Caracterización microestructural por ebsd de la formación de la ferrita secundaria entre la temperatura de sostenimiento y la etapa de enfriamiento lento en un acero bifásico (dp 980) galvanizado

Los aceros bifásicos viven un desarrollo de relevante importancia en las últimas décadas en el sector industrial en todo el mundo; porque este tipo de acero corresponde al grupo de aceros avanzados de alta resistencia. El acero bifásico está constituido principalmente por una matriz ferrítica (const...

Full description

Autores:
Urbina Leal, David Alexander
Tipo de recurso:
http://purl.org/coar/version/c_b1a7d7d4d402bcce
Fecha de publicación:
2016
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/34935
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/34935
https://noesis.uis.edu.co
Palabra clave:
Aceros Bifásicos
Recocido Continuo
Laminación En Frío
Propiedades Mecánicas.
The dual phase steels live a development of significant importance in recent decades in the industrial sector worldwide; because this type of steel belongs to the group of advanced high strength steels. The dual-phase steel is primarily of a ferritic matrix (soft constituent) and martensite (hard constituent)
which give it its characteristic properties: an excellent ductility and high mechanical strength for the different industries applications. It is possible to cite
for example
the automotive field
in which the steel permits construction of safer vehicles
with less weight and greater efficiency in fuel consumption. In this study
the dual-phase steel 980MPa galvanized
cold rolled with 80% reduction
which is meant to examine the influence of different process conditions of continuous annealing on the mechanical properties of dual phase steels and the secondary ferrite formation in the final structure. The methodology for the study involved the following steps: isochronous annealing was made of four sheets at different temperatures from 720°C and 900°C and then they were exposed to two different cooling methods: immediately cooling in the water or maintain a temperature below the annealing for 600 s and then cooling in water. With the analysis of the results
it was realized that was formed large amount of new ferrite (called secondary ferrite) to replace the martensite in the final structure. This occurred for two main reasons: with the highest soaking temperature
there will be greater fraction of austenite and martensite consequently; on the other hand
a lower soaking temperature and a smaller secondary cooling temperature generate a larger fraction of ferrite. Anyway
this greater amount of ferrite has a direct effect on the mechanical properties of the dual-phase steel
Rights
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id UISANTADR2_7fd98663c6f35d43e499eeed12a9a051
oai_identifier_str oai:noesis.uis.edu.co:20.500.14071/34935
network_acronym_str UISANTADR2
network_name_str Repositorio UIS
repository_id_str
dc.title.none.fl_str_mv Caracterización microestructural por ebsd de la formación de la ferrita secundaria entre la temperatura de sostenimiento y la etapa de enfriamiento lento en un acero bifásico (dp 980) galvanizado
dc.title.english.none.fl_str_mv Dual Phase Steels, Continuous Annealing, Cold Rolling, Mechanical Properties.
title Caracterización microestructural por ebsd de la formación de la ferrita secundaria entre la temperatura de sostenimiento y la etapa de enfriamiento lento en un acero bifásico (dp 980) galvanizado
spellingShingle Caracterización microestructural por ebsd de la formación de la ferrita secundaria entre la temperatura de sostenimiento y la etapa de enfriamiento lento en un acero bifásico (dp 980) galvanizado
Aceros Bifásicos
Recocido Continuo
Laminación En Frío
Propiedades Mecánicas.
The dual phase steels live a development of significant importance in recent decades in the industrial sector worldwide; because this type of steel belongs to the group of advanced high strength steels. The dual-phase steel is primarily of a ferritic matrix (soft constituent) and martensite (hard constituent)
which give it its characteristic properties: an excellent ductility and high mechanical strength for the different industries applications. It is possible to cite
for example
the automotive field
in which the steel permits construction of safer vehicles
with less weight and greater efficiency in fuel consumption. In this study
the dual-phase steel 980MPa galvanized
cold rolled with 80% reduction
which is meant to examine the influence of different process conditions of continuous annealing on the mechanical properties of dual phase steels and the secondary ferrite formation in the final structure. The methodology for the study involved the following steps: isochronous annealing was made of four sheets at different temperatures from 720°C and 900°C and then they were exposed to two different cooling methods: immediately cooling in the water or maintain a temperature below the annealing for 600 s and then cooling in water. With the analysis of the results
it was realized that was formed large amount of new ferrite (called secondary ferrite) to replace the martensite in the final structure. This occurred for two main reasons: with the highest soaking temperature
there will be greater fraction of austenite and martensite consequently; on the other hand
a lower soaking temperature and a smaller secondary cooling temperature generate a larger fraction of ferrite. Anyway
this greater amount of ferrite has a direct effect on the mechanical properties of the dual-phase steel
title_short Caracterización microestructural por ebsd de la formación de la ferrita secundaria entre la temperatura de sostenimiento y la etapa de enfriamiento lento en un acero bifásico (dp 980) galvanizado
title_full Caracterización microestructural por ebsd de la formación de la ferrita secundaria entre la temperatura de sostenimiento y la etapa de enfriamiento lento en un acero bifásico (dp 980) galvanizado
title_fullStr Caracterización microestructural por ebsd de la formación de la ferrita secundaria entre la temperatura de sostenimiento y la etapa de enfriamiento lento en un acero bifásico (dp 980) galvanizado
title_full_unstemmed Caracterización microestructural por ebsd de la formación de la ferrita secundaria entre la temperatura de sostenimiento y la etapa de enfriamiento lento en un acero bifásico (dp 980) galvanizado
title_sort Caracterización microestructural por ebsd de la formación de la ferrita secundaria entre la temperatura de sostenimiento y la etapa de enfriamiento lento en un acero bifásico (dp 980) galvanizado
dc.creator.fl_str_mv Urbina Leal, David Alexander
dc.contributor.advisor.none.fl_str_mv Meneses Rincon, Maria Liliana
dc.contributor.author.none.fl_str_mv Urbina Leal, David Alexander
dc.subject.none.fl_str_mv Aceros Bifásicos
Recocido Continuo
Laminación En Frío
Propiedades Mecánicas.
topic Aceros Bifásicos
Recocido Continuo
Laminación En Frío
Propiedades Mecánicas.
The dual phase steels live a development of significant importance in recent decades in the industrial sector worldwide; because this type of steel belongs to the group of advanced high strength steels. The dual-phase steel is primarily of a ferritic matrix (soft constituent) and martensite (hard constituent)
which give it its characteristic properties: an excellent ductility and high mechanical strength for the different industries applications. It is possible to cite
for example
the automotive field
in which the steel permits construction of safer vehicles
with less weight and greater efficiency in fuel consumption. In this study
the dual-phase steel 980MPa galvanized
cold rolled with 80% reduction
which is meant to examine the influence of different process conditions of continuous annealing on the mechanical properties of dual phase steels and the secondary ferrite formation in the final structure. The methodology for the study involved the following steps: isochronous annealing was made of four sheets at different temperatures from 720°C and 900°C and then they were exposed to two different cooling methods: immediately cooling in the water or maintain a temperature below the annealing for 600 s and then cooling in water. With the analysis of the results
it was realized that was formed large amount of new ferrite (called secondary ferrite) to replace the martensite in the final structure. This occurred for two main reasons: with the highest soaking temperature
there will be greater fraction of austenite and martensite consequently; on the other hand
a lower soaking temperature and a smaller secondary cooling temperature generate a larger fraction of ferrite. Anyway
this greater amount of ferrite has a direct effect on the mechanical properties of the dual-phase steel
dc.subject.keyword.none.fl_str_mv The dual phase steels live a development of significant importance in recent decades in the industrial sector worldwide; because this type of steel belongs to the group of advanced high strength steels. The dual-phase steel is primarily of a ferritic matrix (soft constituent) and martensite (hard constituent)
which give it its characteristic properties: an excellent ductility and high mechanical strength for the different industries applications. It is possible to cite
for example
the automotive field
in which the steel permits construction of safer vehicles
with less weight and greater efficiency in fuel consumption. In this study
the dual-phase steel 980MPa galvanized
cold rolled with 80% reduction
which is meant to examine the influence of different process conditions of continuous annealing on the mechanical properties of dual phase steels and the secondary ferrite formation in the final structure. The methodology for the study involved the following steps: isochronous annealing was made of four sheets at different temperatures from 720°C and 900°C and then they were exposed to two different cooling methods: immediately cooling in the water or maintain a temperature below the annealing for 600 s and then cooling in water. With the analysis of the results
it was realized that was formed large amount of new ferrite (called secondary ferrite) to replace the martensite in the final structure. This occurred for two main reasons: with the highest soaking temperature
there will be greater fraction of austenite and martensite consequently; on the other hand
a lower soaking temperature and a smaller secondary cooling temperature generate a larger fraction of ferrite. Anyway
this greater amount of ferrite has a direct effect on the mechanical properties of the dual-phase steel
description Los aceros bifásicos viven un desarrollo de relevante importancia en las últimas décadas en el sector industrial en todo el mundo; porque este tipo de acero corresponde al grupo de aceros avanzados de alta resistencia. El acero bifásico está constituido principalmente por una matriz ferrítica (constituyente blando) y martensita (constituyente duro), que le confiere sus propiedades características: una excelente ductilidad y elevada resistencia mecánica para las distintas aplicaciones industriales. Es posible citar, por ejemplo, el campo automovilístico, en el cual el acero permite la construcción de vehículos más seguros, con menor peso y una mayor eficiencia en el consumo de combustible. En este trabajo se desea estudiar el acero bifásico 980MPa galvanizado, laminado en frío con 80% de reducción de área. El objetivo principal es analizar la influencia de las diferentes condiciones de proceso de recocido continuo en las propiedades mecánicas de aceros bifásicos y en la formación de la ferrita secundaria en la estructura final. La metodología para el estudio siguió los siguientes pasos: Fue realizado el recocido isócrono de cuatro placas a diferentes temperaturas entre 720°C y 900°C en seguida, fueron expuestas a dos diferentes métodos de enfriamiento: Inmediatamente enfriar en agua o mantener a una temperatura debajo de la de recocido por 600s para entonces enfriar en agua. Con el análisis de los resultados, se percibió que fue formada gran cantidad de la nueva ferrita (llamada ferrita secundaria) en substitución a la martensita en la estructura final. Eso ocurre por dos principales motivos: A mayor temperatura de sostenimiento, habrá mayor fracción de austenita y, consecuentemente de martensita en contrapartida, una menor temperatura de sostenimiento y una menor temperatura de enfriamiento secundario, generan una mayor fracción de ferrita. De cualquier forma, esa mayor cantidad de ferrita tiene un efecto directo en las propiedades mecánicas del acero
publishDate 2016
dc.date.available.none.fl_str_mv 2016
2024-03-03T22:43:12Z
dc.date.created.none.fl_str_mv 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2024-03-03T22:43:12Z
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.hasversion.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coar.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.identifier.uri.none.fl_str_mv https://noesis.uis.edu.co/handle/20.500.14071/34935
dc.identifier.instname.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.reponame.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.repourl.none.fl_str_mv https://noesis.uis.edu.co
url https://noesis.uis.edu.co/handle/20.500.14071/34935
https://noesis.uis.edu.co
identifier_str_mv Universidad Industrial de Santander
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0
dc.rights.creativecommons.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-nc/4.0
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Industrial de Santander
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías Fisicoquímicas
dc.publisher.program.none.fl_str_mv Ingeniería Metalúrgica
dc.publisher.school.none.fl_str_mv Escuela de Ingeniería Metalúrgica y Ciencia de Materiales
publisher.none.fl_str_mv Universidad Industrial de Santander
institution Universidad Industrial de Santander
bitstream.url.fl_str_mv https://noesis.uis.edu.co/bitstreams/f4cf1e30-cd87-4720-b1e9-ba42c6934521/download
https://noesis.uis.edu.co/bitstreams/0fab29f2-267e-4c4d-8910-bfd85a09ad58/download
https://noesis.uis.edu.co/bitstreams/b1ea7f8b-4563-468c-a763-59f32fa5cdac/download
bitstream.checksum.fl_str_mv 2721dc05381e81a249fded00947d071c
3dd00e57086f5764055c45ad61cce54c
a82b3dbe7c57c7c60117f2008f4e9bea
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace at UIS
repository.mail.fl_str_mv noesis@uis.edu.co
_version_ 1834113088808288256
spelling Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Meneses Rincon, Maria LilianaUrbina Leal, David Alexander2024-03-03T22:43:12Z20162024-03-03T22:43:12Z20162016https://noesis.uis.edu.co/handle/20.500.14071/34935Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coLos aceros bifásicos viven un desarrollo de relevante importancia en las últimas décadas en el sector industrial en todo el mundo; porque este tipo de acero corresponde al grupo de aceros avanzados de alta resistencia. El acero bifásico está constituido principalmente por una matriz ferrítica (constituyente blando) y martensita (constituyente duro), que le confiere sus propiedades características: una excelente ductilidad y elevada resistencia mecánica para las distintas aplicaciones industriales. Es posible citar, por ejemplo, el campo automovilístico, en el cual el acero permite la construcción de vehículos más seguros, con menor peso y una mayor eficiencia en el consumo de combustible. En este trabajo se desea estudiar el acero bifásico 980MPa galvanizado, laminado en frío con 80% de reducción de área. El objetivo principal es analizar la influencia de las diferentes condiciones de proceso de recocido continuo en las propiedades mecánicas de aceros bifásicos y en la formación de la ferrita secundaria en la estructura final. La metodología para el estudio siguió los siguientes pasos: Fue realizado el recocido isócrono de cuatro placas a diferentes temperaturas entre 720°C y 900°C en seguida, fueron expuestas a dos diferentes métodos de enfriamiento: Inmediatamente enfriar en agua o mantener a una temperatura debajo de la de recocido por 600s para entonces enfriar en agua. Con el análisis de los resultados, se percibió que fue formada gran cantidad de la nueva ferrita (llamada ferrita secundaria) en substitución a la martensita en la estructura final. Eso ocurre por dos principales motivos: A mayor temperatura de sostenimiento, habrá mayor fracción de austenita y, consecuentemente de martensita en contrapartida, una menor temperatura de sostenimiento y una menor temperatura de enfriamiento secundario, generan una mayor fracción de ferrita. De cualquier forma, esa mayor cantidad de ferrita tiene un efecto directo en las propiedades mecánicas del aceroPregradoIngeniero MetalúrgicoMicrostructural characterization by ebsd of the secundary ferrite between the soaking temperature and cooling stage in a galvanised dual-phase steel.application/pdfspaUniversidad Industrial de SantanderFacultad de Ingenierías FisicoquímicasIngeniería MetalúrgicaEscuela de Ingeniería Metalúrgica y Ciencia de MaterialesAceros BifásicosRecocido ContinuoLaminación En FríoPropiedades Mecánicas.The dual phase steels live a development of significant importance in recent decades in the industrial sector worldwide; because this type of steel belongs to the group of advanced high strength steels. The dual-phase steel is primarily of a ferritic matrix (soft constituent) and martensite (hard constituent)which give it its characteristic properties: an excellent ductility and high mechanical strength for the different industries applications. It is possible to citefor examplethe automotive fieldin which the steel permits construction of safer vehicleswith less weight and greater efficiency in fuel consumption. In this studythe dual-phase steel 980MPa galvanizedcold rolled with 80% reductionwhich is meant to examine the influence of different process conditions of continuous annealing on the mechanical properties of dual phase steels and the secondary ferrite formation in the final structure. The methodology for the study involved the following steps: isochronous annealing was made of four sheets at different temperatures from 720°C and 900°C and then they were exposed to two different cooling methods: immediately cooling in the water or maintain a temperature below the annealing for 600 s and then cooling in water. With the analysis of the resultsit was realized that was formed large amount of new ferrite (called secondary ferrite) to replace the martensite in the final structure. This occurred for two main reasons: with the highest soaking temperaturethere will be greater fraction of austenite and martensite consequently; on the other handa lower soaking temperature and a smaller secondary cooling temperature generate a larger fraction of ferrite. Anywaythis greater amount of ferrite has a direct effect on the mechanical properties of the dual-phase steelCaracterización microestructural por ebsd de la formación de la ferrita secundaria entre la temperatura de sostenimiento y la etapa de enfriamiento lento en un acero bifásico (dp 980) galvanizadoDual Phase Steels, Continuous Annealing, Cold Rolling, Mechanical Properties.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf454287https://noesis.uis.edu.co/bitstreams/f4cf1e30-cd87-4720-b1e9-ba42c6934521/download2721dc05381e81a249fded00947d071cMD51Documento.pdfapplication/pdf4237049https://noesis.uis.edu.co/bitstreams/0fab29f2-267e-4c4d-8910-bfd85a09ad58/download3dd00e57086f5764055c45ad61cce54cMD52Nota de proyecto.pdfapplication/pdf341609https://noesis.uis.edu.co/bitstreams/b1ea7f8b-4563-468c-a763-59f32fa5cdac/downloada82b3dbe7c57c7c60117f2008f4e9beaMD5320.500.14071/34935oai:noesis.uis.edu.co:20.500.14071/349352024-03-03 17:43:12.995http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co