5.2020.1057-1064
Khoirani, L., Ariansyah, R., & Supiyandi, S. (2024). Implementasi algoritma OCR (optical character recognition) untuk ekstraksi informasi dari citra struk transaksi keuangan. Mars Journal, 2(6), 151–160. https://doi.org/10.61132/mars.v2i6.537
Khosrobeigi, Z., Veisi, H., Hoseinzade, E., & Shabanian, H. (2022). Persian optical character recognition using deep bidirectional long short-term memory. Applied Sciences, 12(22), 1176. https://doi.org/10.3390/app122211760
Kobata, T., Kojima, M., & Kajikawa, H. (2011). Improvement of reliability in pressure measurements and international mutual recognition. Synthesiology, 4(2), 209–217. https://doi.org/10.5571/synth.4.209
Kopytek, M., Lech, P., & Okarma, K. (2024). Application of binary image quality assessment methods to predict the quality of optical character recognition results. Applied Sciences, 14(22), 10275. https://doi.org/10.3390/app142210275
Kotangale, A. (2023). OCR using CRNN: A deep learning approach for robust text recognition. En Proceedings of the 2023 International Conference on Electronics and Sustainable Communication Systems (ICESC 2023). IEEE. https://doi.org/10.1109/INCET57972.2023.10170436
Kruttschnitt, J. (2022). Automatic conversion of table contents from PDF technical specification documents into database using AI optical character recognition (OCR). En Proceedings of the 2022 International Conference on Artificial Intelligence and Applications. Springer. https://doi.org/10.1007/978-981-19-3951-8_22
Kumar, A. V., M., A. K., Bader, A. F., Kaur, G., Ray, S., G., P. L., Virparia, P., Sagar, B. B., Dutta, A., Masadeh, S. R., Dulhare, U. N., & Srinivasulu, A. (2024). Optical Character Recognition (OCR) Using Opencv and Python: Implementation and Performance Analysis. In D. Darwish (Ed.), Hyperautomation in Business and Society (pp. 147-163). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-3354-9.ch008 Kumar, V. (2022). Pressure and its measurement. En Handbook of Sensors and Actuators. Springer. https://doi.org/10.1007/978-981-99-2074-7_46
Laroca, R., Araujo, A. B., Zanlorensi, L. A., De Almeida, E. C., & Menotti, D. (2021). Towards Image-Based Automatic Meter Reading in Unconstrained Scenarios: A Robust and Efficient Approach. IEEE Access, 9, 67569–67584. https://doi.org/10.1109/ACCESS.2021.3077415
Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. En Nature (Vol. 521, Número 7553, pp. 436–444). Nature Publishing Group. https://doi.org/10.1038/nature14539
Lee, T., Kim, G., Ahn, H., Jeong, J. Y., Jeong, M. G., & Song, J. (2024). Integrating OCR and LLMs for enhanced document digitization in ERP systems. En Proceedings of the 2024 International Conference on ICT Convergence (ICTC 2024). IEEE. https://doi.org/10.1109/ictc62082.2024.10827723
Li, C., Liu, W., Guo, R., Yin, X., Jiang, K., Du, Y., Zhu, L., Lai, B., Hu, X., Yu, D., & Ma, Y. (2023). PP-OCRv3: More attempts for the improvement of ultra lightweight OCR system. arXiv preprint arXiv:2206.03001. https://arxiv.org/abs/2206.03001
Li, H., Ma, Y., Bao, H., & Zhang, Y. (2023). Probabilistic Hough Transform for rectifying industrial nameplate images: A novel strategy for improved text detection and precision in difficult environments. Applied Sciences, 13(7), 4533. https://doi.org/10.3390/app13074533
Li, H., Li, H., Cheng, J., Wang, Y., & Xiao, K. (2020). An image acquisition and processing technique based on machine vision. En Advances in Computer Vision and Pattern Recognition. Springer. https://doi.org/10.1007/978-981-15-8411-4_30
Li, J., Pan, C., Pan, J., Lin, J., Lu, M., Jiang, Z. L., & Fang, J. (2022). Long-distance, real-time LED display-camera communication system based on LED point clustering and lightweight image processing. Photonics, 9(10), 721. https://doi.org/10.3390/photonics9100721
Li, S., & Yoon, H.-S. (2023). Vehicle localization in 3D world coordinates using single camera at traffic intersection. Sensors, 23(7), 3661. https://doi.org/10.3390/s23073661
Lin, E., McLaughlin, M. J., & Alshehri, A. (2014). Medical image segmentation using multi-scale and super resolution method. En Proceedings of the 2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). IEEE. https://doi.org/10.1109/AIPR.2014.7041899
Low, L. M., Mohd Salleh, F. H., Law, Y. F., & Zakaria, N. Z. (2024). Detecting and recognizing seven segment digits using a deep learning approach. ITM Web of Conferences, 63, 01007. https://doi.org/10.1051/itmconf/20246301007
Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166–177. https://doi.org/10.1016/J.ISPRSJPRS.2019.04.015
Maas, A.L., Hannun, A.Y. and Ng, A.Y. (2013) Rectifier Nonlinearities Improve Neural Network Acoustic Models. Proceedings of the 30th International Conference on Machine Learning, Vol. 28, 3. https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
Malinski, K., & Okarma, K. (2023). Analysis of image preprocessing for OCR on industrial displays. Electronics, 12(11), 2449. https://doi.org/10.3390/electronics12112449
Maung, A. T., Salekin, S., & Haque, M. A. (2025). A hybrid approach to Bangla handwritten OCR: Combining YOLO and an advanced CNN. Discover Artificial Intelligence, 5, 119. https://doi.org/10.1007/s44163-025-00251-7
Marciniak, L., Woźny, P., Szymczak, M., & Runowski, M. (2024). Optical pressure sensors for luminescence manometry: Classification, development status, and challenges. Coordination Chemistry Reviews. https://doi.org/10.1016/j.ccr.2024.215770
Martel, J. N. P., Muller, L. K., Carey, S. J., Dudek, P., & Wetzstein, G. (2020). Neural sensors: Learning pixel exposures for HDR imaging and video compressive sensing with programmable sensors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(7), 1642–1653. https://doi.org/10.1109/TPAMI.2020.2986944
Michalak, H., & Okarma, K. (2020). Robust combined binarization method of nonuniformly illuminated document images for alphanumerical character recognition. Sensors, 20(10), 2914. https://doi.org/10.3390/S20102914
C. Mihail-Bogdan, L. Teodor and N. Horia, "Towards Digital Energy Metering Systems by Means of Artificial Intelligence," 2023 11th International Conference on ENERGY and ENVIRONMENT (CIEM), Bucharest, Romania, 2023, pp. 1-4, doi: 10.1109/CIEM58573.2023.10349715
Milana, E., Ramírez-Agudelo, O. H., & Estevam Schmiedt, J. (2022). Autonomous Reading of Gauges in Unstructured Environments. Sensors, 22(17). https://doi.org/10.3390/s22176681
Mishra, A., Sikdar, J., & Kumar, S. (2024). Deep learning-based optical character recognition for robust real-world conditions: A comparative analysis. En Proceedings of the 2024 International Conference on Communication and Networking Technologies (ICCCNT 2024). IEEE. https://doi.org/10.1109/icccnt61001.2024.10726007
Mohsenzadegan, K., Tavakkoli, V., & Kyamakya, K. (2022). A smart visual sensing concept involving deep learning for a robust optical character recognition under hard real-world conditions. Sensors, 22(16), 6025. https://doi.org/10.3390/s22166025
Monteiro, G., Camelo, L., Aquino, G., Fernandes, R. de A., Gomes, R., Printes, A., Torné, I., Silva, H., Oliveira, J., & Figueiredo, C. (2023). A comprehensive framework for industrial sticker information recognition using advanced OCR and object detection techniques. Applied Sciences, 13(12), 7320. https://doi.org/10.3390/app13127320
Mughal, W., & Choubey, B. (2020). On wide dynamic range tone mapping CMOS image sensor. Sensing and Imaging, 21(33), 1–15. https://doi.org/10.1007/s11220-020-00297-0
Mühlbauer, M., Würschinger, H., Hanenkamp, N., & Funtikov, S. (2023). Optische Erfassung von Messwerten: Maschinelle Lernverfahren zur Digitalisierung manueller Ablese- und Messvorgänge [Optical detection of measured values: Machine learning methods for digitalizing manual reading and measuring processes]. Industrie 4.0 Management, 39(1), 43–47. https://doi.org/10.30844/IM_23-1_43-47
Munawaroh, A., & Jamzuri, E. R. (2023). Automatic optical inspection for detecting keycaps misplacement using Tesseract optical character recognition. International Journal of Electrical and Computer Engineering, 13(5), 5147–5155. https://doi.org/10.11591/ijece.v13i5.pp5147-5155
Mustapää, T., Nikander, P., Hutzschenreuter, D., & Viitala, R. (2020). Metrological challenges in collaborative sensing: Applicability of digital calibration certificates. Sensors (Switzerland), 20(17), 1–19. https://doi.org/10.3390/s20174730
Mustapää, T., Koskinen, S., Sundfors, M., Jonsson, J., Riska, K., Löytynoja, L., & Broo, J. A. (2024). Enabling the use of digital calibration certificates in industrial calibration management systems. Journal of Sensors and Sensor Systems, 13(1), 71–79. https://doi.org/10.5194/jsss-13-71-2024
Naghdy, G., Li, Y., & Wang, J. (2003). Wavelet-morphology for mass detection in digital mammogram images. En Proceedings of SPIE — Medical Imaging. https://doi.org/10.1117/12.480109
Nair, A., Tripathy, V. D., Priya, R. L., Kashimani, M., Janthalur, G. A. N., Ansari, N. J., & Jurčić, I. (2024). A smarter way to collect and store data. En Advances in Digital Transformation (pp. 1–15). Wiley. https://doi.org/10.1002/9781394216147.ch15
Nallaperumal, K., Krishnaveni, K., Varghese, J., Saudia, S., Selvakumar, R., Subban, R., & Ranjani, J. J. (2006). Fuzzy optimal thresholded multiscale morphological segmentation of digital images. En Proceedings of the 2006 World Congress on Communication and Computer Networks (WOCN). IEEE. https://doi.org/10.1109/WOCN.2006.1666678
Nandeshwar, V., Savardekar, S., Pathare, S., Nair, S., Pandita, S., & Sawale, A. (2024). Innovative image preprocessing methods for enhancing OCR accuracy in number plate detection. En Proceedings of the 2024 International Conference on Software Engineering and Security (ICSES 2024). IEEE. https://doi.org/10.1109/icses63445.2024.10763065
Nazdryukhin, A. S., Khramtsov, I. N., & Tushev, A. N. (2019). Processing images of sales receipts for isolating and recognising text information. Herald of Daghestan State Technical University. Technical Sciences, 46(4), 113–122. https://doi.org/10.21822/2073-6185-2019-46-4-113-122
Node-RED Project. (2025). Node-RED documentation. Recuperado de. https://nodered.org/docs/
Nogueira, V. V. E., Barca, L. F., & Pimenta, T. C. (2023). A cost-effective method for automatically measuring mechanical parts using monocular machine vision. Sensors, 23(13), 5994. https://doi.org/10.3390/s23135994
Okolie, P. C., Segun, O. B., Lazarus, T. L., Onyebuchi, O. U., & Ochiagha, C. E. (2023). Design and performance evaluation of a pressure gauge calibration apparatus. Journal of Inventive Engineering and Technology, 4(2), 73–82. Recuperado de https://www.researchgate.net/publication/375863704
Organismo Nacional de Acreditación de Colombia (ONAC). (s.f.). Organismo Nacional de Acreditación de Colombia. Recuperado el 9 de agosto de 2025, de https://onac.org.co
Organismo Nacional de Acreditación de Colombia (ONAC). (s.f.-a). Laboratorios de calibración. Recuperado el 9 de agosto de 2025, de https://onac.org.co/servicios/laboratorios-de-calibracion/
Organismo Nacional de Acreditación de Colombia (ONAC). (s.f.-b). Acuerdos de reconocimiento internacional. Recuperado el 9 de agosto de 2025, de https://onac.org.co/acerca-de-onac/acuerdos-de-reconocimiento-internacional/
OpenCV Team. (2024). OpenCV 4.x documentation. OpenCV.org. https://docs.opencv.org/4.x/
Pandey, M., Arora, M. M., Arora, S., Goyal, C., Gera, V. K., & Yadav, H. (s. f.). AI-based integrated approach for the development of intelligent document management system (IDMS). Procedia Computer Science. https://doi.org/10.1016/j.procs.2023.12.127
Pandiaraj, S., & Jagadeesan, J. (2013). Optical character recognition using dynamic memory image algorithm. IOSR Journal of Computer Engineering, 16(2), 12–16. http://dx.doi.org/10.9790/0661-16271216
Paulauskaitė-Tarasevičienė, A., Siaulys, J., Jankauskas, A., & Jakuškaitė, G. (2025). A robust blood vessel segmentation technique for angiographic images employing multi-scale filtering approach. Journal of Clinical Medicine, 14(2), 354. https://doi.org/10.3390/jcm14020354
