Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico

El potencial de biometanización para las aguas residuales de un frigorífico fue determinado para las temperaturas de operación de 37 y la temperatura ambiente de la región del frigorífico (30°C) utilizando estiércol bovino proveniente del frigorífico y posteriormente estabilizado como fuente de inóc...

Full description

Autores:
Gomez Serrato, Oscar Julian
Jimenez Pineros, Diana Paola
Tipo de recurso:
http://purl.org/coar/version/c_b1a7d7d4d402bcce
Fecha de publicación:
2016
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/34292
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/34292
https://noesis.uis.edu.co
Palabra clave:
Aguas Residuales
Frigorífico
Potencial De Biometanización
Cinética De Producción De Metano.
Biomethane potential for slaughterhouse wastewater was determined at operation temperatures of 37 and 30°C
which is the ambient temperature in the region of the slaughterhouse
using the cattle manure produced in the slaughterhouse and later stabilized as the inoculum source. The methane yields reached were 0
73 and 0
71 for 37 and 30°C respectively. Kinetics of methane production was also evaluated through Gompertz modified kinetic model
the evaluated parameters were maximum cumulated methane production ()
maximum daily methane production rate () and the acclimation time of the inoculum (). The values of the kinetic parameters for the temperature of 37°C were 0
77 for
0
05 for and 1
74 for
at 30°C the values of
and were 0
76
0
04 y 3
60 respectively. The means analysis showed no significant differences in the maximum methane production at the different temperatures evaluated
but it showed significant differences in the maximum daily methane production rate. The energy production by the anaerobic digestion of the wastewater produced in a month in the slaughterhouse was evaluated. The energy produced by the anaerobic digestion of the slaughterhouse wastewater corresponds to 48% of the energy consumed in a month by the slaughterhouse
Rights
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id UISANTADR2_146167d8a7476e348c59b7b39da4afb2
oai_identifier_str oai:noesis.uis.edu.co:20.500.14071/34292
network_acronym_str UISANTADR2
network_name_str Repositorio UIS
repository_id_str
dc.title.none.fl_str_mv Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico
dc.title.english.none.fl_str_mv Wastewater, Slaughterhouse, Biomethane Potential, Methane Production Kinetics
title Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico
spellingShingle Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico
Aguas Residuales
Frigorífico
Potencial De Biometanización
Cinética De Producción De Metano.
Biomethane potential for slaughterhouse wastewater was determined at operation temperatures of 37 and 30°C
which is the ambient temperature in the region of the slaughterhouse
using the cattle manure produced in the slaughterhouse and later stabilized as the inoculum source. The methane yields reached were 0
73 and 0
71 for 37 and 30°C respectively. Kinetics of methane production was also evaluated through Gompertz modified kinetic model
the evaluated parameters were maximum cumulated methane production ()
maximum daily methane production rate () and the acclimation time of the inoculum (). The values of the kinetic parameters for the temperature of 37°C were 0
77 for
0
05 for and 1
74 for
at 30°C the values of
and were 0
76
0
04 y 3
60 respectively. The means analysis showed no significant differences in the maximum methane production at the different temperatures evaluated
but it showed significant differences in the maximum daily methane production rate. The energy production by the anaerobic digestion of the wastewater produced in a month in the slaughterhouse was evaluated. The energy produced by the anaerobic digestion of the slaughterhouse wastewater corresponds to 48% of the energy consumed in a month by the slaughterhouse
title_short Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico
title_full Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico
title_fullStr Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico
title_full_unstemmed Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico
title_sort Evaluación del potencial de biometanizacion de las aguas residuales en un frigorífico
dc.creator.fl_str_mv Gomez Serrato, Oscar Julian
Jimenez Pineros, Diana Paola
dc.contributor.advisor.none.fl_str_mv Castro Molano, Liliana del Pilar
Escalante Hernandez, Humberto
dc.contributor.author.none.fl_str_mv Gomez Serrato, Oscar Julian
Jimenez Pineros, Diana Paola
dc.subject.none.fl_str_mv Aguas Residuales
Frigorífico
Potencial De Biometanización
Cinética De Producción De Metano.
topic Aguas Residuales
Frigorífico
Potencial De Biometanización
Cinética De Producción De Metano.
Biomethane potential for slaughterhouse wastewater was determined at operation temperatures of 37 and 30°C
which is the ambient temperature in the region of the slaughterhouse
using the cattle manure produced in the slaughterhouse and later stabilized as the inoculum source. The methane yields reached were 0
73 and 0
71 for 37 and 30°C respectively. Kinetics of methane production was also evaluated through Gompertz modified kinetic model
the evaluated parameters were maximum cumulated methane production ()
maximum daily methane production rate () and the acclimation time of the inoculum (). The values of the kinetic parameters for the temperature of 37°C were 0
77 for
0
05 for and 1
74 for
at 30°C the values of
and were 0
76
0
04 y 3
60 respectively. The means analysis showed no significant differences in the maximum methane production at the different temperatures evaluated
but it showed significant differences in the maximum daily methane production rate. The energy production by the anaerobic digestion of the wastewater produced in a month in the slaughterhouse was evaluated. The energy produced by the anaerobic digestion of the slaughterhouse wastewater corresponds to 48% of the energy consumed in a month by the slaughterhouse
dc.subject.keyword.none.fl_str_mv Biomethane potential for slaughterhouse wastewater was determined at operation temperatures of 37 and 30°C
which is the ambient temperature in the region of the slaughterhouse
using the cattle manure produced in the slaughterhouse and later stabilized as the inoculum source. The methane yields reached were 0
73 and 0
71 for 37 and 30°C respectively. Kinetics of methane production was also evaluated through Gompertz modified kinetic model
the evaluated parameters were maximum cumulated methane production ()
maximum daily methane production rate () and the acclimation time of the inoculum (). The values of the kinetic parameters for the temperature of 37°C were 0
77 for
0
05 for and 1
74 for
at 30°C the values of
and were 0
76
0
04 y 3
60 respectively. The means analysis showed no significant differences in the maximum methane production at the different temperatures evaluated
but it showed significant differences in the maximum daily methane production rate. The energy production by the anaerobic digestion of the wastewater produced in a month in the slaughterhouse was evaluated. The energy produced by the anaerobic digestion of the slaughterhouse wastewater corresponds to 48% of the energy consumed in a month by the slaughterhouse
description El potencial de biometanización para las aguas residuales de un frigorífico fue determinado para las temperaturas de operación de 37 y la temperatura ambiente de la región del frigorífico (30°C) utilizando estiércol bovino proveniente del frigorífico y posteriormente estabilizado como fuente de inóculo. Los rendimientos de metano alcanzados fueron de 0,73 y 0,71 para las temperaturas de 37 y 30°C respectivamente. Adicionalmente se evaluó la cinética de producción de metano mediante el modelo cinético de Gompertz modificado, los parámetros evaluados fueron máxima producción acumulada de metano (), máxima velocidad de producción diaria de metano () y tiempo de adaptación del inóculo (). Los valores de los parámetros cinéticos para la temperatura de 37°C fueron de 0,77 para , 0,048 para y 1,74 para , para 30°C los valores de , y fueron de 0,76, 0,039 y 3,60 respectivamente. El análisis de medias mostró que no existen diferencias significativas en la producción máxima de metano a las diferentes temperaturas evaluadas. Se evaluó la producción de energía por el tratamiento del agua residual producida mensualmente en el frigorífico. La energía producida por tratamiento del agua residual del frigorífico corresponde a un 48% de la energía consumida mensualmente por el mismo
publishDate 2016
dc.date.available.none.fl_str_mv 2016
2024-03-03T22:36:43Z
dc.date.created.none.fl_str_mv 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2024-03-03T22:36:43Z
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.hasversion.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coar.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.identifier.uri.none.fl_str_mv https://noesis.uis.edu.co/handle/20.500.14071/34292
dc.identifier.instname.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.reponame.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.repourl.none.fl_str_mv https://noesis.uis.edu.co
url https://noesis.uis.edu.co/handle/20.500.14071/34292
https://noesis.uis.edu.co
identifier_str_mv Universidad Industrial de Santander
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0
dc.rights.creativecommons.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-nc/4.0
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Industrial de Santander
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías Fisicoquímicas
dc.publisher.program.none.fl_str_mv Ingeniería Química
dc.publisher.school.none.fl_str_mv Escuela de Ingeniería Química
publisher.none.fl_str_mv Universidad Industrial de Santander
institution Universidad Industrial de Santander
bitstream.url.fl_str_mv https://noesis.uis.edu.co/bitstreams/d001b9f2-ea0f-4e8c-b39b-beac3c4d6b17/download
https://noesis.uis.edu.co/bitstreams/a41a5bcd-b21e-4e5b-ad61-9a116174b877/download
https://noesis.uis.edu.co/bitstreams/1ddabbba-5e2a-4d20-af39-745ca80e9aeb/download
bitstream.checksum.fl_str_mv 5747c77cb975bd130226084466d90214
10e802fabbf1afc28eebfb470c1223ca
c024354d3c5cb322db6cf29808d5c01a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace at UIS
repository.mail.fl_str_mv noesis@uis.edu.co
_version_ 1831929677960183808
spelling Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Castro Molano, Liliana del PilarEscalante Hernandez, HumbertoGomez Serrato, Oscar JulianJimenez Pineros, Diana Paola2024-03-03T22:36:43Z20162024-03-03T22:36:43Z20162016https://noesis.uis.edu.co/handle/20.500.14071/34292Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coEl potencial de biometanización para las aguas residuales de un frigorífico fue determinado para las temperaturas de operación de 37 y la temperatura ambiente de la región del frigorífico (30°C) utilizando estiércol bovino proveniente del frigorífico y posteriormente estabilizado como fuente de inóculo. Los rendimientos de metano alcanzados fueron de 0,73 y 0,71 para las temperaturas de 37 y 30°C respectivamente. Adicionalmente se evaluó la cinética de producción de metano mediante el modelo cinético de Gompertz modificado, los parámetros evaluados fueron máxima producción acumulada de metano (), máxima velocidad de producción diaria de metano () y tiempo de adaptación del inóculo (). Los valores de los parámetros cinéticos para la temperatura de 37°C fueron de 0,77 para , 0,048 para y 1,74 para , para 30°C los valores de , y fueron de 0,76, 0,039 y 3,60 respectivamente. El análisis de medias mostró que no existen diferencias significativas en la producción máxima de metano a las diferentes temperaturas evaluadas. Se evaluó la producción de energía por el tratamiento del agua residual producida mensualmente en el frigorífico. La energía producida por tratamiento del agua residual del frigorífico corresponde a un 48% de la energía consumida mensualmente por el mismoPregradoIngeniero QuímicoBiomethane potential for slaughterohuse wastewaterapplication/pdfspaUniversidad Industrial de SantanderFacultad de Ingenierías FisicoquímicasIngeniería QuímicaEscuela de Ingeniería QuímicaAguas ResidualesFrigoríficoPotencial De BiometanizaciónCinética De Producción De Metano.Biomethane potential for slaughterhouse wastewater was determined at operation temperatures of 37 and 30°Cwhich is the ambient temperature in the region of the slaughterhouseusing the cattle manure produced in the slaughterhouse and later stabilized as the inoculum source. The methane yields reached were 073 and 071 for 37 and 30°C respectively. Kinetics of methane production was also evaluated through Gompertz modified kinetic modelthe evaluated parameters were maximum cumulated methane production ()maximum daily methane production rate () and the acclimation time of the inoculum (). The values of the kinetic parameters for the temperature of 37°C were 077 for005 for and 174 forat 30°C the values ofand were 076004 y 360 respectively. The means analysis showed no significant differences in the maximum methane production at the different temperatures evaluatedbut it showed significant differences in the maximum daily methane production rate. The energy production by the anaerobic digestion of the wastewater produced in a month in the slaughterhouse was evaluated. The energy produced by the anaerobic digestion of the slaughterhouse wastewater corresponds to 48% of the energy consumed in a month by the slaughterhouseEvaluación del potencial de biometanizacion de las aguas residuales en un frigoríficoWastewater, Slaughterhouse, Biomethane Potential, Methane Production KineticsTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf131578https://noesis.uis.edu.co/bitstreams/d001b9f2-ea0f-4e8c-b39b-beac3c4d6b17/download5747c77cb975bd130226084466d90214MD51Documento.pdfapplication/pdf805773https://noesis.uis.edu.co/bitstreams/a41a5bcd-b21e-4e5b-ad61-9a116174b877/download10e802fabbf1afc28eebfb470c1223caMD52Nota de proyecto.pdfapplication/pdf90775https://noesis.uis.edu.co/bitstreams/1ddabbba-5e2a-4d20-af39-745ca80e9aeb/downloadc024354d3c5cb322db6cf29808d5c01aMD5320.500.14071/34292oai:noesis.uis.edu.co:20.500.14071/342922024-03-03 17:36:43.05http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co