Aplicaciones de redes neuronales artificiales a estudios neurofisiológicos en neuropatías periféricas focales

Introducción: La interpretación de estudios electrofisiológicos es esencialmente una tarea de clasificación. Las redes neuronales artificiales (ANN) son herramientas adecuadas para la clasificación porque son basado en técnicas de reconocimiento de patrones. Objetivos: Desarrollar un sistema informá...

Full description

Autores:
Gutiérrez G., Jorge Eduardo
Peña Paz, Lyda
Tipo de recurso:
Fecha de publicación:
2005
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/3303
Acceso en línea:
http://hdl.handle.net/20.500.12749/3303
Palabra clave:
Artificial neural networks (Computers)
Neuropathy
Computer science
Diseases
Diagnosis
Data processing
Investigations
Analysis
Systems engineering
Focal neuropathy
Automated detection
Redes neuronales artificiales (Computadores)
Neuropatía
Ingeniería de sistemas
Ciencias computacionales
Enfermedades
Diagnóstico
Procesamiento de datos
Investigaciones
Análisis
Neuropatía focal
Detección automatizada
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_2e98efd382ab486cd07a629e03917762
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/3303
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Aplicaciones de redes neuronales artificiales a estudios neurofisiológicos en neuropatías periféricas focales
dc.title.translated.eng.fl_str_mv Applications of artificial neural networks to neurophysiological studies in focal peripheral neuropathies
title Aplicaciones de redes neuronales artificiales a estudios neurofisiológicos en neuropatías periféricas focales
spellingShingle Aplicaciones de redes neuronales artificiales a estudios neurofisiológicos en neuropatías periféricas focales
Artificial neural networks (Computers)
Neuropathy
Computer science
Diseases
Diagnosis
Data processing
Investigations
Analysis
Systems engineering
Focal neuropathy
Automated detection
Redes neuronales artificiales (Computadores)
Neuropatía
Ingeniería de sistemas
Ciencias computacionales
Enfermedades
Diagnóstico
Procesamiento de datos
Investigaciones
Análisis
Neuropatía focal
Detección automatizada
title_short Aplicaciones de redes neuronales artificiales a estudios neurofisiológicos en neuropatías periféricas focales
title_full Aplicaciones de redes neuronales artificiales a estudios neurofisiológicos en neuropatías periféricas focales
title_fullStr Aplicaciones de redes neuronales artificiales a estudios neurofisiológicos en neuropatías periféricas focales
title_full_unstemmed Aplicaciones de redes neuronales artificiales a estudios neurofisiológicos en neuropatías periféricas focales
title_sort Aplicaciones de redes neuronales artificiales a estudios neurofisiológicos en neuropatías periféricas focales
dc.creator.fl_str_mv Gutiérrez G., Jorge Eduardo
Peña Paz, Lyda
dc.contributor.advisor.spa.fl_str_mv Almario, Diego Fernando
dc.contributor.author.spa.fl_str_mv Gutiérrez G., Jorge Eduardo
Peña Paz, Lyda
dc.contributor.cvlac.*.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000196606
dc.contributor.corporatename.spa.fl_str_mv Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM)
dc.subject.keywords.eng.fl_str_mv Artificial neural networks (Computers)
Neuropathy
Computer science
Diseases
Diagnosis
Data processing
Investigations
Analysis
Systems engineering
Focal neuropathy
Automated detection
topic Artificial neural networks (Computers)
Neuropathy
Computer science
Diseases
Diagnosis
Data processing
Investigations
Analysis
Systems engineering
Focal neuropathy
Automated detection
Redes neuronales artificiales (Computadores)
Neuropatía
Ingeniería de sistemas
Ciencias computacionales
Enfermedades
Diagnóstico
Procesamiento de datos
Investigaciones
Análisis
Neuropatía focal
Detección automatizada
dc.subject.lemb.spa.fl_str_mv Redes neuronales artificiales (Computadores)
Neuropatía
Ingeniería de sistemas
Ciencias computacionales
Enfermedades
Diagnóstico
Procesamiento de datos
Investigaciones
Análisis
dc.subject.proposal.none.fl_str_mv Neuropatía focal
Detección automatizada
description Introducción: La interpretación de estudios electrofisiológicos es esencialmente una tarea de clasificación. Las redes neuronales artificiales (ANN) son herramientas adecuadas para la clasificación porque son basado en técnicas de reconocimiento de patrones. Objetivos: Desarrollar un sistema informático para la detección automatizada de neuropatías focales. utilizando ANN. Métodos: El estudio se basó en 300 conjuntos de estudios de conducción nerviosa (NCS) de tres diferentes laboratorios de medicina de electrodiagnóstico. Cada conjunto de datos de entrada estaba formado por 11 parámetros, incluyendo latencias motoras y sensoriales, amplitudes, duraciones y velocidades de un solo nervio. Los conjuntos de entrada se clasificaron en 4 subgrupos de neuropatía focal (distal desmielinización, desmielinización proximal, desmielinización generalizada, pérdida de axones) según sobre el tipo de daño nervioso más 1 adicional para hallazgos normales. Los datos fueron presentados a una ANN de retropropagación con 1 capa oculta. La estructura de la red se modificó para lograr el error cuadrático medio más bajo posible. Los resultados de estas redes de primer nivel se presentaron a una red de segundo nivel para detectar neuropatías generalizadas. Después entrenando a las ANN, la precisión de la clasificación se probó utilizando otro conjunto de datos que se desconocido para las redes. Resultados: Se alcanzó una precisión de clasificación del 99% para la detección de patologías patrones. La precisión para la clasificación de neuropatías focales fue del 95,2%. Conclusiones: las redes neuronales clasifican subgrupos de neuropatía focal con alta precisión (> 95%). Este método puede conducir a la detección automática de neuropatía focal.
publishDate 2005
dc.date.issued.none.fl_str_mv 2005
dc.date.accessioned.none.fl_str_mv 2020-06-26T21:32:15Z
dc.date.available.none.fl_str_mv 2020-06-26T21:32:15Z
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.local.spa.fl_str_mv Tesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/3303
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
url http://hdl.handle.net/20.500.12749/3303
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Gutiérrez G., Jorge Eduardo, Peña Paz, Lyda (2005). Aplicaciones de redes neurales artificiales a estudios neurofisiológicos en neuropatías periféricas focales. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB, Instituto Tecnológico y de Estudios Superiores de Monterrey ITESM
AAEM: Glossary of terms in Electrodiagnostic Medicine. En: Muscle Nerve. No 10. 2001.
Practice Parameter for Electrodiagnostic Studies in carpal tunnel syndrome: Summary statement. En Muscle Nerve. No 26. 2002.
Practice Parameter for Electrodiagnostic Studies in Ulnar Neuropathy at the elbow: Summary statement. En Muscle Nerve. No 8. 1999.
ABREU-LIMA C. and DE SA, J.P. Automatic classifiers for the interpretation of electrocardiograms. Rev. Port. Cardiol. 17. 1998.
ACCORNERO N and CAPOZZA M OPTONET: neural network for visual field diagnosis. Med Biol Eng Comput, Vol 2. No 33. 1995
AMINOFF MJ Electromyography in clinical practice, 3ed. New York, Churchill Livingstone. 1998.
BAKER JA et al Breast cancer: prediction with artificial neural network based on BIRADS standardized lexicon. Radiology, 1995
BAXT WG Analysis of the clinical variables driving decision in an artificial neural network trained to identify the presence of myocardial infarction. Ann Emerg Med, 1992.
Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med. 1991.
BENESOVA O et al Perinatal pharmacotherapy and the risk of functional teratogenic defect]. Cesk Fysiol, 1995.
BENIGNI R. and RICHARD A.M. Quantitative structure-based modeling applied to characterization and prediction of chemical toxicity. Methods, 14, 1998
BINDER M. et at. Epiluminiscence microscopy-based classification of pigmented skin lesions using computerirized image analysis and a n artificial neural network. Melanoma. 1998.
BISHOP, Christopher M. Neural Network for Pattern Recognition. 1995
BOON M.E. et al. Neural network processing of cervical smears can lead to a decrease in diagnostic variability and an increase in screening efficiacy: a study of 63 false-negative smears. Mod Pathol, 1994.
BOUNDS D. and LLOYD P.J. A multi-layer perceptron network for the diagnosis of low back pain. Proc. IEEE Int. Conf. on Neural Networks. Vol.II. 1988. p. 481-489
BRAUSE,R. and FRIEDRICH, F. A Neuro-Fuzzy Approach as Medical Diagnostic Interface. European Symposium on Artificial Neural networks. ESANN 2000
BURSTEIN Z. A network model of developmental gene hierarchy. J Theor Biol 1995
BURTIS CA. Technological trends in clinical laboratory science. Clin Biochem, 1995
CHITTAJALLU SK and WONG D. Connectionist networks in auditory system modeling. Comput Biol Med, 1994
CRISTODOULOU CU and PATTICHIS CS. A new technique for the classification and decomposition of EMG signals. Proceedings of the IEEE international conference on Neural Networks. Vol 5. 1995
DAWSON AE; AUSTIN RE Jr and WEINBERG DS. Nuclear grading of breast carcinoma by image analysis. Classification by multivariate and neural network analysis. Am J Clin Pathol, 1991.
DEFIGUEIREDO R et al. Neural-network-based classification of cognitively normal, demented, Alzheimer disease and vascular dementia from single photon emission with computed tomography image data from brain. Proc Natl Acad Sci USA, 1995.
DESCATHA A et al. Incidence of ulnar nerve entrapment at the elbow in repetitive work. Scand J Work Environ Health. 2004. p.234-40.
DOMINE D. et al. Nonlinear neural mapping analysis of the adverse effects of drugs. SAR QSAR Environ. Res., 8, 1998
DONOFRIO PD and ALBERS JW. Polyneuropathy: Classification by nerve conduction studies and electromyography. En Muscle Nerve. No 13. 1990.
DUMITRI D. Electrodiagnostic Medicine. Williams and Wilkins, Philadelphia, 1995
DUMITRU D.; AMATO AA and ZWARTS MJ: Electrodiagnostic Medicine 2ed. Philadelphia, Hanley & Belfus. 2001.
DYBOWSKI R, Gant V (Eds): Clinical applications of neural networks. Cambridge University Press, United Kingdom, 2001.
EKLUND P and FORSSTROM JJ. Computational intelligence for laboratory information systems. Scand J Clin Lab Invest Suppl, 1995. p.222
ENGEL AG and FRANZINI-ARMSTRONG C, eds. Myology. New York, McGraw-Hill. 1994.
ERRINGTON PA and GRAHAM J. Application of artificial neural networks to chromosome classification. Cytometry. 1993
FARRUGGIA S; YEE H and NICKOLLS P. Implantable cardiverter defibrillator electrogram recognition with a multilayer perceptron. PACE Pacing Clin Electrophysiol. 1993.
FOGEL DB; WASSON EC 3rd and BOUGHTON EM. Evolving neural networks for detecting breast cancer. Cancer Lett. 1995.
FORINA M. et al. Zupan.s descriptors in QSAR applied to the study of a new class of cardiotonic agents. Farmaco, 52, 1997.
FU, L.M. Neural networks in computer intelligence. McGrawHill, Singapore. 1994.
GABOR AJ and SEYAL M: Automated interictal EEG spike detection using artificial neural networks. Electroencephalogr Clin Neurophysiol. 1992
GIACOMETTI A et al. A Hybrid approach to computer-aided diagnosis in electromyography. Proceedings of the Annual International conference of the IEEE Engineering in Medicine and Biology Society. vol. 14. 1992
GUIGON E et al. Neural correlates of learning in the prefrontal cortex of the monkey: a predictive model. Cereb Cortex, 1995.
GURNEY JW and SWENSEN SJ. Solitary pulmonary nodules: determining the likelihood of malignancy with neural network analysis. Radiology. 1995
GUTIERREZ, JE. Electroagnostico en PEDROZA A (Ed). Compendio de Neurocirugia. Bogota, Quebecor Impreandes, 2002
GUYTON AC: Textbook of Medical Physiology, 8 ed. Philadelphia, W.B. Saunders, 1991
HAMAMOTO I. et al. Prediction of the early prognosis of the hepatectomized patient with hepatocellular carcinoma with a neural network. ComputBiol Med. 1995
HECHT-NIELSEN R. Neurocomputing. Addison-Wesley. 1991.
HOYER D; SCHMIDT K and ZWIENER U: Principles and experiences for modeling chaotic attractors of heart rate fluctuations with artificial neural networks. Biomed Tech Berl, 1995
HUDSON, Donna and COHEN, Maurice. Neural Networks and Artificial Intelligence for Biomedical Engineering. 2000.
INSIGNARES, Víctor Manuel. Redes Neuronales. Principios y aplicaciones en el campo biológico
JAKUS V. The concept and applications of artificial neural networks in Medicine. Bratisl Lek Listy. 1999.
JAND. G et al. Pattern recognition of the electroencephalogram by artificial neural networks. Electroencephalogr Clin Neurophysiol. 1993
JERVIS BW. The application of Neural Networks to interpret Evoked Potential waveforms. In LISBOA PJG (eds): Artificial Neural networks in Biomedicine. Springer, London, 2001
JUHOLA M et al. Neural network recognition of otoneurogical vertigo diseases. In HORN W (eds): Artificial Intelligence in Medicine, Springer, Berlin, 1999
KANDEL ER; SCHWARTZ JH and JESSELL TM: Principles of Neural Science, 4 ed. New York, Mc Graw-Hill, 2000
KANGAS LJ and KELLER, PE. Neurometric assessment of adequacy of intraoperative anesthetic. In LISBOA PJG…(eds): Artificial Neural networks in Biomedicine. Springer, London, 2001
KOKOL P et al. Some Ideas About Intelligent Medical System Design. Proceedings of the 12th IEEE Symposium on Computer-based Medical Systems CBMS’99 Stamford, CN, June 1999
KOLLES H et al. Automated grading of astrocytomas based on histomorphometric analysis. Classification results of neuronal networks and discriminant analysis. Anal Cell Pathol, 1995.
LAPEER RJ et al. Application of neural networks to the ranking of perinatal variables influencing birth weight. Scand J Clin Lab Invest Suppl
LUNDBORG G et al. Motor control of tomorrow’s artificial hand: Based on the combined use of artificial neural networks and a data glove. ASSH 56th|annual Meeting, 2001, paper #1.
MACFARLANE PW. Recent developments in computer analysis of ECGs. Clin Physiol 1992.
MAEDA N; KLYCE SD and SMOLEK MK. Neural network classification of corneal topography. Preliminary demonstration. Invest Ophthalmol Vis Sci, 1995.
MARTIN DEL BRIO, Bonifacio y SANZ MOLINA, Alfredo. Redes Neuronales y Sistemas Difusos (2ª Ed). 2002.
MATWORKS. Documentación de MatLab.
McGONIGAL M. A New Technique for Survival Prediction in Trauma Care Using a Neural Network. Proc. World Conference on Neural Networks. 1994.
MICHALEWIS Z. Genetic Algorithms + Data Structures = Evolution programs, 3 ed. Berlin, Springer, 1996.
MINSKY, Marvin and PAPERT, Seymour. Perceptron: An Introduction to Computational Geometry. MIT Press. 1969
MOLNAR B et al. Application of multivariate, fuzzy set and neural network analysis in quantitative cytological examinations. Anal Cell Pathol. 1993.
MYLREA KC; ORR JA and WESTENSKOW DR: Integration of monitoring intelligent alarm anesthesia: neural networks - can they help? J Clin Monit. 1993.
NIKOVSKY Daniel. Constructing Bayesian Networks for Medical Diagnosis from Incomplete and Partially Correct Statistics. IEEE Transactions on Knowledge and Data Engineering. Vol 12 (4), 2000
NORDSTROM D. et al. Incidence of diagnosed carpal tunnel syndrome in a general population. Epidemiology 1998
OH, SJ. Clinical Electromyography: case studies. Baltimore, Lippincott Williams & Wilkins. 1998.
OÕLEARY TJ; MIKEL UV and BECKER RL: Computer-assisted image interpretation: use of a neural network to differentiate tubular carcinoma from sclerosing adenosis. Mod Pathol, 1992.
ORTIZ J. et al. Use of artificial neural networks in survival evaluation in heart failure. Arq Bras Cardiol, 1995
PAPADOPOULOS A; FOTIADIS DI and LIKAS A: A automatic microcalcification detection system based on a hybrid neural network classifier. Artificial Intelligence in Medicine, 2002.
PAPIK K et al: Application of neural networks in medicine-a review. Med Sci Monit 1988
PATTICHIS CS; SCHIZAS CN and MIDDLETON L. Neural Networks models in EMG diagnosis. IEEE transactions on biomedical Engineering, 1995.
Genetics-Based Machine Learning for the assessment of certain neuro-muscular disorders. IEE Transactions on Neural Networks. Vol 7(2), 1996.
Genetics-Based Machine Learning for the assessment of certain neuro-muscular disorders. IEE Transactions on Neural Networks. Vol 7(2), 1996.
PENNY, Hill and FROST, Davis. Neural Networks in Clinical Medicine.
PEÑA-REYES C.A. and SIPPER M. Evolutionary computation in medicine: an overview. Artificial Intelligence in Medicine. Vol 19 (1), 2000
A fuzzy-genetic approach to breast cancer diagnosis. Artif Intell Med.
PESONEN, E.; ESKELINEN, M. and JUHOLA, M. Comparision of different neural networks algorithm in the diagnosis of acute apendicitis. Int. J Bio-Med. Comput. 40. 1996.
PETAJAN J: AAEM Minimonograph # 3: Motor unit recruitment. Muscle Nerve. No 14. 1991.
PFURTSCHELLER G; FLOTZINGER D and MATUSCHIK K: Sleep classification in infants based on artificial neural networks. Biomed Tech Berlin. 1992.
PODGOLEREC, V. and KOKOL, P. Medical diagnosis using Genetic Programming. Proceedings of the 12th IEEE Symposium on Computer-based Medical Systems CBMS’99 Stamford, CN, June 1999.
PREHCELT, Lutz. Early Stopping – but when?
RAVDIN PM et al.: A demonstration that breast cancer recurrence can be predicted by neural network analysis. Breast Cancer Res Treat. 1992.
SCHIZAS C et al: Unsupervised learning in computer aided macro Electromyography. In Computer-based Medical Systems, IEEE Computer Society Press, Los Alamitos, CA, USA. 1991.
Neural Networks is Computer Aided Clinical Electromyography, Proceedings of the 13th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Ed. By J.H. Nagel and W.M. Smith, 13. 1991. p. 1458-1459
SILVERSTEIN B et al. Claims incidence of work-related disorders of the upper extremities: Washington State, 1987 through 1995. Am J Public Health 1998. p 1827-33.
STEWART JD. Focal Peripheral neuropathies, 3 ed. New York, Lippincott Williams & Wilkins. 1999.
STOTZKA R. et al. A hybrid neural and statistical classifier system for histopathologic grading of prostatic lesions. Anal Quant Cytol Histol, 1995.
SWINGLER, K. Applying neural networks. Academic Press. London. 1996.
SZOLOVITS P. Artificial Intelligence in Medicine. Westview Press, Boluder, CO, 1982.
TONG, K and GRANAT MH. Artificial Neural Network control on functional electrical stimulation assisted gait for persons with spinal cord injury. In Lisboa PJG…(eds): Artificial Neural networks in Biomedicine. Springer, London. 2001.
TOURASSI GD et al. Artificial neural network for diagnosis of acute pulmonary embolism: effect of case and observer selection. Radiology, 1995.
WANG RJ and JABRI MA. Artificial neural network-based channel selection and loudness mapping. Ann Otol Rhinol Laryngol Suppl, 1995
WILBOURN AJ: AAEM Case Report # 12: Common Peroneal Mononeuropathy at the Fibular Head. Muscle Nerve. 1986.
WINSTON, P. W. Artificial Intelligence. Addison-Wesley, Reading, Mass. 1977.
WU C et al: Protein classification artificial neural system. Protein Sci, 1992.
YAGER RR and ZADEH LA. Fuzzy Sets, Neural Networks, and Soft Computing. New York: Van Nostrand Reinhold, 1994
ZAKARIA D. et al. Work-related cumulative trauma disorders of the upper extremity: Navigating the epidemiologic literature. Am J Ind Med. 2002.
ZAZULA D; KOROSEC D and SOSTARIC A. Computer-Assisted Decomposition of the Electromyograms . Proceedings of the 11th IEEE Symposium on Computer-based Medical Systems CBMS’98 Lubbock, TX. 1998.
ZIGMOND MJ; BLOOM FE and LANDIS SC, eds: Fundamental Neuroscience. San Diego, Academic Press. 1998
ZORMAN M et al. Decisión Tree´s Induction Strategies on a Hard Real World Problem. Proceedings of the 13rd IEEE Symposium on Computer-based Medical Systems CBMS’00, Houston TX. 2000.
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 2.5 Colombia
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spa.fl_str_mv Bucaramanga (Colombia)
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Maestría en Ciencias Computacionales
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/3303/1/2005_Tesis_Jorge_Eduardo_Gutierrez.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/3303/2/2005_Tesis_Jorge_Eduardo_Gutierrez.pdf.jpg
bitstream.checksum.fl_str_mv bcae47bab84e86521bccf75625ff44c8
8ad7228156abbbfbbb788dc5b0ce93c5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1828219878127960064
spelling Almario, Diego Fernando25415d68-e348-47fd-8145-f4f46267b2b3Gutiérrez G., Jorge Eduardocaaae854-7482-49d0-bfc9-e7d4387dec4dPeña Paz, Lydad1a55277-7da2-4356-aee9-069d904e3ec0https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000196606Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM)2020-06-26T21:32:15Z2020-06-26T21:32:15Z2005http://hdl.handle.net/20.500.12749/3303instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABIntroducción: La interpretación de estudios electrofisiológicos es esencialmente una tarea de clasificación. Las redes neuronales artificiales (ANN) son herramientas adecuadas para la clasificación porque son basado en técnicas de reconocimiento de patrones. Objetivos: Desarrollar un sistema informático para la detección automatizada de neuropatías focales. utilizando ANN. Métodos: El estudio se basó en 300 conjuntos de estudios de conducción nerviosa (NCS) de tres diferentes laboratorios de medicina de electrodiagnóstico. Cada conjunto de datos de entrada estaba formado por 11 parámetros, incluyendo latencias motoras y sensoriales, amplitudes, duraciones y velocidades de un solo nervio. Los conjuntos de entrada se clasificaron en 4 subgrupos de neuropatía focal (distal desmielinización, desmielinización proximal, desmielinización generalizada, pérdida de axones) según sobre el tipo de daño nervioso más 1 adicional para hallazgos normales. Los datos fueron presentados a una ANN de retropropagación con 1 capa oculta. La estructura de la red se modificó para lograr el error cuadrático medio más bajo posible. Los resultados de estas redes de primer nivel se presentaron a una red de segundo nivel para detectar neuropatías generalizadas. Después entrenando a las ANN, la precisión de la clasificación se probó utilizando otro conjunto de datos que se desconocido para las redes. Resultados: Se alcanzó una precisión de clasificación del 99% para la detección de patologías patrones. La precisión para la clasificación de neuropatías focales fue del 95,2%. Conclusiones: las redes neuronales clasifican subgrupos de neuropatía focal con alta precisión (> 95%). Este método puede conducir a la detección automática de neuropatía focal.Instituto Tecnológico de Estudios Superiores de Monterrey ITESMSUMMARY 11 INTRODUCCION 1 1 EL PROBLEMA 3 1.1 DESCRIPCIÓN DEL PROBLEMA 3 1.2 FORMULACIÓN DEL PROBLEMA 5 1.3 OBJETIVO GENERAL 5 1.4 OBJETIVOS ESPECIFICOS 5 1.5 JUSTIFICACIÓN 6 1.6 ALCANCES Y LIMITACIONES 7 2 MARCO DE REFERENCIA 9 2.1 ANTECEDENTES DE LA INVESTIGACIÓN 9 2.2 MARCO TEÓRICO CONCEPTUAL 11 2.2.1 Medicina Electrodiagnóstica 12 2.2.2 Inteligencia Artificial y Medicina 45 2.2.3 Redes Neuronales Artificiales 61 2.2.4 Aplicaciones de redes neuronales a Medicina 94 2.2.5 Aplicaciones de redes neuronales a electrodiagnóstico 104 3 METODOLOGÍA 106 3.1 DATOS 106 3.1.1 Salidas deseadas 106 3.1.2 Selección de los datos de entrada 107 3.1.3 Preprocesamiento de los datos de entrada 109 3.1.4 Datos Faltantes 110 3.1.5 Fuente de los datos 111 3.2 ARQUITECTURA DE LA RED 113 3.2.1 Tipo de red 114 3.2.2 Mejorar la Generalización 115 3.2.3 Arquitectura de la Red 1 116 3.2.4 Arquitectura de la Red 2 121 3.3 SOFTWARE 124 3.4 HARDWARE 125 3.5 ENTRENAMIENTO 125 3.6 VALIDACIÓN DE LA RED 126 4 RESULTADOS 127 4.1 RED 1 (ESTRUCTURA DE RED GENERAL) 127 4.2 RED 2 (RED NERVIO MEDIANO) 128 4.3 RED 3 (RED NERVIO ULNAR) 130 4.4 RED 4 (RED DE GENERALIZACIÓN) 132 4.5 VALIDACIÓN DE RESULTADOS 135 5 DISCUSIÓN 137 CONCLUSIONES 139 RECOMENDACIONES 141 BIBLIOGRAFIA 142 REFERENCIAS ELECTRONICASMaestríaIntroduction: Interpreting electrophysiological studies is essentially a classification task. Artificial neural networks (ANNs) are suitable tools for classification because they are based on pattern recognition techniques. Objectives: To develop a computer system for automated detection of focal neuropathies using ANNs. Methods: The study was based on 300 sets of nerve conduction studies (NCSs) from three different electrodiagnostic medicine laboratories. Each input data set was formed by 11 parameters, including motor and sensory latencies, amplitudes, durations, and velocities of a single nerve. The input sets were classified into 4 focal neuropathy subgroups (distal demyelination, proximal demyelination, generalized demyelination, axon loss) depending on the type of nerve damage plus 1 additional for normal findings. The data were presented to a backpropagation ANN with 1 hidden layer. The network structure was modified to achieve the lowest possible mean square error. The outputs from these first-level networks were presented to a second-level network in order to detect generalized neuropathies. After training the ANNs, the classification accuracy was tested using another data set that was unknown to the networks. Results: A classification accuracy of 99% was reached for the detection of pathologic patterns. The accuracy for focal neuropathies classification was 95.2%.Conclusions: Neural networks classify focal neuropathy subgroups with high accuracy (>95%). This method may lead to automated focal neuropathy detection.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaAplicaciones de redes neuronales artificiales a estudios neurofisiológicos en neuropatías periféricas focalesApplications of artificial neural networks to neurophysiological studies in focal peripheral neuropathiesMagíster en Ciencias ComputacionalesBucaramanga (Colombia)UNAB Campus BucaramangaUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaMaestría en Ciencias Computacionalesinfo:eu-repo/semantics/masterThesisTesishttp://purl.org/redcol/resource_type/TMArtificial neural networks (Computers)NeuropathyComputer scienceDiseasesDiagnosisData processingInvestigationsAnalysisSystems engineeringFocal neuropathyAutomated detectionRedes neuronales artificiales (Computadores)NeuropatíaIngeniería de sistemasCiencias computacionalesEnfermedadesDiagnósticoProcesamiento de datosInvestigacionesAnálisisNeuropatía focalDetección automatizadaGutiérrez G., Jorge Eduardo, Peña Paz, Lyda (2005). Aplicaciones de redes neurales artificiales a estudios neurofisiológicos en neuropatías periféricas focales. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB, Instituto Tecnológico y de Estudios Superiores de Monterrey ITESMAAEM: Glossary of terms in Electrodiagnostic Medicine. En: Muscle Nerve. No 10. 2001.Practice Parameter for Electrodiagnostic Studies in carpal tunnel syndrome: Summary statement. En Muscle Nerve. No 26. 2002.Practice Parameter for Electrodiagnostic Studies in Ulnar Neuropathy at the elbow: Summary statement. En Muscle Nerve. No 8. 1999.ABREU-LIMA C. and DE SA, J.P. Automatic classifiers for the interpretation of electrocardiograms. Rev. Port. Cardiol. 17. 1998.ACCORNERO N and CAPOZZA M OPTONET: neural network for visual field diagnosis. Med Biol Eng Comput, Vol 2. No 33. 1995AMINOFF MJ Electromyography in clinical practice, 3ed. New York, Churchill Livingstone. 1998.BAKER JA et al Breast cancer: prediction with artificial neural network based on BIRADS standardized lexicon. Radiology, 1995BAXT WG Analysis of the clinical variables driving decision in an artificial neural network trained to identify the presence of myocardial infarction. Ann Emerg Med, 1992.Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med. 1991.BENESOVA O et al Perinatal pharmacotherapy and the risk of functional teratogenic defect]. Cesk Fysiol, 1995.BENIGNI R. and RICHARD A.M. Quantitative structure-based modeling applied to characterization and prediction of chemical toxicity. Methods, 14, 1998BINDER M. et at. Epiluminiscence microscopy-based classification of pigmented skin lesions using computerirized image analysis and a n artificial neural network. Melanoma. 1998.BISHOP, Christopher M. Neural Network for Pattern Recognition. 1995BOON M.E. et al. Neural network processing of cervical smears can lead to a decrease in diagnostic variability and an increase in screening efficiacy: a study of 63 false-negative smears. Mod Pathol, 1994.BOUNDS D. and LLOYD P.J. A multi-layer perceptron network for the diagnosis of low back pain. Proc. IEEE Int. Conf. on Neural Networks. Vol.II. 1988. p. 481-489BRAUSE,R. and FRIEDRICH, F. A Neuro-Fuzzy Approach as Medical Diagnostic Interface. European Symposium on Artificial Neural networks. ESANN 2000BURSTEIN Z. A network model of developmental gene hierarchy. J Theor Biol 1995BURTIS CA. Technological trends in clinical laboratory science. Clin Biochem, 1995CHITTAJALLU SK and WONG D. Connectionist networks in auditory system modeling. Comput Biol Med, 1994CRISTODOULOU CU and PATTICHIS CS. A new technique for the classification and decomposition of EMG signals. Proceedings of the IEEE international conference on Neural Networks. Vol 5. 1995DAWSON AE; AUSTIN RE Jr and WEINBERG DS. Nuclear grading of breast carcinoma by image analysis. Classification by multivariate and neural network analysis. Am J Clin Pathol, 1991.DEFIGUEIREDO R et al. Neural-network-based classification of cognitively normal, demented, Alzheimer disease and vascular dementia from single photon emission with computed tomography image data from brain. Proc Natl Acad Sci USA, 1995.DESCATHA A et al. Incidence of ulnar nerve entrapment at the elbow in repetitive work. Scand J Work Environ Health. 2004. p.234-40.DOMINE D. et al. Nonlinear neural mapping analysis of the adverse effects of drugs. SAR QSAR Environ. Res., 8, 1998DONOFRIO PD and ALBERS JW. Polyneuropathy: Classification by nerve conduction studies and electromyography. En Muscle Nerve. No 13. 1990.DUMITRI D. Electrodiagnostic Medicine. Williams and Wilkins, Philadelphia, 1995DUMITRU D.; AMATO AA and ZWARTS MJ: Electrodiagnostic Medicine 2ed. Philadelphia, Hanley & Belfus. 2001.DYBOWSKI R, Gant V (Eds): Clinical applications of neural networks. Cambridge University Press, United Kingdom, 2001.EKLUND P and FORSSTROM JJ. Computational intelligence for laboratory information systems. Scand J Clin Lab Invest Suppl, 1995. p.222ENGEL AG and FRANZINI-ARMSTRONG C, eds. Myology. New York, McGraw-Hill. 1994.ERRINGTON PA and GRAHAM J. Application of artificial neural networks to chromosome classification. Cytometry. 1993FARRUGGIA S; YEE H and NICKOLLS P. Implantable cardiverter defibrillator electrogram recognition with a multilayer perceptron. PACE Pacing Clin Electrophysiol. 1993.FOGEL DB; WASSON EC 3rd and BOUGHTON EM. Evolving neural networks for detecting breast cancer. Cancer Lett. 1995.FORINA M. et al. Zupan.s descriptors in QSAR applied to the study of a new class of cardiotonic agents. Farmaco, 52, 1997.FU, L.M. Neural networks in computer intelligence. McGrawHill, Singapore. 1994.GABOR AJ and SEYAL M: Automated interictal EEG spike detection using artificial neural networks. Electroencephalogr Clin Neurophysiol. 1992GIACOMETTI A et al. A Hybrid approach to computer-aided diagnosis in electromyography. Proceedings of the Annual International conference of the IEEE Engineering in Medicine and Biology Society. vol. 14. 1992GUIGON E et al. Neural correlates of learning in the prefrontal cortex of the monkey: a predictive model. Cereb Cortex, 1995.GURNEY JW and SWENSEN SJ. Solitary pulmonary nodules: determining the likelihood of malignancy with neural network analysis. Radiology. 1995GUTIERREZ, JE. Electroagnostico en PEDROZA A (Ed). Compendio de Neurocirugia. Bogota, Quebecor Impreandes, 2002GUYTON AC: Textbook of Medical Physiology, 8 ed. Philadelphia, W.B. Saunders, 1991HAMAMOTO I. et al. Prediction of the early prognosis of the hepatectomized patient with hepatocellular carcinoma with a neural network. ComputBiol Med. 1995HECHT-NIELSEN R. Neurocomputing. Addison-Wesley. 1991.HOYER D; SCHMIDT K and ZWIENER U: Principles and experiences for modeling chaotic attractors of heart rate fluctuations with artificial neural networks. Biomed Tech Berl, 1995HUDSON, Donna and COHEN, Maurice. Neural Networks and Artificial Intelligence for Biomedical Engineering. 2000.INSIGNARES, Víctor Manuel. Redes Neuronales. Principios y aplicaciones en el campo biológicoJAKUS V. The concept and applications of artificial neural networks in Medicine. Bratisl Lek Listy. 1999.JAND. G et al. Pattern recognition of the electroencephalogram by artificial neural networks. Electroencephalogr Clin Neurophysiol. 1993JERVIS BW. The application of Neural Networks to interpret Evoked Potential waveforms. In LISBOA PJG (eds): Artificial Neural networks in Biomedicine. Springer, London, 2001JUHOLA M et al. Neural network recognition of otoneurogical vertigo diseases. In HORN W (eds): Artificial Intelligence in Medicine, Springer, Berlin, 1999KANDEL ER; SCHWARTZ JH and JESSELL TM: Principles of Neural Science, 4 ed. New York, Mc Graw-Hill, 2000KANGAS LJ and KELLER, PE. Neurometric assessment of adequacy of intraoperative anesthetic. In LISBOA PJG…(eds): Artificial Neural networks in Biomedicine. Springer, London, 2001KOKOL P et al. Some Ideas About Intelligent Medical System Design. Proceedings of the 12th IEEE Symposium on Computer-based Medical Systems CBMS’99 Stamford, CN, June 1999KOLLES H et al. Automated grading of astrocytomas based on histomorphometric analysis. Classification results of neuronal networks and discriminant analysis. Anal Cell Pathol, 1995.LAPEER RJ et al. Application of neural networks to the ranking of perinatal variables influencing birth weight. Scand J Clin Lab Invest SupplLUNDBORG G et al. Motor control of tomorrow’s artificial hand: Based on the combined use of artificial neural networks and a data glove. ASSH 56th|annual Meeting, 2001, paper #1.MACFARLANE PW. Recent developments in computer analysis of ECGs. Clin Physiol 1992.MAEDA N; KLYCE SD and SMOLEK MK. Neural network classification of corneal topography. Preliminary demonstration. Invest Ophthalmol Vis Sci, 1995.MARTIN DEL BRIO, Bonifacio y SANZ MOLINA, Alfredo. Redes Neuronales y Sistemas Difusos (2ª Ed). 2002.MATWORKS. Documentación de MatLab.McGONIGAL M. A New Technique for Survival Prediction in Trauma Care Using a Neural Network. Proc. World Conference on Neural Networks. 1994.MICHALEWIS Z. Genetic Algorithms + Data Structures = Evolution programs, 3 ed. Berlin, Springer, 1996.MINSKY, Marvin and PAPERT, Seymour. Perceptron: An Introduction to Computational Geometry. MIT Press. 1969MOLNAR B et al. Application of multivariate, fuzzy set and neural network analysis in quantitative cytological examinations. Anal Cell Pathol. 1993.MYLREA KC; ORR JA and WESTENSKOW DR: Integration of monitoring intelligent alarm anesthesia: neural networks - can they help? J Clin Monit. 1993.NIKOVSKY Daniel. Constructing Bayesian Networks for Medical Diagnosis from Incomplete and Partially Correct Statistics. IEEE Transactions on Knowledge and Data Engineering. Vol 12 (4), 2000NORDSTROM D. et al. Incidence of diagnosed carpal tunnel syndrome in a general population. Epidemiology 1998OH, SJ. Clinical Electromyography: case studies. Baltimore, Lippincott Williams & Wilkins. 1998.OÕLEARY TJ; MIKEL UV and BECKER RL: Computer-assisted image interpretation: use of a neural network to differentiate tubular carcinoma from sclerosing adenosis. Mod Pathol, 1992.ORTIZ J. et al. Use of artificial neural networks in survival evaluation in heart failure. Arq Bras Cardiol, 1995PAPADOPOULOS A; FOTIADIS DI and LIKAS A: A automatic microcalcification detection system based on a hybrid neural network classifier. Artificial Intelligence in Medicine, 2002.PAPIK K et al: Application of neural networks in medicine-a review. Med Sci Monit 1988PATTICHIS CS; SCHIZAS CN and MIDDLETON L. Neural Networks models in EMG diagnosis. IEEE transactions on biomedical Engineering, 1995.Genetics-Based Machine Learning for the assessment of certain neuro-muscular disorders. IEE Transactions on Neural Networks. Vol 7(2), 1996.Genetics-Based Machine Learning for the assessment of certain neuro-muscular disorders. IEE Transactions on Neural Networks. Vol 7(2), 1996.PENNY, Hill and FROST, Davis. Neural Networks in Clinical Medicine.PEÑA-REYES C.A. and SIPPER M. Evolutionary computation in medicine: an overview. Artificial Intelligence in Medicine. Vol 19 (1), 2000A fuzzy-genetic approach to breast cancer diagnosis. Artif Intell Med.PESONEN, E.; ESKELINEN, M. and JUHOLA, M. Comparision of different neural networks algorithm in the diagnosis of acute apendicitis. Int. J Bio-Med. Comput. 40. 1996.PETAJAN J: AAEM Minimonograph # 3: Motor unit recruitment. Muscle Nerve. No 14. 1991.PFURTSCHELLER G; FLOTZINGER D and MATUSCHIK K: Sleep classification in infants based on artificial neural networks. Biomed Tech Berlin. 1992.PODGOLEREC, V. and KOKOL, P. Medical diagnosis using Genetic Programming. Proceedings of the 12th IEEE Symposium on Computer-based Medical Systems CBMS’99 Stamford, CN, June 1999.PREHCELT, Lutz. Early Stopping – but when?RAVDIN PM et al.: A demonstration that breast cancer recurrence can be predicted by neural network analysis. Breast Cancer Res Treat. 1992.SCHIZAS C et al: Unsupervised learning in computer aided macro Electromyography. In Computer-based Medical Systems, IEEE Computer Society Press, Los Alamitos, CA, USA. 1991.Neural Networks is Computer Aided Clinical Electromyography, Proceedings of the 13th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Ed. By J.H. Nagel and W.M. Smith, 13. 1991. p. 1458-1459SILVERSTEIN B et al. Claims incidence of work-related disorders of the upper extremities: Washington State, 1987 through 1995. Am J Public Health 1998. p 1827-33.STEWART JD. Focal Peripheral neuropathies, 3 ed. New York, Lippincott Williams & Wilkins. 1999.STOTZKA R. et al. A hybrid neural and statistical classifier system for histopathologic grading of prostatic lesions. Anal Quant Cytol Histol, 1995.SWINGLER, K. Applying neural networks. Academic Press. London. 1996.SZOLOVITS P. Artificial Intelligence in Medicine. Westview Press, Boluder, CO, 1982.TONG, K and GRANAT MH. Artificial Neural Network control on functional electrical stimulation assisted gait for persons with spinal cord injury. In Lisboa PJG…(eds): Artificial Neural networks in Biomedicine. Springer, London. 2001.TOURASSI GD et al. Artificial neural network for diagnosis of acute pulmonary embolism: effect of case and observer selection. Radiology, 1995.WANG RJ and JABRI MA. Artificial neural network-based channel selection and loudness mapping. Ann Otol Rhinol Laryngol Suppl, 1995WILBOURN AJ: AAEM Case Report # 12: Common Peroneal Mononeuropathy at the Fibular Head. Muscle Nerve. 1986.WINSTON, P. W. Artificial Intelligence. Addison-Wesley, Reading, Mass. 1977.WU C et al: Protein classification artificial neural system. Protein Sci, 1992.YAGER RR and ZADEH LA. Fuzzy Sets, Neural Networks, and Soft Computing. New York: Van Nostrand Reinhold, 1994ZAKARIA D. et al. Work-related cumulative trauma disorders of the upper extremity: Navigating the epidemiologic literature. Am J Ind Med. 2002.ZAZULA D; KOROSEC D and SOSTARIC A. Computer-Assisted Decomposition of the Electromyograms . Proceedings of the 11th IEEE Symposium on Computer-based Medical Systems CBMS’98 Lubbock, TX. 1998.ZIGMOND MJ; BLOOM FE and LANDIS SC, eds: Fundamental Neuroscience. San Diego, Academic Press. 1998ZORMAN M et al. Decisión Tree´s Induction Strategies on a Hard Real World Problem. Proceedings of the 13rd IEEE Symposium on Computer-based Medical Systems CBMS’00, Houston TX. 2000.ORIGINAL2005_Tesis_Jorge_Eduardo_Gutierrez.pdf2005_Tesis_Jorge_Eduardo_Gutierrez.pdfTesisapplication/pdf1333845https://repository.unab.edu.co/bitstream/20.500.12749/3303/1/2005_Tesis_Jorge_Eduardo_Gutierrez.pdfbcae47bab84e86521bccf75625ff44c8MD51open accessTHUMBNAIL2005_Tesis_Jorge_Eduardo_Gutierrez.pdf.jpg2005_Tesis_Jorge_Eduardo_Gutierrez.pdf.jpgIM Thumbnailimage/jpeg5025https://repository.unab.edu.co/bitstream/20.500.12749/3303/2/2005_Tesis_Jorge_Eduardo_Gutierrez.pdf.jpg8ad7228156abbbfbbb788dc5b0ce93c5MD52open access20.500.12749/3303oai:repository.unab.edu.co:20.500.12749/33032023-07-27 10:44:17.892open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.co