Peixoto, J., Sousa, J., Carvalho, R., Santos, G., Cardoso, R., & Reis, A. (2023). End-to-End Solution for Analog Gauge Monitoring Using Computer Vision in an IoT Platform. Sensors, 23(24). https://doi.org/10.3390/s23249858
Pereira, J. D. (2024). Pressure Sensors: Working Principles of Static and Dynamic Calibration. Sensors, 24(2). https://doi.org/10.3390/s24020629
Pham, V. A. (2022). Improved OCR quality for smart scanned document management system. Journal of Science and Technique, 9(1). https://doi.org/10.56651/lqdtu.jst.v9.n01.60.ict
Power Manometer. (2025, 8 de abril). The difference between Bourdon tube pressure gauge and capsule pressure gauge. Recuperado el 18 de agosto de 2025, de https://www.powermanometer.com/info/the-difference-between-bourdon-tube-pressure-g-102861204.html
Pramudito, D. K., & Fatchan, M. (2025). Optimizing image recognition in low-light environments through advanced computer vision algorithms. The Journal of Academic Science, 2(1), 278–291. Recuperado de https://www.researchgate.net/publication/388369155_Optimizing_Image_Recognition_in_Low-Light_Environments_through_Advanced_Computer_Vision_Algorithms
Physikalisch-Technische Bundesanstalt (PTB). (2024). Digital Calibration Certificate (DCC): Concepts and implementation guidance / DKD-E 4-3 [Sitio oficial del DCC]. https://www.ptb.de/cms/en/metrological-services/dkd/dkd-dcc.html
Rab, S., Singh, J., Zafer, A., Sharma, N., & Yadav, S. (2022). Application of contemporary techniques of evaluation of measurement uncertainty in pressure transducer. En Encyclopedia of Smart Materials. Springer. https://doi.org/10.1007/978-981-19-1550-5_129-1
Ramis, D. S. (2023). An innovative method for measuring instrument data acquisition using image processing techniques. arXiv preprint arXiv:2302.07091. https://arxiv.org/abs/2302.07091
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 779–788. https://doi.org/10.1109/CVPR.2016.91
Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. http://arxiv.org/abs/1804.02767
Reyvansyah, M. R., Setiawan, E., Indarti, R., Adianto, & Munadhif, I. (2023). Penerapan metode optical character recognition (OCR) untuk mengambil data arsip. Jurnal Teknik Elektro dan Komputer TRIAC, 10(2), 44–50. https://journal.trunojoyo.ac.id/triac/article/view/20809
Rooswita, F. F., Rahmawati, T., & Syaifuddin. (2020). A two-mode digital pressure meter equipped with an automatic leak test using MPX5050GP and MPXV4115VC6U sensors. Journal of Electronics, Electromedical, and Medical Informatics, 2(2), 80–85. https://doi.org/10.35882/jeeemi.v2i2.7
Rucki, M. (2023). Recent development of air gauging in Industry 4.0 context. Sensors, 23(4), 2122. https://doi.org/10.3390/s23042122
Sabbatini, L., Belli, A., Palma, L., & Pierleoni, P. (2023). One datum and many values for sustainable Industry 4.0: A prognostic and health management use case. International Journal of Power Electronics and Drive Systems, 13(1), 658–668. https://doi.org/10.11591/ijece.v13i1.pp658-668
Sadeghian, R., Shahin, S., & Sareh, S. (2024). CVOCR: Context vision OCR. En Proceedings of the 2024 IEEE International Conference on Mechatronics and Automation (MESA 2024). IEEE. https://doi.org/10.1109/mesa61532.2024.10704827
Salehudin, M., Basah, S. N., Yazid, H., Basaruddin, K. S., Safar, M. J. A., Som, M. H. M., & Sidek, K. A. (2023). Analysis of optical character recognition using EasyOCR under image degradation. Journal of Physics: Conference Series, 2641(1), 012001. https://doi.org/10.1088/1742-6596/2641/1/012001
Sahani, T., Chauhan, T., & Varsha, M. (2024). The efficacy of Tesseract OCR: Insights from a practical application study. International Journal of Advanced Computer Science and Applications. https://doi.org/10.62919/hdsg3874
Salomon, G., Laroca, R., & Menotti, D. (2022). Image-based automatic dial meter reading in unconstrained scenarios. arXiv preprint arXiv:2201.02850. https://arxiv.org/abs/2201.02850
Saravanan, S., Challa, A., & Danda, S. K. (2022). A robust morphological approach for semantic segmentation of very high resolution images. arXiv preprint arXiv:2208.01254. https://doi.org/10.48550/arXiv.2208.01254
Schiering, N., & Schnelle-Werner, O. (2019). Uncertainty evaluation in industrial pressure measurement. Journal of Sensors and Sensor Systems, 8(2), 251–259. https://doi.org/10.5194/JSSS-8-251-2019
Sharma, P. (2023). Advancements in OCR: A deep learning algorithm for enhanced text recognition. International Journal of Inventive Engineering and Sciences. https://doi.org/10.35940/ijies.f4263.0810823
Sharma, P., & Sharma, S. (2016). Image processing-based degraded camera captured document enhancement for improved OCR accuracy. En Proceedings of the 2016 6th International Conference on Cloud System and Big Data Engineering (CONFLUENCE). IEEE. https://doi.org/10.1109/CONFLUENCE.2016.7508160
Shi, B., Bai, X., & Yao, C. (2017). An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(11), 2298–2304. https://doi.org/10.1109/TPAMI.2016.2646371
Shi, Y., Peng, D., Liao, W., Lin, Z., Chen, X., Liu, C., Zhang, Y., & Jin, L. (2023). Exploring OCR capabilities of GPT-4V(ision): A quantitative and in-depth evaluation. arXiv preprint arXiv:2310.16809. https://doi.org/10.48550/arxiv.2310.16809
Schiering, N., Eichstädt, S., Heizmann, M., Koch, W., Schneider, L.-S., Scheele, S., & Sommer, K.-D. (2024). MODELLING OF MEASURING SYSTEMS-FROM WHITE BOX MODELS TO COGNITIVE APPROACHES. https://arxiv.org/pdf/2408.06117
Shivakumara, P., Alaei, A., & Pal, U. (2021). Mining text from natural scene and video images: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 11(6), e142. https://doi.org/10.1002/WIDM.1428
Schneider, L.-S., Krauss, P., Schiering, N., Syben, C., Schielein, R., & Maier, A. (2024). Data-driven Modeling in Metrology -- A Short Introduction, Current Developments and Future Perspectives. http://arxiv.org/abs/2406.16659
Shulman, D. (2023). An innovative method for measuring instrument data acquisition using image processing techniques. arXiv preprint arXiv:2302.07091. https://arxiv.org/abs/2302.07091
Si, M. C., Ding, Y. H., Ma, X., Xue, P. H., Huang, J. B., & Ma, Y. J. (2021). Visual management system of intelligent factory tools based on Odoo. En Proceedings of the 2021 4th International Conference on Advanced Engineering, Management and Computer Science Engineering (AEMCSE). IEEE. https://doi.org/10.1109/AEMCSE51986.2021.00191
Soomro, T. A., Ali, A. H. H., Jandan, N. A., Afifi, A. J., Irfan, M., Alqhtani, S., Glowacz, A., Alqahtani, A. S., Tadeusiewicz, R., Kantoch, E., & Zheng, L. (2021). Impact of novel image preprocessing techniques on retinal vessel segmentation. Electronics, 10(18), 2185. https://doi.org/10.3390/electronics10182297
Sporici, D., Cuşnir, E., & Boiangiu, C. (2020). Improving the accuracy of Tesseract 4.0 OCR engine using convolution-based preprocessing. Symmetry, 12(5), 749. https://doi.org/10.3390/SYM12050715
Smith, R. (2007). An overview of the Tesseract OCR engine. En Proceedings of the Ninth International Conference on Document Analysis and Recognition (ICDAR 2007) (pp. 629–633). IEEE. https://doi.org/10.1109/ICDAR.2007.4376991
Songa, A., Bolineni, R., Reddy, H., Korrapolu, S., & Geddada, V. J. (2022). Vehicle number plate recognition system using Tesseract-OCR. International Journal for Research in Applied Science & Engineering Technology, 10(4). https://doi.org/10.22214/ijraset.2022.41198
Sterkens, W., Bracquené, E., Diaz-Romero, D., Goedemé, T., Dewulf, W., & Peeters, J. R. (2022). Product label identification with OCR for model‐specific reuse, repair, and recycling: A case study for washing machines. Journal of Industrial Ecology, 27(3), 834–844. https://doi.org/10.1111/jiec.13279
Sultana, U., Bilal, S., Naqvi, S. H. A., & Iqbal, R. (2022). Smart OCR application for meter reading. Engineering Proceedings, 20(1), 25. https://doi.org/10.3390/engproc2022020025
Sundararajan, S., & Afle, G. M. (2023). Reliability and validity of a low-cost pressure gauge manometer for measurement of respiratory muscle strength in healthy children: A cross-sectional study. International Journal of Pediatrics Research, 10(9), 3127–3131. https://doi.org/10.18203/2394-6040.ijcmph20232655
Sunkara, V. S. P. (2024). Navigating the depths: A comprehensive study of deep learning and its advancements in medical image analysis. Journal of Emerging Science, 20(3), 5114–5125. https://doi.org/10.52783/jes.6263
Susanty, M., & Nugroho, H. (2020). Optical character recognition implementation for admission system in Universitas Pertamina. Jurnal SIMETRIS, 11(1), 165–174. https://jurnal.umk.ac.id/index.php/simet/article/view/3838
Szeliski, R. (2022). Computer vision: Algorithms and applications (2nd ed.). Springer. https://szeliski.org/Book/
Taccola, G. M., & Saita, M. T. (2021). Automatic calibration with character recognition software. Journal of Physics: Conference Series, 1826(1), 012069. https://doi.org/10.1088/1742-6596/1826/1/012069
Tamboli, A. (2024). Optimizing OCR performance: An investigation into image preprocessing techniques. Indian Scientific Journal of Research in Engineering and Management. https://doi.org/10.55041/ijsrem31769
Tekin, E., Coughlan, J. M., & Shen, H. (2011). Real-time detection and reading of LED/LCD displays for visually impaired persons. En Proceedings of the 2011 IEEE Workshop on Applications of Computer Vision (WACV). IEEE. https://doi.org/10.1109/WACV.2011.5711544
Tsai, T., Lin, C., & Lin, Y. (2010). System level design and implementation for region-of-interest segmentation. Journal of Signal Processing Systems, 61(1), 35–46. https://doi.org/10.1007/S11265-008-0334-Z
Tsimpiris, A., Varsamis, D., & Pavlidis, G. (2022). Tesseract OCR evaluation on Greek food menus datasets. International Journal of Computing and Optimization, 9(1), 13–32. https://doi.org/10.12988/ijco.2022.9829
Tu, X., Yuan, Z., Liu, B., Liu, J., Hu, Y., Hua, H., & Wei, L. (2023). An improved YOLOv5 for object detection in visible and thermal infrared images based on contrastive learning. Frontiers in Physics, 11, 1193245. https://doi.org/10.3389/fphy.2023.1193245
Turk, A. S., & Hamarat, A. (2019). Automated pressure calibration of blood pressure measuring device calibrator to realize its traceability. En Proceedings of the 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE. https://doi.org/10.1109/MEMEA.2019.8802215
Turk, A. S., Hamarat, A., & Karaboce, B. (2020). Comparison of manual and automated pressure calibration methods of medical pressure calibrator. En Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE. https://doi.org/10.1109/MEMEA49120.2020.9137288
Ujwala, B. S., & Sumathi, K. (2022). A review paper on OCR using convolutional neural networks. International Journal of Engineering Applied Sciences and Technology, 7(7), 102–106. https://doi.org/10.33564/ijeast.2022.v07i07.018
Varma, O., Srivastava, S., & Gayathri, M. (2021). Technical invoice data extraction system: State of the art, research challenges and countermeasures. In Emerging Technologies for Industry 4.0 (pp. 255–268). Springer. https://doi.org/10.1007/978-981-16-7952-0_19
Vasudev, V., Xthona, A., & Kimpe, T. (2022). Display systems for digital pathology: What are proper luminance, contrast and resolution settings? En Proceedings of SPIE, 12033, 1203307. https://backoffice.biblio.ugent.be/download/8754685/8756861
Vigier, M., Pilloix, T., Dupont, B., & Moritz, G. (2020). Very high brightness, high resolution CMOS driving circuit for microdisplay in augmented reality. En Proceedings of the 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 876–879). IEEE. https://doi.org/10.1109/MWSCAS48704.2020.918448
Vizilter, Y., Pyt’ev, Y. P., Chulichkov, A. I., & Mestetskiy, L. M. (2014). Morphological image analysis for computer vision applications. En Mathematical Morphology and Its Applications to Signal and Image Processing. Springer.
