Sistema de clasificación del cacao en la prueba de corte implementando procesamiento digital de imágenes
El cultivo de cacao en Colombia es fundamental en el desarrollo agrícola del país, con miles de familias dependiendo de esta actividad. El proceso de obtención y selección del grano de cacao consta de varios pasos cruciales para asegurar la calidad del producto final. En particular, la prueba de cor...
- Autores:
-
Castañeda Pabón, Daniel Eduardo
Calderón Vega, Harold Yesid
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/38630
- Acceso en línea:
- http://hdl.handle.net/11349/38630
- Palabra clave:
- Algoritmos
Inteligencia artificial
Visión artificial
Imagen
Sensores
Procesamiento de imágenes
Sistemas de aprendizaje
Ingeniería en Control -- Tesis y disertaciones académicas
Procesamiento digital de imágenes
Clasificación de productos agrícolas
Cultivo de cacao
Algorithms
Artificial intelligence
Artificial vision
Image
Sensors
Image processing
Learning systems
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UDISTRITA2_f8cfbf52d34f7ec22fb4e7e67f6dfdc3 |
---|---|
oai_identifier_str |
oai:repository.udistrital.edu.co:11349/38630 |
network_acronym_str |
UDISTRITA2 |
network_name_str |
RIUD: repositorio U. Distrital |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Sistema de clasificación del cacao en la prueba de corte implementando procesamiento digital de imágenes |
dc.title.titleenglish.spa.fl_str_mv |
Cocoa grading system in the cutting test implementing digital image processing |
title |
Sistema de clasificación del cacao en la prueba de corte implementando procesamiento digital de imágenes |
spellingShingle |
Sistema de clasificación del cacao en la prueba de corte implementando procesamiento digital de imágenes Algoritmos Inteligencia artificial Visión artificial Imagen Sensores Procesamiento de imágenes Sistemas de aprendizaje Ingeniería en Control -- Tesis y disertaciones académicas Procesamiento digital de imágenes Clasificación de productos agrícolas Cultivo de cacao Algorithms Artificial intelligence Artificial vision Image Sensors Image processing Learning systems |
title_short |
Sistema de clasificación del cacao en la prueba de corte implementando procesamiento digital de imágenes |
title_full |
Sistema de clasificación del cacao en la prueba de corte implementando procesamiento digital de imágenes |
title_fullStr |
Sistema de clasificación del cacao en la prueba de corte implementando procesamiento digital de imágenes |
title_full_unstemmed |
Sistema de clasificación del cacao en la prueba de corte implementando procesamiento digital de imágenes |
title_sort |
Sistema de clasificación del cacao en la prueba de corte implementando procesamiento digital de imágenes |
dc.creator.fl_str_mv |
Castañeda Pabón, Daniel Eduardo Calderón Vega, Harold Yesid |
dc.contributor.advisor.none.fl_str_mv |
Pérez Pereira, Miguel Ricardo |
dc.contributor.author.none.fl_str_mv |
Castañeda Pabón, Daniel Eduardo Calderón Vega, Harold Yesid |
dc.contributor.orcid.spa.fl_str_mv |
Pérez Pereira, Miguel Ricardo [0000-0001-7487-2600] |
dc.subject.spa.fl_str_mv |
Algoritmos Inteligencia artificial Visión artificial Imagen Sensores Procesamiento de imágenes Sistemas de aprendizaje |
topic |
Algoritmos Inteligencia artificial Visión artificial Imagen Sensores Procesamiento de imágenes Sistemas de aprendizaje Ingeniería en Control -- Tesis y disertaciones académicas Procesamiento digital de imágenes Clasificación de productos agrícolas Cultivo de cacao Algorithms Artificial intelligence Artificial vision Image Sensors Image processing Learning systems |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería en Control -- Tesis y disertaciones académicas Procesamiento digital de imágenes Clasificación de productos agrícolas Cultivo de cacao |
dc.subject.keyword.spa.fl_str_mv |
Algorithms Artificial intelligence Artificial vision Image Sensors Image processing Learning systems |
description |
El cultivo de cacao en Colombia es fundamental en el desarrollo agrícola del país, con miles de familias dependiendo de esta actividad. El proceso de obtención y selección del grano de cacao consta de varios pasos cruciales para asegurar la calidad del producto final. En particular, la prueba de corte, que clasifica los granos según su color y grado de fermentación, es una etapa clave. Esta prueba se realiza manualmente por expertos, lo cual limita la objetividad y consistencia de los resultados, afectando a los productores y a la calidad del cacao. La dependencia de la experiencia y habilidad de un experto en la clasificación del cacao en la prueba de corte genera inconsistencias y dificultades para los productores. Además, la falta de retroalimentación precisa hasta la etapa de comercialización afecta especialmente a los pequeños productores. Surge entonces la necesidad de encontrar una solución que automatice la determinación de la calidad del cacao en esta prueba, mejorando la consistencia de los resultados y proporcionando una retroalimentación temprana y precisa. Esto requerirá el diseño y construcción de un sistema prototipo basado en visión artificial, que capture imágenes de los granos de cacao cortados y los procese utilizando parámetros establecidos por la norma NTC 1252:2021. La solución propuesta consiste en desarrollar un sistema prototipo que utilice visión artificial para determinar automáticamente la calidad del cacao en la prueba de corte. Este sistema capturará imágenes de los granos cortados y las procesará mediante un algoritmo basado en parámetros establecidos por la norma NTC 1252:2021. Se busca estandarizar los procesos de control de calidad, mejorar la consistencia de los resultados y proporcionar una comparativa con la opinión de los expertos humanos. El diseño incluirá una estructura que permita la captura estable de las imágenes, teniendo en cuenta los cambios de iluminación. El costo estimado es del proyecto esta alrededor 400 dólares con un tiempo de ejecución de seis meses. La implementación de esta solución tiene el potencial de mejorar la eficiencia y la calidad en la clasificación del cacao en la prueba de corte, beneficiando tanto a los productores como a la industria en general. |
publishDate |
2023 |
dc.date.created.none.fl_str_mv |
2023-08-28 |
dc.date.accessioned.none.fl_str_mv |
2024-07-25T16:31:22Z |
dc.date.available.none.fl_str_mv |
2024-07-25T16:31:22Z |
dc.type.spa.fl_str_mv |
bachelorThesis |
dc.type.degree.spa.fl_str_mv |
Monografía |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11349/38630 |
url |
http://hdl.handle.net/11349/38630 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
institution |
Universidad Distrital Francisco José de Caldas |
bitstream.url.fl_str_mv |
https://repository.udistrital.edu.co/bitstreams/312f95c8-193e-4505-94d0-98f7d189ba93/download https://repository.udistrital.edu.co/bitstreams/5775e35f-7f41-45ee-9f77-646c7cc206b0/download https://repository.udistrital.edu.co/bitstreams/2a951215-db6e-4907-93fe-143f6de6f4db/download https://repository.udistrital.edu.co/bitstreams/9a333f6f-6a58-4ab0-888d-4be362639f8d/download https://repository.udistrital.edu.co/bitstreams/960b44ee-ec58-4f95-b491-260cb5f130fd/download |
bitstream.checksum.fl_str_mv |
ffee0b0fc46e0f2233095d839a1ee51a 5a2395388403702f20011d32375f7258 463e77d9b0aa6e6ddc3df648107d9219 4460e5956bc1d1639be9ae6146a50347 997daf6c648c962d566d7b082dac908d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Distrital |
repository.mail.fl_str_mv |
repositorio@udistrital.edu.co |
_version_ |
1837007256660475904 |
spelling |
Pérez Pereira, Miguel RicardoCastañeda Pabón, Daniel EduardoCalderón Vega, Harold YesidPérez Pereira, Miguel Ricardo [0000-0001-7487-2600]2024-07-25T16:31:22Z2024-07-25T16:31:22Z2023-08-28http://hdl.handle.net/11349/38630El cultivo de cacao en Colombia es fundamental en el desarrollo agrícola del país, con miles de familias dependiendo de esta actividad. El proceso de obtención y selección del grano de cacao consta de varios pasos cruciales para asegurar la calidad del producto final. En particular, la prueba de corte, que clasifica los granos según su color y grado de fermentación, es una etapa clave. Esta prueba se realiza manualmente por expertos, lo cual limita la objetividad y consistencia de los resultados, afectando a los productores y a la calidad del cacao. La dependencia de la experiencia y habilidad de un experto en la clasificación del cacao en la prueba de corte genera inconsistencias y dificultades para los productores. Además, la falta de retroalimentación precisa hasta la etapa de comercialización afecta especialmente a los pequeños productores. Surge entonces la necesidad de encontrar una solución que automatice la determinación de la calidad del cacao en esta prueba, mejorando la consistencia de los resultados y proporcionando una retroalimentación temprana y precisa. Esto requerirá el diseño y construcción de un sistema prototipo basado en visión artificial, que capture imágenes de los granos de cacao cortados y los procese utilizando parámetros establecidos por la norma NTC 1252:2021. La solución propuesta consiste en desarrollar un sistema prototipo que utilice visión artificial para determinar automáticamente la calidad del cacao en la prueba de corte. Este sistema capturará imágenes de los granos cortados y las procesará mediante un algoritmo basado en parámetros establecidos por la norma NTC 1252:2021. Se busca estandarizar los procesos de control de calidad, mejorar la consistencia de los resultados y proporcionar una comparativa con la opinión de los expertos humanos. El diseño incluirá una estructura que permita la captura estable de las imágenes, teniendo en cuenta los cambios de iluminación. El costo estimado es del proyecto esta alrededor 400 dólares con un tiempo de ejecución de seis meses. La implementación de esta solución tiene el potencial de mejorar la eficiencia y la calidad en la clasificación del cacao en la prueba de corte, beneficiando tanto a los productores como a la industria en general.Cocoa cultivation in Colombia is fundamental in the country's agricultural development, with thousands of families depending on this activity. The process of obtaining and selecting the cocoa bean consists of several crucial steps to ensure the quality of the final product. In particular, the cut test, which classifies the beans according to their color and degree of fermentation, is a key stage. This test is carried out manually by experts, which limits the objectivity and consistency of the results, affecting the producers and the quality of the cocoa. The dependence on the experience and skill of an expert in the classification of cocoa in the cutting test generates inconsistencies and difficulties for producers. Furthermore, the lack of accurate feedback up to the marketing stage especially affects small producers. The need then arises to find a solution that automates the determination of cocoa quality in this test, improving the consistency of the results and providing early and accurate feedback. This will require the design and construction of a prototype system based on artificial vision, which captures images of cut cocoa beans and processes them using parameters established by the NTC 1252:2021 standard. The proposed solution consists of developing a prototype system that uses artificial vision to automatically determine the quality of cocoa in the cutting test. This system will capture images of the cut grains and process them using an algorithm based on parameters established by the NTC 1252:2021 standard. The aim is to standardize quality control processes, improve the consistency of results and provide a comparison with the opinion of human experts. The design will include a structure that allows stable image capture, taking into account lighting changes. The estimated cost of the project is around $400 with an execution time of six months. The implementation of this solution has the potential to improve efficiency and quality in the classification of cocoa in the cutting test, benefiting both producers and the industry in general.pdfspaAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2AlgoritmosInteligencia artificialVisión artificialImagenSensoresProcesamiento de imágenesSistemas de aprendizajeIngeniería en Control -- Tesis y disertaciones académicasProcesamiento digital de imágenesClasificación de productos agrícolasCultivo de cacaoAlgorithmsArtificial intelligenceArtificial visionImageSensorsImage processingLearning systemsSistema de clasificación del cacao en la prueba de corte implementando procesamiento digital de imágenesCocoa grading system in the cutting test implementing digital image processingbachelorThesisMonografíainfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fORIGINALCalderonVegaHaroldYesid2023.pdfCalderonVegaHaroldYesid2023.pdfapplication/pdf2036436https://repository.udistrital.edu.co/bitstreams/312f95c8-193e-4505-94d0-98f7d189ba93/downloadffee0b0fc46e0f2233095d839a1ee51aMD51CalderonVegaHaroldYesid2023Anexos.zipCalderonVegaHaroldYesid2023Anexos.zipapplication/zip6847057https://repository.udistrital.edu.co/bitstreams/5775e35f-7f41-45ee-9f77-646c7cc206b0/download5a2395388403702f20011d32375f7258MD52Licencia de Uso y Publicación.pdfLicencia de Uso y Publicación.pdfTrabajo de gradoapplication/pdf442418https://repository.udistrital.edu.co/bitstreams/2a951215-db6e-4907-93fe-143f6de6f4db/download463e77d9b0aa6e6ddc3df648107d9219MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.udistrital.edu.co/bitstreams/9a333f6f-6a58-4ab0-888d-4be362639f8d/download4460e5956bc1d1639be9ae6146a50347MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-87167https://repository.udistrital.edu.co/bitstreams/960b44ee-ec58-4f95-b491-260cb5f130fd/download997daf6c648c962d566d7b082dac908dMD5511349/38630oai:repository.udistrital.edu.co:11349/386302024-07-25 11:31:28.791http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalrestrictedhttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK |