Predicción de propiedades fisicoquímicas de coques obtenidos en procesos de conversión de fondos de vacío usando espectroscopia raman y quimiometría

En el presente trabajo se combinaron los beneficios de la quimiometría con la facilidad y rapidez de la técnica espectroscópica Raman, para el desarrollo de cuatro modelos que predicen propiedades fisicoquímicas en coque de petróleo de manera confiable y en cortos periodos de tiempo. Mediante el aná...

Full description

Autores:
Moscoso Almeida, Laura Sofia
Tipo de recurso:
http://purl.org/coar/version/c_b1a7d7d4d402bcce
Fecha de publicación:
2016
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/34974
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/34974
https://noesis.uis.edu.co
Palabra clave:
Coque De Petróleo
Análisis Multivariable
Quimiometría
Espectroscopia Raman
Fondos De
In this work
the benefits of chemometrics were combined with the ease of use and speed of Raman spectroscopy for the development of four models able to predict physical-chemical properties in a fast and reliable way for petroleum coke samples. By employing principal component analysis (PCA) and partial least square regression (PLS) the correlation between spectral data and the experimental values for heat of combustion and proximate analysis was found from 56 samples of petroleum coke obtained from hydrothermal and thermal cracking conversion processes of vacuum residua. The properties fixed carbon (CF)
volatile matter (MV)
heat of combustion (PCal) and ashes (CZ) for each sample were determined in previous works according to the standards established by the American Society for Testing and Materials (ASTM). The statistical parameters obtained in the four final PLS models showed adequate adjustment of data to the models; all correlation coefficients (R2) among reference and predicted values were above 0.95
mean square errors of validation were low (below 1.00)
cross validation for all PLS models showed satisfying results in the prediction of the properties CF
MV
PCal and CZ with low error percentages (below 2.00% in average). Likewise
the reported global errors for the CF
MV and PCal prediction models are less than 5.00% and confirm the reliability of these models. In spite of having obtained appropriate statistical parameters for the CZ prediction model
it was regarded as a non-reliable prediction model
since it showed a high global error taking into account that the range in which this property™s experimental values were measured was 3.33 ± 1.88.
Rights
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id UISANTADR2_f937e2c443cf83e1650b0a4aab60e45b
oai_identifier_str oai:noesis.uis.edu.co:20.500.14071/34974
network_acronym_str UISANTADR2
network_name_str Repositorio UIS
repository_id_str
dc.title.none.fl_str_mv Predicción de propiedades fisicoquímicas de coques obtenidos en procesos de conversión de fondos de vacío usando espectroscopia raman y quimiometría
dc.title.english.none.fl_str_mv Petroleum Coke, Multivariant Analysis, Chemometrics, Raman Spectroscopy, Vacuum Residua.
title Predicción de propiedades fisicoquímicas de coques obtenidos en procesos de conversión de fondos de vacío usando espectroscopia raman y quimiometría
spellingShingle Predicción de propiedades fisicoquímicas de coques obtenidos en procesos de conversión de fondos de vacío usando espectroscopia raman y quimiometría
Coque De Petróleo
Análisis Multivariable
Quimiometría
Espectroscopia Raman
Fondos De
In this work
the benefits of chemometrics were combined with the ease of use and speed of Raman spectroscopy for the development of four models able to predict physical-chemical properties in a fast and reliable way for petroleum coke samples. By employing principal component analysis (PCA) and partial least square regression (PLS) the correlation between spectral data and the experimental values for heat of combustion and proximate analysis was found from 56 samples of petroleum coke obtained from hydrothermal and thermal cracking conversion processes of vacuum residua. The properties fixed carbon (CF)
volatile matter (MV)
heat of combustion (PCal) and ashes (CZ) for each sample were determined in previous works according to the standards established by the American Society for Testing and Materials (ASTM). The statistical parameters obtained in the four final PLS models showed adequate adjustment of data to the models; all correlation coefficients (R2) among reference and predicted values were above 0.95
mean square errors of validation were low (below 1.00)
cross validation for all PLS models showed satisfying results in the prediction of the properties CF
MV
PCal and CZ with low error percentages (below 2.00% in average). Likewise
the reported global errors for the CF
MV and PCal prediction models are less than 5.00% and confirm the reliability of these models. In spite of having obtained appropriate statistical parameters for the CZ prediction model
it was regarded as a non-reliable prediction model
since it showed a high global error taking into account that the range in which this property™s experimental values were measured was 3.33 ± 1.88.
title_short Predicción de propiedades fisicoquímicas de coques obtenidos en procesos de conversión de fondos de vacío usando espectroscopia raman y quimiometría
title_full Predicción de propiedades fisicoquímicas de coques obtenidos en procesos de conversión de fondos de vacío usando espectroscopia raman y quimiometría
title_fullStr Predicción de propiedades fisicoquímicas de coques obtenidos en procesos de conversión de fondos de vacío usando espectroscopia raman y quimiometría
title_full_unstemmed Predicción de propiedades fisicoquímicas de coques obtenidos en procesos de conversión de fondos de vacío usando espectroscopia raman y quimiometría
title_sort Predicción de propiedades fisicoquímicas de coques obtenidos en procesos de conversión de fondos de vacío usando espectroscopia raman y quimiometría
dc.creator.fl_str_mv Moscoso Almeida, Laura Sofia
dc.contributor.advisor.none.fl_str_mv Cabanzo Hernández, Rafael
León Bermúdez, Adan Yovani
dc.contributor.author.none.fl_str_mv Moscoso Almeida, Laura Sofia
dc.subject.none.fl_str_mv Coque De Petróleo
Análisis Multivariable
Quimiometría
Espectroscopia Raman
Fondos De
topic Coque De Petróleo
Análisis Multivariable
Quimiometría
Espectroscopia Raman
Fondos De
In this work
the benefits of chemometrics were combined with the ease of use and speed of Raman spectroscopy for the development of four models able to predict physical-chemical properties in a fast and reliable way for petroleum coke samples. By employing principal component analysis (PCA) and partial least square regression (PLS) the correlation between spectral data and the experimental values for heat of combustion and proximate analysis was found from 56 samples of petroleum coke obtained from hydrothermal and thermal cracking conversion processes of vacuum residua. The properties fixed carbon (CF)
volatile matter (MV)
heat of combustion (PCal) and ashes (CZ) for each sample were determined in previous works according to the standards established by the American Society for Testing and Materials (ASTM). The statistical parameters obtained in the four final PLS models showed adequate adjustment of data to the models; all correlation coefficients (R2) among reference and predicted values were above 0.95
mean square errors of validation were low (below 1.00)
cross validation for all PLS models showed satisfying results in the prediction of the properties CF
MV
PCal and CZ with low error percentages (below 2.00% in average). Likewise
the reported global errors for the CF
MV and PCal prediction models are less than 5.00% and confirm the reliability of these models. In spite of having obtained appropriate statistical parameters for the CZ prediction model
it was regarded as a non-reliable prediction model
since it showed a high global error taking into account that the range in which this property™s experimental values were measured was 3.33 ± 1.88.
dc.subject.keyword.none.fl_str_mv In this work
the benefits of chemometrics were combined with the ease of use and speed of Raman spectroscopy for the development of four models able to predict physical-chemical properties in a fast and reliable way for petroleum coke samples. By employing principal component analysis (PCA) and partial least square regression (PLS) the correlation between spectral data and the experimental values for heat of combustion and proximate analysis was found from 56 samples of petroleum coke obtained from hydrothermal and thermal cracking conversion processes of vacuum residua. The properties fixed carbon (CF)
volatile matter (MV)
heat of combustion (PCal) and ashes (CZ) for each sample were determined in previous works according to the standards established by the American Society for Testing and Materials (ASTM). The statistical parameters obtained in the four final PLS models showed adequate adjustment of data to the models; all correlation coefficients (R2) among reference and predicted values were above 0.95
mean square errors of validation were low (below 1.00)
cross validation for all PLS models showed satisfying results in the prediction of the properties CF
MV
PCal and CZ with low error percentages (below 2.00% in average). Likewise
the reported global errors for the CF
MV and PCal prediction models are less than 5.00% and confirm the reliability of these models. In spite of having obtained appropriate statistical parameters for the CZ prediction model
it was regarded as a non-reliable prediction model
since it showed a high global error taking into account that the range in which this property™s experimental values were measured was 3.33 ± 1.88.