Wachenfeld, S., Klein, H., & Jiang, X. (2006). Recognition of screen-rendered text. En Proceedings of the 18th International Conference on Pattern Recognition (ICPR 2006). IEEE. https://doi.org/10.1109/ICPR.2006.974
Wang, J., Yang, P., Liu, Y., Shang, D., Hui, X., Song, J., & Chen, X. (2023). Research on Improved YOLOv5 for Low-Light Environment Object Detection. Electronics (Switzerland), 12(14). https://doi.org/10.3390/electronics12143089
Wang, R., Zeng, L., Wu, S., Cao, W., & Wong, K. (2020). Illumination-invariant feature point detection based on neighborhood information. Sensors, 20(22), 6630. https://doi.org/10.3390/s20226630
Wang, X., He, Z., Wang, K., Wang, Y., Zou, L., & Wu, Z. (2023). A survey of text detection and recognition algorithms based on deep learning technology. Neurocomputing, 556, 126702. https://doi.org/10.1016/j.neucom.2023.126702
Wang, Z., Qiu, B., Shen, X., & Chen, J. (2022). Research on character detection and recognition of digital instrument. En Proceedings of the 2022 International Conference on Intelligent Manufacturing and Communication Engineering (IMCEC). IEEE. https://doi.org/10.1109/IMCEC55388.2022.10020131
Wannachai, A., Boonyung, W., & Champrasert, P. (2020). Real-time seven segment display detection and recognition online system using CNN. En Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE. https://doi.org/10.1007/978-3-030-57115-3_5
Waseem, F., Sankaran, M., Menon, S., Cheluvaraja, S., Xu, H., Mondal, D., Kumar, A., Kumar, A., Liu, F., Yang, L., Song, Y., Malgaonkar, A., Hennadka, R. R., Siva, O. V., Kumar, C., & Gordienko, E. (2022). VizInspect Pro—Automated optical inspection (AOI) solution. arXiv preprint arXiv:2205.13095. https://doi.org/10.48550/arXiv.2205.13095
Weber, S. (s. f.). Advantages of diaphragm pressure gauges: Measurement of low pressures. WIKA Blog. Recuperado el 9 de agosto de 2025, de https://blog.wika.com/en/knowhow/advantages-of-diaphragm-pressure-gauges-measurement-of-low-pressures
Wieczorowski, M., & Trojanowska, J. (2023). Towards metrology 4.0 in dimensional measurements. Journal of Machine Engineering, 23(1), 100–113. https://doi.org/10.36897/jme/161717
Wu, K., Galli, F., Tommaso, J. D., Patience, G. S., & Ommen, J. R. V. (2022). Experimental methods in chemical engineering: Pressure. Canadian Journal of Chemical Engineering, 101(1), 41–58. https://doi.org/10.1002/cjce.24533
Wu, Y., & Yi, J. (2023). OCR character recognition based on improved vertical projection segmentation method. En Proceedings of the 2023 International Conference on Frontiers of Technology and Intelligent Computing (ICFTIC). IEEE. https://doi.org/10.1109/icftic59930.2023.10456215
X. Zhengbo, F. Yong, L. Yingna and W. Jianguo, "Digital Encoding and Recognition for Virtual Real Fusion Industrial Equipment Data in Digital Twin Factories," 2024 IEEE 6th International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 2024, pp. 571-576, doi: 10.1109/ICPICS62053.2024.10796706.
Xiong, S., Chen, X., & Zhang, H. (2023). Deep learning-based multi-task OCR for classification and denoising. Journal of Computer and Mechanical Engineering Applications, 3(1). https://doi.org/10.62836/jcmea.v3i1.030103
Xu, X., Zhou, J., & Zhang, H. (2018). Screen-rendered text images recognition using a deep residual network based segmentation-free method. En Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR). IEEE. https://doi.org/10.1109/ICPR.2018.8545678
Yadav, A., Singh, S., Siddique, M., Mehta, N., & Kotangale, A. (2023). OCR using CRNN: A Deep Learning Approach for Text Recognition. 2023 4th International Conference for Emerging Technology, INCET 2023. https://doi.org/10.1109/INCET57972.2023.10170436
Yamashita, H., Nagashima, H., & Yamada, H. (2021). Characteristics improvement of pressure transfer standard using a silicon resonant sensor. Acta IMEKO, 10(1), 875. https://doi.org/10.21014/ACTA_IMEKO.V10I1.875
Yang, X. (2024). Advancements and challenges in character recognition: A comparative analysis of CNN and deep learning approaches. En Proceedings of the 2024 ITM Web of Conferences, 70, 03010. https://doi.org/10.1051/itmconf/20257003010
Yenneti, S. S. S., Chiou, Y., & Price, B. (2023). Lightweight single-pass numerical reading extraction for displays in the wild. En Proceedings of the 2023 Electronic Imaging Symposium. IEEE. https://doi.org/10.2352/ei.2023.35.7.image-282
Yuan, J., Guo, M., Huang, B., Hu, R., & Dian, S. (2022). Processing and recognition of characters image in complex environment. En Proceedings of the 2022 International Conference on Information and Digital Transformation (IDITR). IEEE. https://doi.org/10.1109/IDITR54676.2022.9796487
Zacharias, E., Teuchler, M., & Bernier, B. (2020). Image processing-based scene-text detection and recognition with Tesseract. arXiv preprint arXiv:2004.08079. https://arxiv.org/abs/2004.08079
Zhang, H., Shao, F., He, X., Zhang, Z., Cai, Y., & Bi, S. (2023). Research on object detection and recognition method for UAV aerial images based on improved YOLOv5. Drones, 7(6), 402. https://doi.org/10.3390/drones7060402
Zhang, X., Ma, H., Zhao, H., & Wang, R. (2022). Optical character recognition of electrical equipment nameplate with contrast enhancement. En Proceedings of the 2022 Power System and Green Energy Conference (PSGEC) (pp. 1062–1066). IEEE. https://doi.org/10.1109/psgec54663.2022.9880966
Zhang, Z., Liang, B., Ren, T., Fan, C., Li, R., & Li, M. (2024). Character-interested binary-like image learning for text image demoiréing. Frontiers in Physics, 12, 1526412. https://doi.org/10.3389/fphy.2024.1526412
Zheng, T., Wang, X., Yuan, X., & Wang, S. (2020). A novel method based on character segmentation for slant Chinese screen-render text detection and recognition. En Proceedings of the 2020 International Conference on Industrial Electronics and Applications (ICIEA). IEEE. https://doi.org/10.1109/ICIEA48937.2020.9248381
Zhou, L., Zhang, L., & Konz, N. (2022). Computer vision techniques in manufacturing. IEEE Transactions on Systems, Man, and Cybernetics: Systems. Advance online publication. https://doi.org/10.1109/TSMC.2022.3166397
Zhou, L., Zhang, L., & Konz, N. (2022). Computer vision techniques in manufacturing. IEEE Transactions on Systems, Man, and Cybernetics: Systems. Advance online publication. https://doi.org/10.1109/icipcn63822.2024.00136
Zi, Y., Wang, Q., Gao, Z., Cheng, X., & Mei, T. (2024). Research on the application of deep learning in medical image segmentation and 3D reconstruction. Academic Journal of Science and Technology. https://doi.org/10.54097/0h77ge77
Zhong, Z. W., & Jiang, Y. (2004). LED lighting configurations for visual inspection of IC packages. Materials and Manufacturing Processes, 19(3), 439–449. https://doi.org/10.1081/AMP-120038653
Zhou, Z., Wang, Q., & Zhang, L. (2021). Industrial vision systems for quality inspection: Trends and challenges. IEEE Transactions on Industrial Informatics, 17(6), 4115–4126. https://doi.org/10.1109/TII.2020.3029786
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Bucaramanga (Santander, Colombia)
dc.coverage.temporal.spa.fl_str_mv 6 meses
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Maestría en Automatización Industrial y Mecatrónica
dc.publisher.programid.none.fl_str_mv MAI-2384
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/32357/1/Tesis.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/32357/2/proyecto_ocr_presion.zip
https://repository.unab.edu.co/bitstream/20.500.12749/32357/6/Licencia.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/32357/5/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/32357/7/Tesis.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/32357/8/Licencia.pdf.jpg
bitstream.checksum.fl_str_mv 4cfdd2ab4b7cee521228d3935d4cde11
390a715be6efd0078fc7149ae1d32f26
8556926f43f406f5bae31dae41f8535d
3755c0cfdb77e29f2b9125d7a45dd316
de94c9442887770d99054e59691fe00f
ffcefbb7f07ff8caa5a87fdd8426058d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1851051844780949504
spelling Arizmendi Pereira, Carlos Julio79e0125f-b191-4144-999b-281177ddaaf9Angulo Pineda, Jhon Alejandro16a9373c-8744-4b88-ac86-a2c7eb6fec87Angulo Pineda, Jhon Alejandro [0001357319]Arizmendi Pereira, Carlos Julio [1381550]Angulo Pineda, Jhon Alejandro [Dhm18h4AAAAJ]Arizmendi Pereira, Carlos Julio [JgT_je0AAAAJ]Angulo Pineda, Jhon Alejandro [0009-0007-6768-3554]Angulo Pineda, Jhon Alejandro [Jhon-Angulo-Pineda]Arizmendi Pereira, Carlos Julio [Carlos_Arizmendi2]Arizmendi Pereira, Carlos Julio [carlos-julio-arizmendi-pereira]Angulo Pineda, Jhon Alejandro [jhon-alejandro-a-a81118143]Bucaramanga (Santander, Colombia)6 mesesUNAB Campus Bucaramanga2025-12-01T20:52:35Z2025-12-01T20:52:35Z2025-10-31http://hdl.handle.net/20.500.12749/32357instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLa calibración de los manómetros de presión constituye un proceso imprescindible que asegura la trazabilidad, la fiabilidad y la seguridad en el ámbito industrial. Sin embargo, en gran parte de la instrumentación de presión no existen interfaces digitales de acceso para poder obtener las lecturas, las cuales dependen de métodos manuales, lentos y propenso a errores de transcripción. Ante esta problemática, en el presente trabajo se presenta un sistema de reconocimiento automático de los dígitos de las pantallas digitales de los instrumentos de presión, investigando para ello técnicas de procesamiento de imágenes, de visión por computador y de inteligencia artificial. La metodología utilizada en este estudio incluye las etapas de adquisición y preprocesamiento de imagen, segmentación de regiones de interés, y OCR (del inglés Optical Character Recognition), usando modelos de aprendizaje profundo soportados en CNN (del inglés Convolutional Neural Network) y detección soportada en YOLO. Se llevó a cabo la implementación de este sistema desarrollando una base de datos local donde estarían guardados los registros con un sello temporal y clave de dispositivo y una interfaz gráfica que permita capturar, validar y enviar imágenes. Finalmente, la experimentación concluyó que el modelo CNN alcanza métricas por encima del 95 % en precisión, recall y F1-Score en los conjuntos de validación y de prueba, mientras que la implementación de YOLO permite la detección robusta de la región de los dígitos (dígitos en condiciones de variabilidad de la iluminación). También se muestra la reducción del tiempo que requiere el procesamiento del registro si se compara contra el procesamiento manual del registro, lo que mejora la eficiencia y disminuye el riesgo de errores de transcripción. Los resultados demuestran la viabilidad de esta propuesta como la alternativa no intrusiva para digitalizar los instrumentos de presión sin interfaces de comunicación estándar, a la vez que están absolutamente ligados a la optimización de los procesos metrológicos en la transición hacia laboratorios inteligentes y trazables en la Industria 4.0.Corporación Centro de Desarrollo Tecnológico del GasÍndice de Figuras 8 Índice de Tablas 10 Resumen 12 Abstract 14 Marco Introductorio 15 Introducción 15 Antecedentes 16 Planteamiento del Problema 19 Justificación 21 Pregunta de Investigación 23 Objetivos 25 Objetivo General 25 Objetivos Específicos 25 Marco Teórico 26 Fundamentos de Metrología y Calibración de Presión 26 Conceptos Básicos de Metrología 26 Calibración y Verificación de Instrumentos 28 Incertidumbre, Repetibilidad y Reproducibilidad 29 Confiabilidad y Trazabilidad en Metrología 31 Metrología en la Era Digital 33 La Transformación Digital en la Práctica Metrológica 33 Limitaciones de los Instrumentos en Uso 34 Visión por Computador Aplicada a la Metrología 35 Detectores Basados en YOLO 36 Modelos CNN Aplicados a OCR de Dígitos 40 Métricas de Desempeño en Visión por Computador 43 Bases de Datos y Almacenamiento de Información 44 Interfaces Hombre–Máquina y Digitalización de Procesos 45 Estado del Arte 46 Reconocimiento Óptico de Caracteres en Displays LED y LCD 46 Aprendizaje Profundo en Reconocimiento de Caracteres 49 Reconocimiento Basado en IA y Deep Learning 50 Implementaciones Tecnológicas en Adquisición de Imágenes 53 Integración con Bases de Datos y Aplicaciones en Industria 4.0 56 Síntesis Crítica y Vacíos Identificados 59 Metodología y Resultados 62 Diseño Metodológico y Enfoque Experimental 62 Arquitectura General del Sistema 63 Construcción y Validación del Dataset 67 Entrenamiento y Resultados de los Modelos de Reconocimiento: YOLO, CNN 74 Resultados del Modelo YOLO 75 Red Neuronal Convolucional (CNN) 79 Comparación de Modelos CNN. 80 Análisis del desempeño del modelo cnn_s. 87 Análisis del desempeño del modelo cnn_m. 90 Análisis del desempeño del modelo cnn_l. 92 Comparación del Enfoque YOLO-CNN Frente a OCR Tradicionales 95 Evaluación de Eficiencia Frente al Proceso Manual 97 Integración del Sistema con la GUI y la Base de Datos 99 Validación estadística 102 Discusión 110 Conclusiones 113 Referencias 116 Apéndice A. Métricas de desempeño en visión por computador 145 Apéndice B. Tablas de Bases de Datos 147 Apéndice C. Fundamentos Matemáticos del Aprendizaje Profundo en OCR 149 Apéndice D. Componentes de Hardware y Software Utilizados 151 Apéndice E. Modelos CNN 156 Apéndice F. Funciones de Activación 160 Rectified Linear Unit (ReLU) 160 Leaky Rectified Linear Unit (Leaky ReLU) 161 Gaussian Error Linear Unit (GELU) 161 Apéndice G. Análisis Estadístico no Paramétrico 163 Test de Friedman 163 Estructura de los Datos 163 Cálculo del estadístico de Friedman 164 Corrección del Iman-Davenport 165 Criterio de Nemenyi 165MaestríaThe calibration of pressure gauges is an essential process that ensures traceability, reliability, and safety in the industrial sector. However, in much pressure instrumentation there are no digital interfaces for accessing readings, which rely on manual methods that are slow and prone to transcription errors. In response to this problem, the present work introduces an automatic digit recognition system for the digital displays of pressure instruments, exploring image processing, computer vision, and artificial intelligence techniques. The methodology used in this study includes image acquisition and preprocessing, region-of-interest segmentation, and OCR (Optical Character Recognition), using deep learning models based on CNNs (Convolutional Neural Networks) and detection powered by YOLO. The system was implemented by developing a local database to store records with a timestamp and device key, and a graphical interface to capture, validate, and send images. Finally, the experiments concluded that the CNN model achieves metrics above 95% in precision, recall, and F1-score on the validation and test sets, while the YOLO implementation enables robust detection of the digit region (digits under varying lighting conditions). It also demonstrates the reduction in the time required to process the record compared to manual processing, thereby improving efficiency and reducing the risk of transcription errors. The results demonstrate the viability of this proposal as a non-intrusive alternative for digitizing pressure instruments without standard communication interfaces, while being fully aligned with the optimization of metrological processes in the transition toward smart, traceable laboratories in Industry 4.0.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Desarrollo de un sistema para el reconocimiento de dígitos en las lecturas de las pantallas ("displays") de instrumentos de presión mediante técnicas de procesamiento de imágenes, visión e inteligencia artificial para almacenamiento en una base de datosDevelopment of a system for digit recognition in pressure instrument display readings using image processing, vision, and artificial intelligence techniques for database storageThesisinfo:eu-repo/semantics/masterThesisTesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TMMagíster en Automatización Industrial y MecatrónicaUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaMaestría en Automatización Industrial y MecatrónicaMAI-2384Digital metrologyComputer visionCNNPressure instrumentsEngineering systemsTechnological innovationsSoftware developmentImage processingOptical data processingIngeniería de sistemasInnovaciones tecnológicasDesarrollo de softwareProcesamiento de imágenesProcesamiento óptico de datosMetrología digitalVisión por computadorOCRYOLOInstrumentos de presiónAkkoyun, F. (2022). A real-time video measurement system for quality control applications. Turkish Journal of Nature Science, 11(2), 22–26. https://doi.org/10.46810/tdfd.1086012Al Baghdadi, M. F., & Manaa, M. E. (2022). Unmanned aerial vehicles and machine learning for detecting objects in real time. Bulletin of Electrical Engineering and Informatics, 11(6), 3490–3497. https://doi.org/10.11591/eei.v11i6.4185Anbarasi, A., Jagadeesan, S., & Nithyasree, K. C. (2023). Converting structured forms to storable databases using form2db. En Proceedings of the 2023 International Conference on Smart Computing and Applications (ICSCAN 2023). IEEE. https://doi.org/10.1109/icscan58655.2023.10394829Auad, M., Alves, S., Kakizaki, G., Reis, J. C. S., & Silva, M. M. (2024). A filtering and image preparation approach to enhance OCR for fiscal receipts. En Proceedings of the 37th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI 2024). IEEE. https://doi.org/10.1109/sibgrapi62404.2024.10716295Auerswald, E. (s. f.). ssocr — Seven Segment Optical Character Recognition [Software]. Unix-AG, TU Kaiserslautern. Recuperado de https://www.unix-ag.uni-kl.de/~auerswal/ssocr/Basov, M. V. (2023). Pressure sensor chip with new electrical circuit for 10 kPa range. arXiv preprint arXiv:2302.07101. https://doi.org/10.48550/arxiv.2302.07101Basov, M., & Prigodskiy, D. (2021). Investigation of sensitive element for pressure sensor based on bipolar piezotransistor. Research Square preprint. https://doi.org/10.21203/rs.3.rs-677129/v1Batra, P., Phalnikar, N., Kurmi, D., Tembhurne, J., Sahare, P., & Diwan, T. (2023). OCR MRD: Performance analysis of different optical character recognition engines for medical report digitization. Research Square preprint. https://doi.org/10.21203/rs.3.rs-2513255/v1Belan, P. A., Araújo, S. A. D., & Librantz, A. F. H. (2012). Técnicas de visão computacional aplicadas no processo de calibração de instrumentos de medição com display numérico digital sem interface de comunicação de datos. Exacta, 10(1), 82–91. https://doi.org/10.5585/exacta.v10n1.3091Bureau International des Poids et Mesures (BIPM). (2019). The International System of Units (SI) (9th ed.). https://www.bipm.org/en/publications/si-brochureBishop, D., & Chase, J. G. (2023). A luminance-based lighting design method: A framework for lighting design and review of luminance measures. Sustainability, 15(5), 4369. https://doi.org/10.3390/su15054369Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. http://arxiv.org/abs/2004.10934Boonsim, N., & Kanjaruek, S. (2023). An integrated technique for detecting seven-segment digits on medical devices. En Proceedings of the 27th International Computer Science and Engineering Conference (ICSEC 2023). IEEE. https://doi.org/10.1109/icsec59635.2023.10329763Bulatov, K., Matalov, D., & Arlazarov, V. V. (2020). MIDV-2019: Challenges of the modern mobile-based document OCR. arXiv preprint arXiv:1910.04009. https://arxiv.org/abs/1910.04009Çelik, A. (2021). Eğik karakter tanıma başarısını arttırmak için yeni bir yöntemin kullanılması [Using a new method to improve italic character recognition success]. Harran Üniversitesi Mühendislik Dergisi, 6(1), 1–11. https://doi.org/10.46578/humder.720001Chaitanya, U., Alisetti, E., Ballam, H., & Dodda, M. (2023). Digital image text recognition using machine learning algorithms. International Journal for Research in Applied Science & Engineering Technology, 11(6), 3583–3590. https://doi.org/10.22214/ijraset.2023.54383Chaiyapet, P., & Wattana, B. (2024). Development of tracking and backward tracing system for automotive parts using optical character recognition technique. En Proceedings of the 2024 International STEM Education Conference (ISTEM-ED 2024). IEEE. https://doi.org/10.1109/istem-ed62750.2024.10663114Chen, Y., Lu, D., Xing, H., Ding, H., Luo, J., Liu, H., Kong, X., & Xu, F. (2024). Recent progress in MEMS fiber-optic Fabry–Perot pressure sensors. Sensors, 24(4), 1079. https://doi.org/10.3390/s24041079Cheng, Y., Yang, R., Zhang, Z., Suo, J., & Dai, Q. (2022). A dual sensor computational camera for high quality dark videography. arXiv preprint arXiv:2204.04987. https://arxiv.org/abs/2204.04987Coelho, G. E., Pinheiro, A., Silva Ribeiro, Á., Simões, C., & Lages Martins, L. (2024). Automating flowmeter calibration process: Digital measurements from numerical displays using open-source optical character recognition tools. Acta IMEKO, 13(3), 1–6. https://doi.org/10.21014/actaimeko.v13i3.1767Constantino, L. P., Camacho, J. I., & Acquarone, A. (2014). Análisis de incertidumbre en calibración de medidores de presión según DKD-R 6-1: Cinco métodos de cálculo. Innotec, 9, 7–13. https://doi.org/10.26461/09.01DAkkS. (2023). DAkkS and PTB start test phase for digitisation project [Comunicado de prensa], 01 march, 2023. https://www.dakks.de/en/pressrelease/dakks-and-ptb-start-test-phase-for-digitisation-project.htmlDAkkS. (2023). Digital accreditation symbol and digital calibration certificate: DAkkS and PTB prepare introduction [Comunicado de prensa], 26 september, 2023. https://www.dakks.de/en/pressrelease/digital-accreditation-symbol-and-digital-calibration-certificate-dakks-and-ptb-prepare-introduction.htmlDAkkS. (2024). Digital accreditation symbol: Contribution to trustworthy chains of evidence at international level [Comunicado de prensa], 23 may, 2024. https://www.dakks.de/en/pressrelease/digital-accreditation-symbol-contribution-to-trustworthy-chains-of-evidence-at-international-level.htmlDu, Y., Xu, K., Yu, Y., Huang, F., & Guo, Y. (2021). PP-OCRv2: Bag of tricks for ultra lightweight OCR system. arXiv preprint arXiv:2109.03144. https://arxiv.org/pdf/2109.03144.pdfDumberger, S., Edlinger, R., & Froschauer, R. (2020). Proceedings, 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) : Vienna, Austria - Hybrid, 08-11 September, 2020. IEEE. https://doi.org/10.1109/ETFA46521.2020.9211895Eichstädt, S., Gruber, M., Vedurmudi, A. P., Seeger, B., Bruns, T., & Kok, G. (2021). Towards smart traceability for digital sensors and the industrial internet of things. Sensors, 21(6), 2019. https://doi.org/10.3390/s21062019El Helou, M., Benfriha, K., Al-Ahmari, A. M., Wardle, P., Talhi, E., Loubère, S., El Zant, C., & Charrier, Q. (2022). A modular smart vision system for industrial inspection and control of conformity. Smart and Sustainable Manufacturing Systems, 6(1), 177–189. https://doi.org/10.1520/SSMS20220003Engel, T. (2023). GEMIMEG-II — How metrology can go digital. Measurement Science and Technology, 34(10), 104002. https://doi.org/10.1088/1361-6501/ace468Epstein, S. E. (2021). Pressure and its measurement. En Encyclopedia of Smart Materials. Springer. https://doi.org/10.1007/978-981-19-1550-5_46-1EURAMET. (2022). Development of digital calibration certificates. EURAMET. Recuperado de https://www.euramet.org/technical-committees/tc-projects/details/project/development-of-digital-calibration-certificatesGarnique, L. A. V., Cabrera, H. I. M., Chavarry, K. L. V., & Barco, M. J. V. (s. f.). Visión artificial: Aplicación de filtros y segmentación en imágenes de hojas de café. Revista de Ciencia, Tecnología e Innovación. https://doi.org/10.26495/icti.v1i2.198Gener, S., Dattilo, P., Gajaria, D., Fusco, A., & Akoglu, A. (2022). GPGPU-based high throughput image pre-processing towards large-scale optical character recognition. En Proceedings of the 2022 ACS/IEEE International Conference on Computer Systems and Applications (AICCSA 2022). IEEE. https://doi.org/10.1109/AICCSA56895.2022.10017481Ghanam, M., Woias, P., & Goldschmidtböing, F. (2025). MEMS pressure sensors with novel TSV design for extreme temperature environments. Sensors, 25(3), 636. https://doi.org/10.3390/s25030636González, R. C., & Woods, R. E. (2018). Digital image processing (4th ed.). Pearson. Vista previa disponible en: https://api.pageplace.de/preview/DT0400.9781292223070_A37747583/preview-9781292223070_A37747583.pdfGoodfellow Ian, Bengio Yoshua, & Courville Aaron. (2016). Book Review: Deep Learning. Healthcare Informatics Research, 22(4), 351. https://doi.org/10.4258/hir.2016.22.4.351Gorai, S. K., & Pradhan, S. (2025). Bridging the gap: OCR techniques for noisy and distorted texts. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 11(1), 695–703. https://doi.org/10.32628/cseit2511111Gupta, N., & Jalal, A. S. (2021). Traditional to transfer learning progression on scene text detection and recognition: A survey. Artificial Intelligence Review, 1–46. https://doi.org/10.1007/S10462-021-10091-3Grzeczka, G., & Klebba, M. (2020). Automated calibration system for digital multimeters not equipped with a communication interface. Sensors (Switzerland), 20(13), 1–16. https://doi.org/10.3390/s20133650Gushima, K., & Kashima, T. (2023). Automatic generation of seven-segment display images for digital meter reading. PHM Asia Pacific, 4(1). https://doi.org/10.36001/phmap.2023.v4i1.3612Hackel, S., Schönhals, S., Doering, L., Engel, T., & Baumfalk, R. (2023). The Digital Calibration Certificate (DCC) for an End-to-End Digital Quality Infrastructure for Industry 4.0. Sci, 5(1). https://doi.org/10.3390/sci5010011Hashmi, A. W., Mali, H. S., Meena, A., Hashmi, M. F., & Bokde, N. D. (2023). Surface characteristics measurement using computer vision: A review. Computer Modeling in Engineering & Sciences, 135(2), 917–947. https://doi.org/10.32604/cmes.2023.021223Hendrycks, D., & Gimpel, K. (2023). Gaussian Error Linear Units (GELUs). http://arxiv.org/abs/1606.08415Hou, Q., Zhou, D., & Feng, J. (2021). Coordinate attention for efficient mobile network design. En Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021) (pp. 13713–13722). IEEE. https://doi.org/10.48550/arXiv.2103.02907Hussain, M. (2024). YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time Vision. http://arxiv.org/abs/2407.02988Idris, A. A., & Taha, D. B. (2022). Implementation of OCR using convolutional neural network (CNN): A survey. Journal of Education and Science, 31(3), 27–41. https://doi.org/10.33899/edusj.2022.133711.1236Іванова, В., Chivarov, N., & Staikova, M. (2023). Combining software algorithms and machine learning in business data processing. IFAC-PapersOnLine, 58(3), 198–202. https://doi.org/10.1016/j.ifacol.2024.07.150International Laboratory Accreditation Cooperation (ILAC). (s. f.). Signatory contact details: Organismo Nacional de Acreditación de Colombia (ONAC). Recuperado el 18 de agosto de 2025, de: https://ilac.org/signatorydetail/?id=140&id1xx=0&id2xx=0&id3xx=0&q=International Organization for Standardization (ISO/IEC). (2017). ISO/IEC 17025:2017 — General requirements for the competence of testing and calibration laboratories. https://www.iso.org/standard/66912.htmlIQS Directory. (2025). Uses and types of pressure gauges. Recuperado el 18 de agosto de 2025, de: https://www.iqsdirectory.com/articles/pressure-gauge.htmlJaidedAI. (2020). EasyOCR (v.1.x) [Repositorio de software]. GitHub. https://github.com/JaidedAI/EasyOCRJain, J., & Gupta, M. (2024). AI-driven machine learning-enhanced OCR for automation and accessibility. Journal of AI Research and Development. https://doi.org/10.21428/e90189c8.0d085420Jamwal, A., Zhao, Z., & Lee, J. (2021). Industry 4.0 technologies for manufacturing sustainability: A systematic review and implications. Applied Sciences, 11(12), 5725. https://doi.org/10.3390/app11125725Javed, Y., Mansoor, M., & Shah, I. A. (2019). A review of principles of MEMS pressure sensing with its aerospace applications. Sensor Review, 39(5), 652–664. https://doi.org/10.1108/SR-06-2018-0135Joint Committee for Guides in Metrology (JCGM). (2008). Evaluation of measurement data – Guide to the expression of uncertainty in measurement (GUM). BIPM. https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdfJoint Committee for Guides in Metrology (JCGM). (2012). Vocabulario internacional de metrología: Conceptos fundamentales y generales, y términos asociados (VIM) (3.ª ed.). Centro Español de Metrología. https://www.cem.es/sites/default/files/vim-cem-2012web.pdfJena, S., & Gupta, A. (2021). Review on pressure sensors: A perspective from mechanical to microelectro-mechanical systems. Sensor Review, 41(3), 320–329. https://doi.org/10.1108/SR-03-2021-0106Jocher, G. (2020). YOLOv5 by Ultralytics (Version 7.0) [Software]. Zenodo. https://doi.org/10.5281/zenodo.3908559Jocher, G. (2022). ultralytics/yolov5: v7.0 — YOLOv5 SOTA Realtime Instance Segmentation [Software]. Zenodo. https://doi.org/10.5281/zenodo.7347926Jwo, J.-S., Lin, C.-S., Lee, C.-H., & Wang, C. (2021). A lightweight application for reading digital measurement and inputting condition assessment in manufacturing industry. Mobile Information Systems, 2021, Article ID 5555833, 1–10. https://doi.org/10.1155/2021/5555833Karabiber, F., Arena, P., Fiore, S. D., Vagliasindi, G., Fortuna, L., & Arik, S. (2009). Implementation of a new segmentation algorithm using the Eye-RIS CMOS vision system. En Proceedings of SPIE — Microelectronics: Design, Technology, and Packaging. https://doi.org/10.1117/12.821730Karanth, K. V. U., Sujan, A. T., Kumar, Y. R. T., Joshi, S., Rani, K. P. A., & Gowrishankar, S. (2023). Breaking barriers in text analysis: Leveraging lightweight OCR and innovative technologies for efficient text analysis. En Proceedings of the 2023 International Conference on Advanced Computing and Robotics Systems (ICACRS 2023). IEEE. https://doi.org/10.1109/icacrs58579.2023.10404305Karrach, L., & Pivarčiová, E. (2023). Using a convolutional neural network for machine written character recognition. TEM Journal, 12(3), 1042–1050. https://doi.org/10.18421/TEM123-03Kavya, T. S., Jang, Y.-M., Tsogtbaatar, E., Peng, T., & Cho, S.-B. (2020). An objective image quality evaluation and its applications for low illumination and sudden illumination changes. International Journal of Engineering Research and Technology, 13(5), 1057–1064. https://doi.org/10.37624/IJERT/13.5.2020.1057-1064Khoirani, L., Ariansyah, R., & Supiyandi, S. (2024). Implementasi algoritma OCR (optical character recognition) untuk ekstraksi informasi dari citra struk transaksi keuangan. Mars Journal, 2(6), 151–160. https://doi.org/10.61132/mars.v2i6.537Khosrobeigi, Z., Veisi, H., Hoseinzade, E., & Shabanian, H. (2022). Persian optical character recognition using deep bidirectional long short-term memory. Applied Sciences, 12(22), 1176. https://doi.org/10.3390/app122211760Kobata, T., Kojima, M., & Kajikawa, H. (2011). Improvement of reliability in pressure measurements and international mutual recognition. Synthesiology, 4(2), 209–217. https://doi.org/10.5571/synth.4.209Kopytek, M., Lech, P., & Okarma, K. (2024). Application of binary image quality assessment methods to predict the quality of optical character recognition results. Applied Sciences, 14(22), 10275. https://doi.org/10.3390/app142210275Kotangale, A. (2023). OCR using CRNN: A deep learning approach for robust text recognition. En Proceedings of the 2023 International Conference on Electronics and Sustainable Communication Systems (ICESC 2023). IEEE. https://doi.org/10.1109/INCET57972.2023.10170436Kruttschnitt, J. (2022). Automatic conversion of table contents from PDF technical specification documents into database using AI optical character recognition (OCR). En Proceedings of the 2022 International Conference on Artificial Intelligence and Applications. Springer. https://doi.org/10.1007/978-981-19-3951-8_22Kumar, A. V., M., A. K., Bader, A. F., Kaur, G., Ray, S., G., P. L., Virparia, P., Sagar, B. B., Dutta, A., Masadeh, S. R., Dulhare, U. N., & Srinivasulu, A. (2024). Optical Character Recognition (OCR) Using Opencv and Python: Implementation and Performance Analysis. In D. Darwish (Ed.), Hyperautomation in Business and Society (pp. 147-163). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-3354-9.ch008 Kumar, V. (2022). Pressure and its measurement. En Handbook of Sensors and Actuators. Springer. https://doi.org/10.1007/978-981-99-2074-7_46Laroca, R., Araujo, A. B., Zanlorensi, L. A., De Almeida, E. C., & Menotti, D. (2021). Towards Image-Based Automatic Meter Reading in Unconstrained Scenarios: A Robust and Efficient Approach. IEEE Access, 9, 67569–67584. https://doi.org/10.1109/ACCESS.2021.3077415Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. En Nature (Vol. 521, Número 7553, pp. 436–444). Nature Publishing Group. https://doi.org/10.1038/nature14539Lee, T., Kim, G., Ahn, H., Jeong, J. Y., Jeong, M. G., & Song, J. (2024). Integrating OCR and LLMs for enhanced document digitization in ERP systems. En Proceedings of the 2024 International Conference on ICT Convergence (ICTC 2024). IEEE. https://doi.org/10.1109/ictc62082.2024.10827723Li, C., Liu, W., Guo, R., Yin, X., Jiang, K., Du, Y., Zhu, L., Lai, B., Hu, X., Yu, D., & Ma, Y. (2023). PP-OCRv3: More attempts for the improvement of ultra lightweight OCR system. arXiv preprint arXiv:2206.03001. https://arxiv.org/abs/2206.03001Li, H., Ma, Y., Bao, H., & Zhang, Y. (2023). Probabilistic Hough Transform for rectifying industrial nameplate images: A novel strategy for improved text detection and precision in difficult environments. Applied Sciences, 13(7), 4533. https://doi.org/10.3390/app13074533Li, H., Li, H., Cheng, J., Wang, Y., & Xiao, K. (2020). An image acquisition and processing technique based on machine vision. En Advances in Computer Vision and Pattern Recognition. Springer. https://doi.org/10.1007/978-981-15-8411-4_30Li, J., Pan, C., Pan, J., Lin, J., Lu, M., Jiang, Z. L., & Fang, J. (2022). Long-distance, real-time LED display-camera communication system based on LED point clustering and lightweight image processing. Photonics, 9(10), 721. https://doi.org/10.3390/photonics9100721Li, S., & Yoon, H.-S. (2023). Vehicle localization in 3D world coordinates using single camera at traffic intersection. Sensors, 23(7), 3661. https://doi.org/10.3390/s23073661Lin, E., McLaughlin, M. J., & Alshehri, A. (2014). Medical image segmentation using multi-scale and super resolution method. En Proceedings of the 2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). IEEE. https://doi.org/10.1109/AIPR.2014.7041899Low, L. M., Mohd Salleh, F. H., Law, Y. F., & Zakaria, N. Z. (2024). Detecting and recognizing seven segment digits using a deep learning approach. ITM Web of Conferences, 63, 01007. https://doi.org/10.1051/itmconf/20246301007Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166–177. https://doi.org/10.1016/J.ISPRSJPRS.2019.04.015Maas, A.L., Hannun, A.Y. and Ng, A.Y. (2013) Rectifier Nonlinearities Improve Neural Network Acoustic Models. Proceedings of the 30th International Conference on Machine Learning, Vol. 28, 3. https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdfMalinski, K., & Okarma, K. (2023). Analysis of image preprocessing for OCR on industrial displays. Electronics, 12(11), 2449. https://doi.org/10.3390/electronics12112449Maung, A. T., Salekin, S., & Haque, M. A. (2025). A hybrid approach to Bangla handwritten OCR: Combining YOLO and an advanced CNN. Discover Artificial Intelligence, 5, 119. https://doi.org/10.1007/s44163-025-00251-7Marciniak, L., Woźny, P., Szymczak, M., & Runowski, M. (2024). Optical pressure sensors for luminescence manometry: Classification, development status, and challenges. Coordination Chemistry Reviews. https://doi.org/10.1016/j.ccr.2024.215770Martel, J. N. P., Muller, L. K., Carey, S. J., Dudek, P., & Wetzstein, G. (2020). Neural sensors: Learning pixel exposures for HDR imaging and video compressive sensing with programmable sensors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(7), 1642–1653. https://doi.org/10.1109/TPAMI.2020.2986944Michalak, H., & Okarma, K. (2020). Robust combined binarization method of nonuniformly illuminated document images for alphanumerical character recognition. Sensors, 20(10), 2914. https://doi.org/10.3390/S20102914C. Mihail-Bogdan, L. Teodor and N. Horia, "Towards Digital Energy Metering Systems by Means of Artificial Intelligence," 2023 11th International Conference on ENERGY and ENVIRONMENT (CIEM), Bucharest, Romania, 2023, pp. 1-4, doi: 10.1109/CIEM58573.2023.10349715Milana, E., Ramírez-Agudelo, O. H., & Estevam Schmiedt, J. (2022). Autonomous Reading of Gauges in Unstructured Environments. Sensors, 22(17). https://doi.org/10.3390/s22176681Mishra, A., Sikdar, J., & Kumar, S. (2024). Deep learning-based optical character recognition for robust real-world conditions: A comparative analysis. En Proceedings of the 2024 International Conference on Communication and Networking Technologies (ICCCNT 2024). IEEE. https://doi.org/10.1109/icccnt61001.2024.10726007Mohsenzadegan, K., Tavakkoli, V., & Kyamakya, K. (2022). A smart visual sensing concept involving deep learning for a robust optical character recognition under hard real-world conditions. Sensors, 22(16), 6025. https://doi.org/10.3390/s22166025Monteiro, G., Camelo, L., Aquino, G., Fernandes, R. de A., Gomes, R., Printes, A., Torné, I., Silva, H., Oliveira, J., & Figueiredo, C. (2023). A comprehensive framework for industrial sticker information recognition using advanced OCR and object detection techniques. Applied Sciences, 13(12), 7320. https://doi.org/10.3390/app13127320Mughal, W., & Choubey, B. (2020). On wide dynamic range tone mapping CMOS image sensor. Sensing and Imaging, 21(33), 1–15. https://doi.org/10.1007/s11220-020-00297-0Mühlbauer, M., Würschinger, H., Hanenkamp, N., & Funtikov, S. (2023). Optische Erfassung von Messwerten: Maschinelle Lernverfahren zur Digitalisierung manueller Ablese- und Messvorgänge [Optical detection of measured values: Machine learning methods for digitalizing manual reading and measuring processes]. Industrie 4.0 Management, 39(1), 43–47. https://doi.org/10.30844/IM_23-1_43-47Munawaroh, A., & Jamzuri, E. R. (2023). Automatic optical inspection for detecting keycaps misplacement using Tesseract optical character recognition. International Journal of Electrical and Computer Engineering, 13(5), 5147–5155. https://doi.org/10.11591/ijece.v13i5.pp5147-5155Mustapää, T., Nikander, P., Hutzschenreuter, D., & Viitala, R. (2020). Metrological challenges in collaborative sensing: Applicability of digital calibration certificates. Sensors (Switzerland), 20(17), 1–19. https://doi.org/10.3390/s20174730Mustapää, T., Koskinen, S., Sundfors, M., Jonsson, J., Riska, K., Löytynoja, L., & Broo, J. A. (2024). Enabling the use of digital calibration certificates in industrial calibration management systems. Journal of Sensors and Sensor Systems, 13(1), 71–79. https://doi.org/10.5194/jsss-13-71-2024Naghdy, G., Li, Y., & Wang, J. (2003). Wavelet-morphology for mass detection in digital mammogram images. En Proceedings of SPIE — Medical Imaging. https://doi.org/10.1117/12.480109Nair, A., Tripathy, V. D., Priya, R. L., Kashimani, M., Janthalur, G. A. N., Ansari, N. J., & Jurčić, I. (2024). A smarter way to collect and store data. En Advances in Digital Transformation (pp. 1–15). Wiley. https://doi.org/10.1002/9781394216147.ch15Nallaperumal, K., Krishnaveni, K., Varghese, J., Saudia, S., Selvakumar, R., Subban, R., & Ranjani, J. J. (2006). Fuzzy optimal thresholded multiscale morphological segmentation of digital images. En Proceedings of the 2006 World Congress on Communication and Computer Networks (WOCN). IEEE. https://doi.org/10.1109/WOCN.2006.1666678Nandeshwar, V., Savardekar, S., Pathare, S., Nair, S., Pandita, S., & Sawale, A. (2024). Innovative image preprocessing methods for enhancing OCR accuracy in number plate detection. En Proceedings of the 2024 International Conference on Software Engineering and Security (ICSES 2024). IEEE. https://doi.org/10.1109/icses63445.2024.10763065Nazdryukhin, A. S., Khramtsov, I. N., & Tushev, A. N. (2019). Processing images of sales receipts for isolating and recognising text information. Herald of Daghestan State Technical University. Technical Sciences, 46(4), 113–122. https://doi.org/10.21822/2073-6185-2019-46-4-113-122Node-RED Project. (2025). Node-RED documentation. Recuperado de. https://nodered.org/docs/Nogueira, V. V. E., Barca, L. F., & Pimenta, T. C. (2023). A cost-effective method for automatically measuring mechanical parts using monocular machine vision. Sensors, 23(13), 5994. https://doi.org/10.3390/s23135994Okolie, P. C., Segun, O. B., Lazarus, T. L., Onyebuchi, O. U., & Ochiagha, C. E. (2023). Design and performance evaluation of a pressure gauge calibration apparatus. Journal of Inventive Engineering and Technology, 4(2), 73–82. Recuperado de https://www.researchgate.net/publication/375863704Organismo Nacional de Acreditación de Colombia (ONAC). (s.f.). Organismo Nacional de Acreditación de Colombia. Recuperado el 9 de agosto de 2025, de https://onac.org.coOrganismo Nacional de Acreditación de Colombia (ONAC). (s.f.-a). Laboratorios de calibración. Recuperado el 9 de agosto de 2025, de https://onac.org.co/servicios/laboratorios-de-calibracion/Organismo Nacional de Acreditación de Colombia (ONAC). (s.f.-b). Acuerdos de reconocimiento internacional. Recuperado el 9 de agosto de 2025, de https://onac.org.co/acerca-de-onac/acuerdos-de-reconocimiento-internacional/OpenCV Team. (2024). OpenCV 4.x documentation. OpenCV.org. https://docs.opencv.org/4.x/Pandey, M., Arora, M. M., Arora, S., Goyal, C., Gera, V. K., & Yadav, H. (s. f.). AI-based integrated approach for the development of intelligent document management system (IDMS). Procedia Computer Science. https://doi.org/10.1016/j.procs.2023.12.127Pandiaraj, S., & Jagadeesan, J. (2013). Optical character recognition using dynamic memory image algorithm. IOSR Journal of Computer Engineering, 16(2), 12–16. http://dx.doi.org/10.9790/0661-16271216Paulauskaitė-Tarasevičienė, A., Siaulys, J., Jankauskas, A., & Jakuškaitė, G. (2025). A robust blood vessel segmentation technique for angiographic images employing multi-scale filtering approach. Journal of Clinical Medicine, 14(2), 354. https://doi.org/10.3390/jcm14020354Peixoto, J., Sousa, J., Carvalho, R., Santos, G., Cardoso, R., & Reis, A. (2023). End-to-End Solution for Analog Gauge Monitoring Using Computer Vision in an IoT Platform. Sensors, 23(24). https://doi.org/10.3390/s23249858Pereira, J. D. (2024). Pressure Sensors: Working Principles of Static and Dynamic Calibration. Sensors, 24(2). https://doi.org/10.3390/s24020629Pham, V. A. (2022). Improved OCR quality for smart scanned document management system. Journal of Science and Technique, 9(1). https://doi.org/10.56651/lqdtu.jst.v9.n01.60.ictPower Manometer. (2025, 8 de abril). The difference between Bourdon tube pressure gauge and capsule pressure gauge. Recuperado el 18 de agosto de 2025, de https://www.powermanometer.com/info/the-difference-between-bourdon-tube-pressure-g-102861204.htmlPramudito, D. K., & Fatchan, M. (2025). Optimizing image recognition in low-light environments through advanced computer vision algorithms. The Journal of Academic Science, 2(1), 278–291. Recuperado de https://www.researchgate.net/publication/388369155_Optimizing_Image_Recognition_in_Low-Light_Environments_through_Advanced_Computer_Vision_AlgorithmsPhysikalisch-Technische Bundesanstalt (PTB). (2024). Digital Calibration Certificate (DCC): Concepts and implementation guidance / DKD-E 4-3 [Sitio oficial del DCC]. https://www.ptb.de/cms/en/metrological-services/dkd/dkd-dcc.htmlRab, S., Singh, J., Zafer, A., Sharma, N., & Yadav, S. (2022). Application of contemporary techniques of evaluation of measurement uncertainty in pressure transducer. En Encyclopedia of Smart Materials. Springer. https://doi.org/10.1007/978-981-19-1550-5_129-1Ramis, D. S. (2023). An innovative method for measuring instrument data acquisition using image processing techniques. arXiv preprint arXiv:2302.07091. https://arxiv.org/abs/2302.07091Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 779–788. https://doi.org/10.1109/CVPR.2016.91Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. http://arxiv.org/abs/1804.02767Reyvansyah, M. R., Setiawan, E., Indarti, R., Adianto, & Munadhif, I. (2023). Penerapan metode optical character recognition (OCR) untuk mengambil data arsip. Jurnal Teknik Elektro dan Komputer TRIAC, 10(2), 44–50. https://journal.trunojoyo.ac.id/triac/article/view/20809Rooswita, F. F., Rahmawati, T., & Syaifuddin. (2020). A two-mode digital pressure meter equipped with an automatic leak test using MPX5050GP and MPXV4115VC6U sensors. Journal of Electronics, Electromedical, and Medical Informatics, 2(2), 80–85. https://doi.org/10.35882/jeeemi.v2i2.7Rucki, M. (2023). Recent development of air gauging in Industry 4.0 context. Sensors, 23(4), 2122. https://doi.org/10.3390/s23042122Sabbatini, L., Belli, A., Palma, L., & Pierleoni, P. (2023). One datum and many values for sustainable Industry 4.0: A prognostic and health management use case. International Journal of Power Electronics and Drive Systems, 13(1), 658–668. https://doi.org/10.11591/ijece.v13i1.pp658-668Sadeghian, R., Shahin, S., & Sareh, S. (2024). CVOCR: Context vision OCR. En Proceedings of the 2024 IEEE International Conference on Mechatronics and Automation (MESA 2024). IEEE. https://doi.org/10.1109/mesa61532.2024.10704827Salehudin, M., Basah, S. N., Yazid, H., Basaruddin, K. S., Safar, M. J. A., Som, M. H. M., & Sidek, K. A. (2023). Analysis of optical character recognition using EasyOCR under image degradation. Journal of Physics: Conference Series, 2641(1), 012001. https://doi.org/10.1088/1742-6596/2641/1/012001Sahani, T., Chauhan, T., & Varsha, M. (2024). The efficacy of Tesseract OCR: Insights from a practical application study. International Journal of Advanced Computer Science and Applications. https://doi.org/10.62919/hdsg3874Salomon, G., Laroca, R., & Menotti, D. (2022). Image-based automatic dial meter reading in unconstrained scenarios. arXiv preprint arXiv:2201.02850. https://arxiv.org/abs/2201.02850Saravanan, S., Challa, A., & Danda, S. K. (2022). A robust morphological approach for semantic segmentation of very high resolution images. arXiv preprint arXiv:2208.01254. https://doi.org/10.48550/arXiv.2208.01254Schiering, N., & Schnelle-Werner, O. (2019). Uncertainty evaluation in industrial pressure measurement. Journal of Sensors and Sensor Systems, 8(2), 251–259. https://doi.org/10.5194/JSSS-8-251-2019Sharma, P. (2023). Advancements in OCR: A deep learning algorithm for enhanced text recognition. International Journal of Inventive Engineering and Sciences. https://doi.org/10.35940/ijies.f4263.0810823Sharma, P., & Sharma, S. (2016). Image processing-based degraded camera captured document enhancement for improved OCR accuracy. En Proceedings of the 2016 6th International Conference on Cloud System and Big Data Engineering (CONFLUENCE). IEEE. https://doi.org/10.1109/CONFLUENCE.2016.7508160Shi, B., Bai, X., & Yao, C. (2017). An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(11), 2298–2304. https://doi.org/10.1109/TPAMI.2016.2646371Shi, Y., Peng, D., Liao, W., Lin, Z., Chen, X., Liu, C., Zhang, Y., & Jin, L. (2023). Exploring OCR capabilities of GPT-4V(ision): A quantitative and in-depth evaluation. arXiv preprint arXiv:2310.16809. https://doi.org/10.48550/arxiv.2310.16809Schiering, N., Eichstädt, S., Heizmann, M., Koch, W., Schneider, L.-S., Scheele, S., & Sommer, K.-D. (2024). MODELLING OF MEASURING SYSTEMS-FROM WHITE BOX MODELS TO COGNITIVE APPROACHES. https://arxiv.org/pdf/2408.06117Shivakumara, P., Alaei, A., & Pal, U. (2021). Mining text from natural scene and video images: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 11(6), e142. https://doi.org/10.1002/WIDM.1428Schneider, L.-S., Krauss, P., Schiering, N., Syben, C., Schielein, R., & Maier, A. (2024). Data-driven Modeling in Metrology -- A Short Introduction, Current Developments and Future Perspectives. http://arxiv.org/abs/2406.16659Shulman, D. (2023). An innovative method for measuring instrument data acquisition using image processing techniques. arXiv preprint arXiv:2302.07091. https://arxiv.org/abs/2302.07091Si, M. C., Ding, Y. H., Ma, X., Xue, P. H., Huang, J. B., & Ma, Y. J. (2021). Visual management system of intelligent factory tools based on Odoo. En Proceedings of the 2021 4th International Conference on Advanced Engineering, Management and Computer Science Engineering (AEMCSE). IEEE. https://doi.org/10.1109/AEMCSE51986.2021.00191Soomro, T. A., Ali, A. H. H., Jandan, N. A., Afifi, A. J., Irfan, M., Alqhtani, S., Glowacz, A., Alqahtani, A. S., Tadeusiewicz, R., Kantoch, E., & Zheng, L. (2021). Impact of novel image preprocessing techniques on retinal vessel segmentation. Electronics, 10(18), 2185. https://doi.org/10.3390/electronics10182297Sporici, D., Cuşnir, E., & Boiangiu, C. (2020). Improving the accuracy of Tesseract 4.0 OCR engine using convolution-based preprocessing. Symmetry, 12(5), 749. https://doi.org/10.3390/SYM12050715Smith, R. (2007). An overview of the Tesseract OCR engine. En Proceedings of the Ninth International Conference on Document Analysis and Recognition (ICDAR 2007) (pp. 629–633). IEEE. https://doi.org/10.1109/ICDAR.2007.4376991Songa, A., Bolineni, R., Reddy, H., Korrapolu, S., & Geddada, V. J. (2022). Vehicle number plate recognition system using Tesseract-OCR. International Journal for Research in Applied Science & Engineering Technology, 10(4). https://doi.org/10.22214/ijraset.2022.41198Sterkens, W., Bracquené, E., Diaz-Romero, D., Goedemé, T., Dewulf, W., & Peeters, J. R. (2022). Product label identification with OCR for model‐specific reuse, repair, and recycling: A case study for washing machines. Journal of Industrial Ecology, 27(3), 834–844. https://doi.org/10.1111/jiec.13279Sultana, U., Bilal, S., Naqvi, S. H. A., & Iqbal, R. (2022). Smart OCR application for meter reading. Engineering Proceedings, 20(1), 25. https://doi.org/10.3390/engproc2022020025Sundararajan, S., & Afle, G. M. (2023). Reliability and validity of a low-cost pressure gauge manometer for measurement of respiratory muscle strength in healthy children: A cross-sectional study. International Journal of Pediatrics Research, 10(9), 3127–3131. https://doi.org/10.18203/2394-6040.ijcmph20232655Sunkara, V. S. P. (2024). Navigating the depths: A comprehensive study of deep learning and its advancements in medical image analysis. Journal of Emerging Science, 20(3), 5114–5125. https://doi.org/10.52783/jes.6263Susanty, M., & Nugroho, H. (2020). Optical character recognition implementation for admission system in Universitas Pertamina. Jurnal SIMETRIS, 11(1), 165–174. https://jurnal.umk.ac.id/index.php/simet/article/view/3838Szeliski, R. (2022). Computer vision: Algorithms and applications (2nd ed.). Springer. https://szeliski.org/Book/Taccola, G. M., & Saita, M. T. (2021). Automatic calibration with character recognition software. Journal of Physics: Conference Series, 1826(1), 012069. https://doi.org/10.1088/1742-6596/1826/1/012069Tamboli, A. (2024). Optimizing OCR performance: An investigation into image preprocessing techniques. Indian Scientific Journal of Research in Engineering and Management. https://doi.org/10.55041/ijsrem31769Tekin, E., Coughlan, J. M., & Shen, H. (2011). Real-time detection and reading of LED/LCD displays for visually impaired persons. En Proceedings of the 2011 IEEE Workshop on Applications of Computer Vision (WACV). IEEE. https://doi.org/10.1109/WACV.2011.5711544Tsai, T., Lin, C., & Lin, Y. (2010). System level design and implementation for region-of-interest segmentation. Journal of Signal Processing Systems, 61(1), 35–46. https://doi.org/10.1007/S11265-008-0334-ZTsimpiris, A., Varsamis, D., & Pavlidis, G. (2022). Tesseract