Implementación de indicadores cmd a los equipos eléctricos de la subestaciones de Electrohuila S.A. E.S.P.
Este proyecto parte de la necesidad de implementar indicadores internacionales que permitan a Electrohuila S.A E.S.P orientar desde un nivel estratégico las acciones correctivas, proactivas y predictivas del mantenimiento; así, como sentar las bases para incursionar en tácticas de mantenimiento TPM...
- Autores:
-
Losada Rodriguez, Mauricio
Jaimes Gil, Leonardi Edilberto
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2016
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/35176
- Palabra clave:
- Indicadores Cmd
Distribución Probabilística
Parámetro De Forma
Parámetro De Escala
Curva De Davies.
This project is the need to implement international indicators that allow Electrohuila S.A E.S.P from a strategic level guidance corrective
proactive and predictive maintenance actions; as well as lay the groundwork for maintenance tactics venture into TPM and RCM. The methodology adopted for the implementation of CMD indicators
was calculating the average time between maintenance
mean time between failures
mean time to repair
mean time for planned interventions; These times were calculated by considering three probalistics distributions: Normal distribution
distribution Logo Normal and essentially the Weibull distribution has great adaptation to the three areas of the bathtub curve
and its shape parameters and scale are easily calculable in Excel using the method of linear regression or least squares. Calculated the CMD indicators through one or more probability distributions and estimating the parameters for each distribution
the input data are obtained to feed the statistical prediction models such as the model forecast expected number of events
using simulation Monte Carlo simulation technique that takes advantage of the processing speed of the computer to perform experiments that simulate future behavior of the equipment.
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id |
UISANTADR2_66e99c0c5628fb7090357ff5de84bb2b |
---|---|
oai_identifier_str |
oai:noesis.uis.edu.co:20.500.14071/35176 |
network_acronym_str |
UISANTADR2 |
network_name_str |
Repositorio UIS |
repository_id_str |
|
dc.title.none.fl_str_mv |
Implementación de indicadores cmd a los equipos eléctricos de la subestaciones de Electrohuila S.A. E.S.P. |
dc.title.english.none.fl_str_mv |
Cmd Indicators, Probabilistic Distribution, Shape Parameter, Scale Parameter, Curve Davies. |
title |
Implementación de indicadores cmd a los equipos eléctricos de la subestaciones de Electrohuila S.A. E.S.P. |
spellingShingle |
Implementación de indicadores cmd a los equipos eléctricos de la subestaciones de Electrohuila S.A. E.S.P. Indicadores Cmd Distribución Probabilística Parámetro De Forma Parámetro De Escala Curva De Davies. This project is the need to implement international indicators that allow Electrohuila S.A E.S.P from a strategic level guidance corrective proactive and predictive maintenance actions; as well as lay the groundwork for maintenance tactics venture into TPM and RCM. The methodology adopted for the implementation of CMD indicators was calculating the average time between maintenance mean time between failures mean time to repair mean time for planned interventions; These times were calculated by considering three probalistics distributions: Normal distribution distribution Logo Normal and essentially the Weibull distribution has great adaptation to the three areas of the bathtub curve and its shape parameters and scale are easily calculable in Excel using the method of linear regression or least squares. Calculated the CMD indicators through one or more probability distributions and estimating the parameters for each distribution the input data are obtained to feed the statistical prediction models such as the model forecast expected number of events using simulation Monte Carlo simulation technique that takes advantage of the processing speed of the computer to perform experiments that simulate future behavior of the equipment. |
title_short |
Implementación de indicadores cmd a los equipos eléctricos de la subestaciones de Electrohuila S.A. E.S.P. |
title_full |
Implementación de indicadores cmd a los equipos eléctricos de la subestaciones de Electrohuila S.A. E.S.P. |
title_fullStr |
Implementación de indicadores cmd a los equipos eléctricos de la subestaciones de Electrohuila S.A. E.S.P. |
title_full_unstemmed |
Implementación de indicadores cmd a los equipos eléctricos de la subestaciones de Electrohuila S.A. E.S.P. |
title_sort |
Implementación de indicadores cmd a los equipos eléctricos de la subestaciones de Electrohuila S.A. E.S.P. |
dc.creator.fl_str_mv |
Losada Rodriguez, Mauricio Jaimes Gil, Leonardi Edilberto |
dc.contributor.advisor.none.fl_str_mv |
Pineda, Guillermo Alexis |
dc.contributor.author.none.fl_str_mv |
Losada Rodriguez, Mauricio Jaimes Gil, Leonardi Edilberto |
dc.subject.none.fl_str_mv |
Indicadores Cmd Distribución Probabilística Parámetro De Forma Parámetro De Escala Curva De Davies. |
topic |
Indicadores Cmd Distribución Probabilística Parámetro De Forma Parámetro De Escala Curva De Davies. This project is the need to implement international indicators that allow Electrohuila S.A E.S.P from a strategic level guidance corrective proactive and predictive maintenance actions; as well as lay the groundwork for maintenance tactics venture into TPM and RCM. The methodology adopted for the implementation of CMD indicators was calculating the average time between maintenance mean time between failures mean time to repair mean time for planned interventions; These times were calculated by considering three probalistics distributions: Normal distribution distribution Logo Normal and essentially the Weibull distribution has great adaptation to the three areas of the bathtub curve and its shape parameters and scale are easily calculable in Excel using the method of linear regression or least squares. Calculated the CMD indicators through one or more probability distributions and estimating the parameters for each distribution the input data are obtained to feed the statistical prediction models such as the model forecast expected number of events using simulation Monte Carlo simulation technique that takes advantage of the processing speed of the computer to perform experiments that simulate future behavior of the equipment. |
dc.subject.keyword.none.fl_str_mv |
This project is the need to implement international indicators that allow Electrohuila S.A E.S.P from a strategic level guidance corrective proactive and predictive maintenance actions; as well as lay the groundwork for maintenance tactics venture into TPM and RCM. The methodology adopted for the implementation of CMD indicators was calculating the average time between maintenance mean time between failures mean time to repair mean time for planned interventions; These times were calculated by considering three probalistics distributions: Normal distribution distribution Logo Normal and essentially the Weibull distribution has great adaptation to the three areas of the bathtub curve and its shape parameters and scale are easily calculable in Excel using the method of linear regression or least squares. Calculated the CMD indicators through one or more probability distributions and estimating the parameters for each distribution the input data are obtained to feed the statistical prediction models such as the model forecast expected number of events using simulation Monte Carlo simulation technique that takes advantage of the processing speed of the computer to perform experiments that simulate future behavior of the equipment. |
description |
Este proyecto parte de la necesidad de implementar indicadores internacionales que permitan a Electrohuila S.A E.S.P orientar desde un nivel estratégico las acciones correctivas, proactivas y predictivas del mantenimiento; así, como sentar las bases para incursionar en tácticas de mantenimiento TPM y RCM. La metodología adoptada para la implementación de indicadores CMD, fue calcular los tiempos medios entre mantenimientos, tiempo medio entre fallas, tiempo medio para reparaciones, tiempo medio para intervenciones planeadas; estos tiempos se calcularon teniendo en cuenta tres distribuciones probalísticas: Distribución Normal, distribución Logo Normal y esencialmente la distribución Weibull que tiene gran adaptación a las tres zonas de la curva de la bañera, y sus parámetros de forma y escala son fácilmente calculables en Excel aplicando el método de regresión lineal o mínimos cuadrados. Calculados los indicadores CMD a través de una o varias distribuciones de probabilidad y estimando los parámetros para cada distribución, se obtienen los datos de entrada para alimentar los modelos estadísticos de predicción como es el modelo de pronóstico del número de eventos esperado, utilizando simulación de Monte Carlo, técnica de simulación que permite aprovechar la velocidad de procesamiento de la computadora para realizar experimentos que simulan comportamientos futuros de los equipos. |
publishDate |
2016 |
dc.date.available.none.fl_str_mv |
2016 2024-03-03T22:45:27Z |
dc.date.created.none.fl_str_mv |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-03-03T22:45:27Z |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.hasversion.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.identifier.uri.none.fl_str_mv |
https://noesis.uis.edu.co/handle/20.500.14071/35176 |
dc.identifier.instname.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.reponame.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://noesis.uis.edu.co |
url |
https://noesis.uis.edu.co/handle/20.500.14071/35176 https://noesis.uis.edu.co |
identifier_str_mv |
Universidad Industrial de Santander |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
dc.rights.creativecommons.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by-nc/4.0 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Industrial de Santander |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías Fisicomecánicas |
dc.publisher.program.none.fl_str_mv |
Especialización en Gerencia de Mantenimiento |
dc.publisher.school.none.fl_str_mv |
Escuela de Ingeniería Mecánica |
publisher.none.fl_str_mv |
Universidad Industrial de Santander |
institution |
Universidad Industrial de Santander |
bitstream.url.fl_str_mv |
https://noesis.uis.edu.co/bitstreams/ae771441-0c76-451c-8856-8a87760b15cc/download https://noesis.uis.edu.co/bitstreams/35f43206-1ace-4b74-a6a0-d0a19bc64d92/download https://noesis.uis.edu.co/bitstreams/9db27be0-6246-4b58-b93e-e86451cf61a6/download |
bitstream.checksum.fl_str_mv |
717d886405ebc65c61ec654b378d77b5 e08e89f4e1a261b2ab7a237326a1855e eb506611d2b23349ddf8791a6dcd75ef |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace at UIS |
repository.mail.fl_str_mv |
noesis@uis.edu.co |
_version_ |
1831929735406419968 |
spelling |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Pineda, Guillermo AlexisLosada Rodriguez, MauricioJaimes Gil, Leonardi Edilberto2024-03-03T22:45:27Z20162024-03-03T22:45:27Z20162016https://noesis.uis.edu.co/handle/20.500.14071/35176Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coEste proyecto parte de la necesidad de implementar indicadores internacionales que permitan a Electrohuila S.A E.S.P orientar desde un nivel estratégico las acciones correctivas, proactivas y predictivas del mantenimiento; así, como sentar las bases para incursionar en tácticas de mantenimiento TPM y RCM. La metodología adoptada para la implementación de indicadores CMD, fue calcular los tiempos medios entre mantenimientos, tiempo medio entre fallas, tiempo medio para reparaciones, tiempo medio para intervenciones planeadas; estos tiempos se calcularon teniendo en cuenta tres distribuciones probalísticas: Distribución Normal, distribución Logo Normal y esencialmente la distribución Weibull que tiene gran adaptación a las tres zonas de la curva de la bañera, y sus parámetros de forma y escala son fácilmente calculables en Excel aplicando el método de regresión lineal o mínimos cuadrados. Calculados los indicadores CMD a través de una o varias distribuciones de probabilidad y estimando los parámetros para cada distribución, se obtienen los datos de entrada para alimentar los modelos estadísticos de predicción como es el modelo de pronóstico del número de eventos esperado, utilizando simulación de Monte Carlo, técnica de simulación que permite aprovechar la velocidad de procesamiento de la computadora para realizar experimentos que simulan comportamientos futuros de los equipos.EspecializaciónEspecialista en Gerencia de MantenimientoCmd indicators implementation of the equipment electric substations electrohuila s.a e.s p.application/pdfspaUniversidad Industrial de SantanderFacultad de Ingenierías FisicomecánicasEspecialización en Gerencia de MantenimientoEscuela de Ingeniería MecánicaIndicadores CmdDistribución ProbabilísticaParámetro De FormaParámetro De EscalaCurva De Davies.This project is the need to implement international indicators that allow Electrohuila S.A E.S.P from a strategic level guidance correctiveproactive and predictive maintenance actions; as well as lay the groundwork for maintenance tactics venture into TPM and RCM. The methodology adopted for the implementation of CMD indicatorswas calculating the average time between maintenancemean time between failuresmean time to repairmean time for planned interventions; These times were calculated by considering three probalistics distributions: Normal distributiondistribution Logo Normal and essentially the Weibull distribution has great adaptation to the three areas of the bathtub curveand its shape parameters and scale are easily calculable in Excel using the method of linear regression or least squares. Calculated the CMD indicators through one or more probability distributions and estimating the parameters for each distributionthe input data are obtained to feed the statistical prediction models such as the model forecast expected number of eventsusing simulation Monte Carlo simulation technique that takes advantage of the processing speed of the computer to perform experiments that simulate future behavior of the equipment.Implementación de indicadores cmd a los equipos eléctricos de la subestaciones de Electrohuila S.A. E.S.P.Cmd Indicators, Probabilistic Distribution, Shape Parameter, Scale Parameter, Curve Davies.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf252237https://noesis.uis.edu.co/bitstreams/ae771441-0c76-451c-8856-8a87760b15cc/download717d886405ebc65c61ec654b378d77b5MD51Documento.pdfapplication/pdf4354433https://noesis.uis.edu.co/bitstreams/35f43206-1ace-4b74-a6a0-d0a19bc64d92/downloade08e89f4e1a261b2ab7a237326a1855eMD52Nota de proyecto.pdfapplication/pdf254122https://noesis.uis.edu.co/bitstreams/9db27be0-6246-4b58-b93e-e86451cf61a6/downloadeb506611d2b23349ddf8791a6dcd75efMD5320.500.14071/35176oai:noesis.uis.edu.co:20.500.14071/351762024-03-03 17:45:27.634http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co |