Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico
El potencial de biometanización para las aguas residuales de un frigorífico fue determinado para las temperaturas de operación de 37 y la temperatura ambiente de la región del frigorífico (30°C) utilizando estiércol bovino proveniente del frigorífico y posteriormente estabilizado como fuente de inóc...
- Autores:
-
Gomez Serrato, Oscar Julian
Jimenez Pineros, Diana Paola
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2016
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/34292
- Palabra clave:
- Aguas Residuales
Frigorífico
Potencial De Biometanización
Cinética De Producción De Metano.
Biomethane potential for slaughterhouse wastewater was determined at operation temperatures of 37 and 30°C
which is the ambient temperature in the region of the slaughterhouse
using the cattle manure produced in the slaughterhouse and later stabilized as the inoculum source. The methane yields reached were 0
73 and 0
71 for 37 and 30°C respectively. Kinetics of methane production was also evaluated through Gompertz modified kinetic model
the evaluated parameters were maximum cumulated methane production ()
maximum daily methane production rate () and the acclimation time of the inoculum (). The values of the kinetic parameters for the temperature of 37°C were 0
77 for
0
05 for and 1
74 for
at 30°C the values of
and were 0
76
0
04 y 3
60 respectively. The means analysis showed no significant differences in the maximum methane production at the different temperatures evaluated
but it showed significant differences in the maximum daily methane production rate. The energy production by the anaerobic digestion of the wastewater produced in a month in the slaughterhouse was evaluated. The energy produced by the anaerobic digestion of the slaughterhouse wastewater corresponds to 48% of the energy consumed in a month by the slaughterhouse
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id |
UISANTADR2_146167d8a7476e348c59b7b39da4afb2 |
---|---|
oai_identifier_str |
oai:noesis.uis.edu.co:20.500.14071/34292 |
network_acronym_str |
UISANTADR2 |
network_name_str |
Repositorio UIS |
repository_id_str |
|
dc.title.none.fl_str_mv |
Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico |
dc.title.english.none.fl_str_mv |
Wastewater, Slaughterhouse, Biomethane Potential, Methane Production Kinetics |
title |
Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico |
spellingShingle |
Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico Aguas Residuales Frigorífico Potencial De Biometanización Cinética De Producción De Metano. Biomethane potential for slaughterhouse wastewater was determined at operation temperatures of 37 and 30°C which is the ambient temperature in the region of the slaughterhouse using the cattle manure produced in the slaughterhouse and later stabilized as the inoculum source. The methane yields reached were 0 73 and 0 71 for 37 and 30°C respectively. Kinetics of methane production was also evaluated through Gompertz modified kinetic model the evaluated parameters were maximum cumulated methane production () maximum daily methane production rate () and the acclimation time of the inoculum (). The values of the kinetic parameters for the temperature of 37°C were 0 77 for 0 05 for and 1 74 for at 30°C the values of and were 0 76 0 04 y 3 60 respectively. The means analysis showed no significant differences in the maximum methane production at the different temperatures evaluated but it showed significant differences in the maximum daily methane production rate. The energy production by the anaerobic digestion of the wastewater produced in a month in the slaughterhouse was evaluated. The energy produced by the anaerobic digestion of the slaughterhouse wastewater corresponds to 48% of the energy consumed in a month by the slaughterhouse |
title_short |
Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico |
title_full |
Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico |
title_fullStr |
Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico |
title_full_unstemmed |
Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico |
title_sort |
Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico |
dc.creator.fl_str_mv |
Gomez Serrato, Oscar Julian Jimenez Pineros, Diana Paola |
dc.contributor.advisor.none.fl_str_mv |
Castro Molano, Liliana del Pilar Escalante Hernandez, Humberto |
dc.contributor.author.none.fl_str_mv |
Gomez Serrato, Oscar Julian Jimenez Pineros, Diana Paola |
dc.subject.none.fl_str_mv |
Aguas Residuales Frigorífico Potencial De Biometanización Cinética De Producción De Metano. |
topic |
Aguas Residuales Frigorífico Potencial De Biometanización Cinética De Producción De Metano. Biomethane potential for slaughterhouse wastewater was determined at operation temperatures of 37 and 30°C which is the ambient temperature in the region of the slaughterhouse using the cattle manure produced in the slaughterhouse and later stabilized as the inoculum source. The methane yields reached were 0 73 and 0 71 for 37 and 30°C respectively. Kinetics of methane production was also evaluated through Gompertz modified kinetic model the evaluated parameters were maximum cumulated methane production () maximum daily methane production rate () and the acclimation time of the inoculum (). The values of the kinetic parameters for the temperature of 37°C were 0 77 for 0 05 for and 1 74 for at 30°C the values of and were 0 76 0 04 y 3 60 respectively. The means analysis showed no significant differences in the maximum methane production at the different temperatures evaluated but it showed significant differences in the maximum daily methane production rate. The energy production by the anaerobic digestion of the wastewater produced in a month in the slaughterhouse was evaluated. The energy produced by the anaerobic digestion of the slaughterhouse wastewater corresponds to 48% of the energy consumed in a month by the slaughterhouse |
dc.subject.keyword.none.fl_str_mv |
Biomethane potential for slaughterhouse wastewater was determined at operation temperatures of 37 and 30°C which is the ambient temperature in the region of the slaughterhouse using the cattle manure produced in the slaughterhouse and later stabilized as the inoculum source. The methane yields reached were 0 73 and 0 71 for 37 and 30°C respectively. Kinetics of methane production was also evaluated through Gompertz modified kinetic model the evaluated parameters were maximum cumulated methane production () maximum daily methane production rate () and the acclimation time of the inoculum (). The values of the kinetic parameters for the temperature of 37°C were 0 77 for 0 05 for and 1 74 for at 30°C the values of and were 0 76 0 04 y 3 60 respectively. The means analysis showed no significant differences in the maximum methane production at the different temperatures evaluated but it showed significant differences in the maximum daily methane production rate. The energy production by the anaerobic digestion of the wastewater produced in a month in the slaughterhouse was evaluated. The energy produced by the anaerobic digestion of the slaughterhouse wastewater corresponds to 48% of the energy consumed in a month by the slaughterhouse |
description |
El potencial de biometanización para las aguas residuales de un frigorífico fue determinado para las temperaturas de operación de 37 y la temperatura ambiente de la región del frigorífico (30°C) utilizando estiércol bovino proveniente del frigorífico y posteriormente estabilizado como fuente de inóculo. Los rendimientos de metano alcanzados fueron de 0,73 y 0,71 para las temperaturas de 37 y 30°C respectivamente. Adicionalmente se evaluó la cinética de producción de metano mediante el modelo cinético de Gompertz modificado, los parámetros evaluados fueron máxima producción acumulada de metano (), máxima velocidad de producción diaria de metano () y tiempo de adaptación del inóculo (). Los valores de los parámetros cinéticos para la temperatura de 37°C fueron de 0,77 para , 0,048 para y 1,74 para , para 30°C los valores de , y fueron de 0,76, 0,039 y 3,60 respectivamente. El análisis de medias mostró que no existen diferencias significativas en la producción máxima de metano a las diferentes temperaturas evaluadas. Se evaluó la producción de energía por el tratamiento del agua residual producida mensualmente en el frigorífico. La energía producida por tratamiento del agua residual del frigorífico corresponde a un 48% de la energía consumida mensualmente por el mismo |
publishDate |
2016 |
dc.date.available.none.fl_str_mv |
2016 2024-03-03T22:36:43Z |
dc.date.created.none.fl_str_mv |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-03-03T22:36:43Z |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.hasversion.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.identifier.uri.none.fl_str_mv |
https://noesis.uis.edu.co/handle/20.500.14071/34292 |
dc.identifier.instname.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.reponame.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://noesis.uis.edu.co |
url |
https://noesis.uis.edu.co/handle/20.500.14071/34292 https://noesis.uis.edu.co |
identifier_str_mv |
Universidad Industrial de Santander |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
dc.rights.creativecommons.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by-nc/4.0 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Industrial de Santander |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías Fisicoquímicas |
dc.publisher.program.none.fl_str_mv |
Ingeniería Química |
dc.publisher.school.none.fl_str_mv |
Escuela de Ingeniería Química |
publisher.none.fl_str_mv |
Universidad Industrial de Santander |
institution |
Universidad Industrial de Santander |
bitstream.url.fl_str_mv |
https://noesis.uis.edu.co/bitstreams/d001b9f2-ea0f-4e8c-b39b-beac3c4d6b17/download https://noesis.uis.edu.co/bitstreams/a41a5bcd-b21e-4e5b-ad61-9a116174b877/download https://noesis.uis.edu.co/bitstreams/1ddabbba-5e2a-4d20-af39-745ca80e9aeb/download |
bitstream.checksum.fl_str_mv |
5747c77cb975bd130226084466d90214 10e802fabbf1afc28eebfb470c1223ca c024354d3c5cb322db6cf29808d5c01a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace at UIS |
repository.mail.fl_str_mv |
noesis@uis.edu.co |
_version_ |
1831929677960183808 |
spelling |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Castro Molano, Liliana del PilarEscalante Hernandez, HumbertoGomez Serrato, Oscar JulianJimenez Pineros, Diana Paola2024-03-03T22:36:43Z20162024-03-03T22:36:43Z20162016https://noesis.uis.edu.co/handle/20.500.14071/34292Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coEl potencial de biometanización para las aguas residuales de un frigorífico fue determinado para las temperaturas de operación de 37 y la temperatura ambiente de la región del frigorífico (30°C) utilizando estiércol bovino proveniente del frigorífico y posteriormente estabilizado como fuente de inóculo. Los rendimientos de metano alcanzados fueron de 0,73 y 0,71 para las temperaturas de 37 y 30°C respectivamente. Adicionalmente se evaluó la cinética de producción de metano mediante el modelo cinético de Gompertz modificado, los parámetros evaluados fueron máxima producción acumulada de metano (), máxima velocidad de producción diaria de metano () y tiempo de adaptación del inóculo (). Los valores de los parámetros cinéticos para la temperatura de 37°C fueron de 0,77 para , 0,048 para y 1,74 para , para 30°C los valores de , y fueron de 0,76, 0,039 y 3,60 respectivamente. El análisis de medias mostró que no existen diferencias significativas en la producción máxima de metano a las diferentes temperaturas evaluadas. Se evaluó la producción de energía por el tratamiento del agua residual producida mensualmente en el frigorífico. La energía producida por tratamiento del agua residual del frigorífico corresponde a un 48% de la energía consumida mensualmente por el mismoPregradoIngeniero QuímicoBiomethane potential for slaughterohuse wastewaterapplication/pdfspaUniversidad Industrial de SantanderFacultad de Ingenierías FisicoquímicasIngeniería QuímicaEscuela de Ingeniería QuímicaAguas ResidualesFrigoríficoPotencial De BiometanizaciónCinética De Producción De Metano.Biomethane potential for slaughterhouse wastewater was determined at operation temperatures of 37 and 30°Cwhich is the ambient temperature in the region of the slaughterhouseusing the cattle manure produced in the slaughterhouse and later stabilized as the inoculum source. The methane yields reached were 073 and 071 for 37 and 30°C respectively. Kinetics of methane production was also evaluated through Gompertz modified kinetic modelthe evaluated parameters were maximum cumulated methane production ()maximum daily methane production rate () and the acclimation time of the inoculum (). The values of the kinetic parameters for the temperature of 37°C were 077 for005 for and 174 forat 30°C the values ofand were 076004 y 360 respectively. The means analysis showed no significant differences in the maximum methane production at the different temperatures evaluatedbut it showed significant differences in the maximum daily methane production rate. The energy production by the anaerobic digestion of the wastewater produced in a month in the slaughterhouse was evaluated. The energy produced by the anaerobic digestion of the slaughterhouse wastewater corresponds to 48% of the energy consumed in a month by the slaughterhouseEvaluación del potencial de biometanizacion de las aguas residuales en un frigoríficoWastewater, Slaughterhouse, Biomethane Potential, Methane Production KineticsTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf131578https://noesis.uis.edu.co/bitstreams/d001b9f2-ea0f-4e8c-b39b-beac3c4d6b17/download5747c77cb975bd130226084466d90214MD51Documento.pdfapplication/pdf805773https://noesis.uis.edu.co/bitstreams/a41a5bcd-b21e-4e5b-ad61-9a116174b877/download10e802fabbf1afc28eebfb470c1223caMD52Nota de proyecto.pdfapplication/pdf90775https://noesis.uis.edu.co/bitstreams/1ddabbba-5e2a-4d20-af39-745ca80e9aeb/downloadc024354d3c5cb322db6cf29808d5c01aMD5320.500.14071/34292oai:noesis.uis.edu.co:20.500.14071/342922024-03-03 17:36:43.05http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co |