OCR evaluation on Greek food menus datasets. International Journal of Computing and Optimization, 9(1), 13–32. https://doi.org/10.12988/ijco.2022.9829Tu, X., Yuan, Z., Liu, B., Liu, J., Hu, Y., Hua, H., & Wei, L. (2023). An improved YOLOv5 for object detection in visible and thermal infrared images based on contrastive learning. Frontiers in Physics, 11, 1193245. https://doi.org/10.3389/fphy.2023.1193245Turk, A. S., & Hamarat, A. (2019). Automated pressure calibration of blood pressure measuring device calibrator to realize its traceability. En Proceedings of the 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE. https://doi.org/10.1109/MEMEA.2019.8802215Turk, A. S., Hamarat, A., & Karaboce, B. (2020). Comparison of manual and automated pressure calibration methods of medical pressure calibrator. En Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA). IEEE. https://doi.org/10.1109/MEMEA49120.2020.9137288Ujwala, B. S., & Sumathi, K. (2022). A review paper on OCR using convolutional neural networks. International Journal of Engineering Applied Sciences and Technology, 7(7), 102–106. https://doi.org/10.33564/ijeast.2022.v07i07.018Varma, O., Srivastava, S., & Gayathri, M. (2021). Technical invoice data extraction system: State of the art, research challenges and countermeasures. In Emerging Technologies for Industry 4.0 (pp. 255–268). Springer. https://doi.org/10.1007/978-981-16-7952-0_19Vasudev, V., Xthona, A., & Kimpe, T. (2022). Display systems for digital pathology: What are proper luminance, contrast and resolution settings? En Proceedings of SPIE, 12033, 1203307. https://backoffice.biblio.ugent.be/download/8754685/8756861Vigier, M., Pilloix, T., Dupont, B., & Moritz, G. (2020). Very high brightness, high resolution CMOS driving circuit for microdisplay in augmented reality. En Proceedings of the 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 876–879). IEEE. https://doi.org/10.1109/MWSCAS48704.2020.918448Vizilter, Y., Pyt’ev, Y. P., Chulichkov, A. I., & Mestetskiy, L. M. (2014). Morphological image analysis for computer vision applications. En Mathematical Morphology and Its Applications to Signal and Image Processing. Springer.Wachenfeld, S., Klein, H., & Jiang, X. (2006). Recognition of screen-rendered text. En Proceedings of the 18th International Conference on Pattern Recognition (ICPR 2006). IEEE. https://doi.org/10.1109/ICPR.2006.974Wang, J., Yang, P., Liu, Y., Shang, D., Hui, X., Song, J., & Chen, X. (2023). Research on Improved YOLOv5 for Low-Light Environment Object Detection. Electronics (Switzerland), 12(14). https://doi.org/10.3390/electronics12143089Wang, R., Zeng, L., Wu, S., Cao, W., & Wong, K. (2020). Illumination-invariant feature point detection based on neighborhood information. Sensors, 20(22), 6630. https://doi.org/10.3390/s20226630Wang, X., He, Z., Wang, K., Wang, Y., Zou, L., & Wu, Z. (2023). A survey of text detection and recognition algorithms based on deep learning technology. Neurocomputing, 556, 126702. https://doi.org/10.1016/j.neucom.2023.126702Wang, Z., Qiu, B., Shen, X., & Chen, J. (2022). Research on character detection and recognition of digital instrument. En Proceedings of the 2022 International Conference on Intelligent Manufacturing and Communication Engineering (IMCEC). IEEE. https://doi.org/10.1109/IMCEC55388.2022.10020131Wannachai, A., Boonyung, W., & Champrasert, P. (2020). Real-time seven segment display detection and recognition online system using CNN. En Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE. https://doi.org/10.1007/978-3-030-57115-3_5Waseem, F., Sankaran, M., Menon, S., Cheluvaraja, S., Xu, H., Mondal, D., Kumar, A., Kumar, A., Liu, F., Yang, L., Song, Y., Malgaonkar, A., Hennadka, R. R., Siva, O. V., Kumar, C., & Gordienko, E. (2022). VizInspect Pro—Automated optical inspection (AOI) solution. arXiv preprint arXiv:2205.13095. https://doi.org/10.48550/arXiv.2205.13095Weber, S. (s. f.). Advantages of diaphragm pressure gauges: Measurement of low pressures. WIKA Blog. Recuperado el 9 de agosto de 2025, de https://blog.wika.com/en/knowhow/advantages-of-diaphragm-pressure-gauges-measurement-of-low-pressuresWieczorowski, M., & Trojanowska, J. (2023). Towards metrology 4.0 in dimensional measurements. Journal of Machine Engineering, 23(1), 100–113. https://doi.org/10.36897/jme/161717Wu, K., Galli, F., Tommaso, J. D., Patience, G. S., & Ommen, J. R. V. (2022). Experimental methods in chemical engineering: Pressure. Canadian Journal of Chemical Engineering, 101(1), 41–58. https://doi.org/10.1002/cjce.24533Wu, Y., & Yi, J. (2023). OCR character recognition based on improved vertical projection segmentation method. En Proceedings of the 2023 International Conference on Frontiers of Technology and Intelligent Computing (ICFTIC). IEEE. https://doi.org/10.1109/icftic59930.2023.10456215X. Zhengbo, F. Yong, L. Yingna and W. Jianguo, "Digital Encoding and Recognition for Virtual Real Fusion Industrial Equipment Data in Digital Twin Factories," 2024 IEEE 6th International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 2024, pp. 571-576, doi: 10.1109/ICPICS62053.2024.10796706.Xiong, S., Chen, X., & Zhang, H. (2023). Deep learning-based multi-task OCR for classification and denoising. Journal of Computer and Mechanical Engineering Applications, 3(1). https://doi.org/10.62836/jcmea.v3i1.030103Xu, X., Zhou, J., & Zhang, H. (2018). Screen-rendered text images recognition using a deep residual network based segmentation-free method. En Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR). IEEE. https://doi.org/10.1109/ICPR.2018.8545678Yadav, A., Singh, S., Siddique, M., Mehta, N., & Kotangale, A. (2023). OCR using CRNN: A Deep Learning Approach for Text Recognition. 2023 4th International Conference for Emerging Technology, INCET 2023. https://doi.org/10.1109/INCET57972.2023.10170436Yamashita, H., Nagashima, H., & Yamada, H. (2021). Characteristics improvement of pressure transfer standard using a silicon resonant sensor. Acta IMEKO, 10(1), 875. https://doi.org/10.21014/ACTA_IMEKO.V10I1.875Yang, X. (2024). Advancements and challenges in character recognition: A comparative analysis of CNN and deep learning approaches. En Proceedings of the 2024 ITM Web of Conferences, 70, 03010. https://doi.org/10.1051/itmconf/20257003010Yenneti, S. S. S., Chiou, Y., & Price, B. (2023). Lightweight single-pass numerical reading extraction for displays in the wild. En Proceedings of the 2023 Electronic Imaging Symposium. IEEE. https://doi.org/10.2352/ei.2023.35.7.image-282Yuan, J., Guo, M., Huang, B., Hu, R., & Dian, S. (2022). Processing and recognition of characters image in complex environment. En Proceedings of the 2022 International Conference on Information and Digital Transformation (IDITR). IEEE. https://doi.org/10.1109/IDITR54676.2022.9796487Zacharias, E., Teuchler, M., & Bernier, B. (2020). Image processing-based scene-text detection and recognition with Tesseract. arXiv preprint arXiv:2004.08079. https://arxiv.org/abs/2004.08079Zhang, H., Shao, F., He, X., Zhang, Z., Cai, Y., & Bi, S. (2023). Research on object detection and recognition method for UAV aerial images based on improved YOLOv5. Drones, 7(6), 402. https://doi.org/10.3390/drones7060402Zhang, X., Ma, H., Zhao, H., & Wang, R. (2022). Optical character recognition of electrical equipment nameplate with contrast enhancement. En Proceedings of the 2022 Power System and Green Energy Conference (PSGEC) (pp. 1062–1066). IEEE. https://doi.org/10.1109/psgec54663.2022.9880966Zhang, Z., Liang, B., Ren, T., Fan, C., Li, R., & Li, M. (2024). Character-interested binary-like image learning for text image demoiréing. Frontiers in Physics, 12, 1526412. https://doi.org/10.3389/fphy.2024.1526412Zheng, T., Wang, X., Yuan, X., & Wang, S. (2020). A novel method based on character segmentation for slant Chinese screen-render text detection and recognition. En Proceedings of the 2020 International Conference on Industrial Electronics and Applications (ICIEA). IEEE. https://doi.org/10.1109/ICIEA48937.2020.9248381Zhou, L., Zhang, L., & Konz, N. (2022). Computer vision techniques in manufacturing. IEEE Transactions on Systems, Man, and Cybernetics: Systems. Advance online publication. https://doi.org/10.1109/TSMC.2022.3166397Zhou, L., Zhang, L., & Konz, N. (2022). Computer vision techniques in manufacturing. IEEE Transactions on Systems, Man, and Cybernetics: Systems. Advance online publication. https://doi.org/10.1109/icipcn63822.2024.00136Zi, Y., Wang, Q., Gao, Z., Cheng, X., & Mei, T. (2024). Research on the application of deep learning in medical image segmentation and 3D reconstruction. Academic Journal of Science and Technology. https://doi.org/10.54097/0h77ge77Zhong, Z. W., & Jiang, Y. (2004). LED lighting configurations for visual inspection of IC packages. Materials and Manufacturing Processes, 19(3), 439–449. https://doi.org/10.1081/AMP-120038653Zhou, Z., Wang, Q., & Zhang, L. (2021). Industrial vision systems for quality inspection: Trends and challenges. IEEE Transactions on Industrial Informatics, 17(6), 4115–4126. https://doi.org/10.1109/TII.2020.3029786ORIGINALTesis.pdfTesis.pdfTesisapplication/pdf3519488https://repository.unab.edu.co/bitstream/20.500.12749/32357/1/Tesis.pdf4cfdd2ab4b7cee521228d3935d4cde11MD51open accessproyecto_ocr_presion.zipproyecto_ocr_presion.zipMaterial suplementario: Código fuente, datasets y resultados experimentalesapplication/zip2710782634https://repository.unab.edu.co/bitstream/20.500.12749/32357/2/proyecto_ocr_presion.zip390a715be6efd0078fc7149ae1d32f26MD52open accessLicencia.pdfLicencia.pdfLicenciaapplication/pdf328010https://repository.unab.edu.co/bitstream/20.500.12749/32357/6/Licencia.pdf8556926f43f406f5bae31dae41f8535dMD56metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/32357/5/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD55open accessTHUMBNAILTesis.pdf.jpgTesis.pdf.jpgIM Thumbnailimage/jpeg4787https://repository.unab.edu.co/bitstream/20.500.12749/32357/7/Tesis.pdf.jpgde94c9442887770d99054e59691fe00fMD57open accessLicencia.pdf.jpgLicencia.pdf.jpgIM Thumbnailimage/jpeg10709https://repository.unab.edu.co/bitstream/20.500.12749/32357/8/Licencia.pdf.jpgffcefbb7f07ff8caa5a87fdd8426058dMD58metadata only access20.500.12749/32357oai:repository.unab.edu.co:20.500.12749/323572025-12-01 22:02:12.96open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg==