Using grip strength as a cardiovascular risk indicator based on hybrid algorithms
This article shows the application and design of a hybrid algorithm capable of classifying people into risk groups using data such as prehensile strength, body mass index and percentage of fat. The implementation was done on Python and proposes a tool to help make medical decisions regarding the car...
- Autores:
-
Bareño Castellanos, Edvard Frederick
Montenegro Marin, Carlos Enrique
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/28228
- Acceso en línea:
- http://hdl.handle.net/11349/28228
- Palabra clave:
- Body Mass Index
C-Means
K-Means
Percentage f Fat
Prehensile Strength
Risk Indicator
Support Vector Machine
Ingeniería de Sistemas - Tesis y disertaciones académicas
Enfermedades cardiovasculares - Prevención
Algoritmos híbridos
Máquinas de soporte vectorial
Análisis de datos
Body Mass Index
C-Means
K-Means
Percentage f Fat
Prehensile Strength
Risk Indicator
Support Vector Machine.
- Rights
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
Summary: | This article shows the application and design of a hybrid algorithm capable of classifying people into risk groups using data such as prehensile strength, body mass index and percentage of fat. The implementation was done on Python and proposes a tool to help make medical decisions regarding the cardiovascular health of patients. The data were taken in a systematic way, k-means and c-means algorithms were used for the classification of the data, for the prediction of new data two vectorial support machines were used, one for the k-means and the other for the c-means, obtaining as a result a 100% of precision in the vectorial support machine with c-means and a 92% in the one of k-means. |
---|