Using grip strength as a cardiovascular risk indicator based on hybrid algorithms

This article shows the application and design of a hybrid algorithm capable of classifying people into risk groups using data such as prehensile strength, body mass index and percentage of fat. The implementation was done on Python and proposes a tool to help make medical decisions regarding the car...

Full description

Autores:
Bareño Castellanos, Edvard Frederick
Montenegro Marin, Carlos Enrique
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/28228
Acceso en línea:
http://hdl.handle.net/11349/28228
Palabra clave:
Body Mass Index
C-Means
K-Means
Percentage f Fat
Prehensile Strength
Risk Indicator
Support Vector Machine
Ingeniería de Sistemas - Tesis y disertaciones académicas
Enfermedades cardiovasculares - Prevención
Algoritmos híbridos
Máquinas de soporte vectorial
Análisis de datos
Body Mass Index
C-Means
K-Means
Percentage f Fat
Prehensile Strength
Risk Indicator
Support Vector Machine.
Rights
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
Description
Summary:This article shows the application and design of a hybrid algorithm capable of classifying people into risk groups using data such as prehensile strength, body mass index and percentage of fat. The implementation was done on Python and proposes a tool to help make medical decisions regarding the cardiovascular health of patients. The data were taken in a systematic way, k-means and c-means algorithms were used for the classification of the data, for the prediction of new data two vectorial support machines were used, one for the k-means and the other for the c-means, obtaining as a result a 100% of precision in the vectorial support machine with c-means and a 92% in the one of k-means.