description En el presente trabajo se combinaron los beneficios de la quimiometría con la facilidad y rapidez de la técnica espectroscópica Raman, para el desarrollo de cuatro modelos que predicen propiedades fisicoquímicas en coque de petróleo de manera confiable y en cortos periodos de tiempo. Mediante el análisis por componentes principales (PCA) y por mínimos cuadrados parciales (PLS) se determinó la correlación entre las señales espectrales y los valores experimentales de análisis próximo y poder calorífico, a partir del análisis de 56 muestras de coque obtenidas en procesos de conversión de fondos de vacío procesados bajo condiciones de craqueo térmico e hidroconversión. Las propiedades de carbono fijo, material volátil, poder calorífico y cenizas de cada muestra fueron determinados en trabajos previos usando los estándares establecidos por American Society for Testing and Materials (ASTM).Los parámetros estadísticos obtenidos en los cuatro modelos PLS finales mostraron datos bien ajustados a los modelos, todos los coeficientes de correlación (R2) entre valores de referencia y predichos estuvieron por encima de 0.95, los errores cuadráticos promedio de validación obtenidos fueron bajos (inferiores a 1.00), la validación cruzada interna para cada uno de los modelos PLS demostró resultados satisfactorios en la predicción de propiedades fisicoquímicas de CF, MV, PCal y CZ, con bajos porcentajes de error(en promedio inferiores al 2.00%). Así mismo los errores globales reportados para los modelos de predicción de CF, MV y PCal son inferiores al 5.00% y confirman la confiabilidad de estos modelos.A pesar de los buenos parámetros estadísticos obtenidos en el modelo propuesto para cenizas, se consideró un modelo de predicción no confiable, pues presenta un porcentaje de error global alto teniendo en cuenta que el intervalo en el cual se encuentran los datos experimentales de esta propiedad es de 3.33 ± 1.88.
publishDate 2016
dc.date.available.none.fl_str_mv 2016
2024-03-03T22:43:33Z
dc.date.created.none.fl_str_mv 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2024-03-03T22:43:33Z
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.hasversion.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coar.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.identifier.uri.none.fl_str_mv https://noesis.uis.edu.co/handle/20.500.14071/34974
dc.identifier.instname.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.reponame.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.repourl.none.fl_str_mv https://noesis.uis.edu.co
url https://noesis.uis.edu.co/handle/20.500.14071/34974
https://noesis.uis.edu.co
identifier_str_mv Universidad Industrial de Santander
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0
dc.rights.creativecommons.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-nc/4.0
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Industrial de Santander
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.program.none.fl_str_mv Química
dc.publisher.school.none.fl_str_mv Escuela de Química
publisher.none.fl_str_mv Universidad Industrial de Santander
institution Universidad Industrial de Santander
bitstream.url.fl_str_mv https://noesis.uis.edu.co/bitstreams/5b59de91-2af7-4d22-a5b1-5f17e97aeccc/download
https://noesis.uis.edu.co/bitstreams/81555b6d-4a8f-49cf-987b-26cb727dfa82/download
https://noesis.uis.edu.co/bitstreams/6f5e2f80-ac0b-49f0-bfd5-3e83ce775cd1/download
bitstream.checksum.fl_str_mv eee9015f3792be18abc8c55e84f80453
09851f9c50c7590e856d54aa3bc5d5d6
ab43107033624d18ca20d9c37c1d7761
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace at UIS
repository.mail.fl_str_mv noesis@uis.edu.co
_version_ 1831929698287878144
spelling Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Cabanzo Hernández, RafaelLeón Bermúdez, Adan YovaniMoscoso Almeida, Laura Sofia2024-03-03T22:43:33Z20162024-03-03T22:43:33Z20162016https://noesis.uis.edu.co/handle/20.500.14071/34974Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coEn el presente trabajo se combinaron los beneficios de la quimiometría con la facilidad y rapidez de la técnica espectroscópica Raman, para el desarrollo de cuatro modelos que predicen propiedades fisicoquímicas en coque de petróleo de manera confiable y en cortos periodos de tiempo. Mediante el análisis por componentes principales (PCA) y por mínimos cuadrados parciales (PLS) se determinó la correlación entre las señales espectrales y los valores experimentales de análisis próximo y poder calorífico, a partir del análisis de 56 muestras de coque obtenidas en procesos de conversión de fondos de vacío procesados bajo condiciones de craqueo térmico e hidroconversión. Las propiedades de carbono fijo, material volátil, poder calorífico y cenizas de cada muestra fueron determinados en trabajos previos usando los estándares establecidos por American Society for Testing and Materials (ASTM).Los parámetros estadísticos obtenidos en los cuatro modelos PLS finales mostraron datos bien ajustados a los modelos, todos los coeficientes de correlación (R2) entre valores de referencia y predichos estuvieron por encima de 0.95, los errores cuadráticos promedio de validación obtenidos fueron bajos (inferiores a 1.00), la validación cruzada interna para cada uno de los modelos PLS demostró resultados satisfactorios en la predicción de propiedades fisicoquímicas de CF, MV, PCal y CZ, con bajos porcentajes de error(en promedio inferiores al 2.00%). Así mismo los errores globales reportados para los modelos de predicción de CF, MV y PCal son inferiores al 5.00% y confirman la confiabilidad de estos modelos.A pesar de los buenos parámetros estadísticos obtenidos en el modelo propuesto para cenizas, se consideró un modelo de predicción no confiable, pues presenta un porcentaje de error global alto teniendo en cuenta que el intervalo en el cual se encuentran los datos experimentales de esta propiedad es de 3.33 ± 1.88.PregradoQuímicoPhysical-chemical properties prediction for petcoke obtained from vacuum residua conversion processes using raman spectroscopy and chemometricsapplication/pdfspaUniversidad Industrial de SantanderFacultad de CienciasQuímicaEscuela de QuímicaCoque De PetróleoAnálisis MultivariableQuimiometríaEspectroscopia RamanFondos DeIn this workthe benefits of chemometrics were combined with the ease of use and speed of Raman spectroscopy for the development of four models able to predict physical-chemical properties in a fast and reliable way for petroleum coke samples. By employing principal component analysis (PCA) and partial least square regression (PLS) the correlation between spectral data and the experimental values for heat of combustion and proximate analysis was found from 56 samples of petroleum coke obtained from hydrothermal and thermal cracking conversion processes of vacuum residua. The properties fixed carbon (CF)volatile matter (MV)heat of combustion (PCal) and ashes (CZ) for each sample were determined in previous works according to the standards established by the American Society for Testing and Materials (ASTM). The statistical parameters obtained in the four final PLS models showed adequate adjustment of data to the models; all correlation coefficients (R2) among reference and predicted values were above 0.95mean square errors of validation were low (below 1.00)cross validation for all PLS models showed satisfying results in the prediction of the properties CFMVPCal and CZ with low error percentages (below 2.00% in average). Likewisethe reported global errors for the CFMV and PCal prediction models are less than 5.00% and confirm the reliability of these models. In spite of having obtained appropriate statistical parameters for the CZ prediction modelit was regarded as a non-reliable prediction modelsince it showed a high global error taking into account that the range in which this property™s experimental values were measured was 3.33 ± 1.88.Predicción de propiedades fisicoquímicas de coques obtenidos en procesos de conversión de fondos de vacío usando espectroscopia raman y quimiometríaPetroleum Coke, Multivariant Analysis, Chemometrics, Raman Spectroscopy, Vacuum Residua.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf460536https://noesis.uis.edu.co/bitstreams/5b59de91-2af7-4d22-a5b1-5f17e97aeccc/downloadeee9015f3792be18abc8c55e84f80453MD51Documento.pdfapplication/pdf1788097https://noesis.uis.edu.co/bitstreams/81555b6d-4a8f-49cf-987b-26cb727dfa82/download09851f9c50c7590e856d54aa3bc5d5d6MD52Nota de proyecto.pdfapplication/pdf217727https://noesis.uis.edu.co/bitstreams/6f5e2f80-ac0b-49f0-bfd5-3e83ce775cd1/downloadab43107033624d18ca20d9c37c1d7761MD5320.500.14071/34974oai:noesis.uis.edu.co:20.500.14071/349742024-03-03 17:43:33.07http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co