Suma de variables aleatorias que preservan la función de densidad de probabilidad

La suma de dos variables aleatorias idénticamente distribuidas, generan una nueva variable aleatoria, cuyo parámetro estará definido por la suma de los parámetros de cada una de las variables aleatorias iniciales. Algunas distribuciones de probabilidad, también poseen dicha propiedad, al observar la...

Full description

Autores:
Lombana, Jeisson Edilberto
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2016
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/25453
Acceso en línea:
http://hdl.handle.net/11349/25453
Palabra clave:
Variable aleatoria
Convolución
Matemáticas - Tesis y disertaciones académicas
Variables aleatorias
Probabilidades
Aleatory Variable
Convolution
Rights
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UDISTRITA2_f404a6c65e88ec9d39c70120f7592df6
oai_identifier_str oai:repository.udistrital.edu.co:11349/25453
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.spa.fl_str_mv Suma de variables aleatorias que preservan la función de densidad de probabilidad
dc.title.titleenglish.spa.fl_str_mv Amount aleatory who preserve the function of probabilty´s density
title Suma de variables aleatorias que preservan la función de densidad de probabilidad
spellingShingle Suma de variables aleatorias que preservan la función de densidad de probabilidad
Variable aleatoria
Convolución
Matemáticas - Tesis y disertaciones académicas
Variables aleatorias
Probabilidades
Aleatory Variable
Convolution
title_short Suma de variables aleatorias que preservan la función de densidad de probabilidad
title_full Suma de variables aleatorias que preservan la función de densidad de probabilidad
title_fullStr Suma de variables aleatorias que preservan la función de densidad de probabilidad
title_full_unstemmed Suma de variables aleatorias que preservan la función de densidad de probabilidad
title_sort Suma de variables aleatorias que preservan la función de densidad de probabilidad
dc.creator.fl_str_mv Lombana, Jeisson Edilberto
dc.contributor.advisor.spa.fl_str_mv Lesmes Acosta, Milton
dc.contributor.author.spa.fl_str_mv Lombana, Jeisson Edilberto
dc.subject.spa.fl_str_mv Variable aleatoria
Convolución
topic Variable aleatoria
Convolución
Matemáticas - Tesis y disertaciones académicas
Variables aleatorias
Probabilidades
Aleatory Variable
Convolution
dc.subject.lemb.spa.fl_str_mv Matemáticas - Tesis y disertaciones académicas
Variables aleatorias
Probabilidades
dc.subject.keyword.spa.fl_str_mv Aleatory Variable
Convolution
description La suma de dos variables aleatorias idénticamente distribuidas, generan una nueva variable aleatoria, cuyo parámetro estará definido por la suma de los parámetros de cada una de las variables aleatorias iniciales. Algunas distribuciones de probabilidad, también poseen dicha propiedad, al observar la distribución Normal nos damos cuenta que la suma de dos distribuciones Normales con parámetros definidos, nos da como resultado una nueva distribución Normal, la cual tendrá como parámetros la suma de los parámetros originales de cada una de las distribuciones iniciales, este análisis se logra al aplicar la convoluciòn. Partiendo de esto estudiaremos el comportamiento de algunas distribuciones de probabilidad, para las cuales su suma preserva su función de densidad de probabilidad. Esto es la base para el estudio de la estabilidad de funciones de distribución de probabilidad.
publishDate 2016
dc.date.created.spa.fl_str_mv 2016-08-02
dc.date.accessioned.none.fl_str_mv 2020-09-14T22:13:01Z
dc.date.available.none.fl_str_mv 2020-09-14T22:13:01Z
dc.type.degree.spa.fl_str_mv Creación o Interpretación
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/25453
url http://hdl.handle.net/11349/25453
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv pdf
institution Universidad Distrital Francisco José de Caldas
bitstream.url.fl_str_mv https://repository.udistrital.edu.co/bitstreams/97da48ee-21d6-49bc-9c6c-50b5a8310f0e/download
https://repository.udistrital.edu.co/bitstreams/39bd460f-f744-4e83-94ca-5d10b32883e1/download
https://repository.udistrital.edu.co/bitstreams/bebc9ac3-75ec-43d3-99fa-f235b796e951/download
https://repository.udistrital.edu.co/bitstreams/c5120a66-a5f8-4a32-88be-7d4b282db9dc/download
https://repository.udistrital.edu.co/bitstreams/60d9eb15-1d3d-4e3c-b40a-5f8a0f7b08b0/download
https://repository.udistrital.edu.co/bitstreams/17777fb0-7e0d-4d0c-a062-c2203fb98afd/download
bitstream.checksum.fl_str_mv 252b78255578dd67e6ef00b16a4da1c8
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
da5c6a3ca62d5dd4853000a60fee7083
75d291900b5eba083b48b4923caf5152
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Distrital
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1837007111496663040
spelling Lesmes Acosta, MiltonLombana, Jeisson Edilberto2020-09-14T22:13:01Z2020-09-14T22:13:01Z2016-08-02http://hdl.handle.net/11349/25453La suma de dos variables aleatorias idénticamente distribuidas, generan una nueva variable aleatoria, cuyo parámetro estará definido por la suma de los parámetros de cada una de las variables aleatorias iniciales. Algunas distribuciones de probabilidad, también poseen dicha propiedad, al observar la distribución Normal nos damos cuenta que la suma de dos distribuciones Normales con parámetros definidos, nos da como resultado una nueva distribución Normal, la cual tendrá como parámetros la suma de los parámetros originales de cada una de las distribuciones iniciales, este análisis se logra al aplicar la convoluciòn. Partiendo de esto estudiaremos el comportamiento de algunas distribuciones de probabilidad, para las cuales su suma preserva su función de densidad de probabilidad. Esto es la base para el estudio de la estabilidad de funciones de distribución de probabilidad.The amount of two aleatory variable identically distribuited, makes a new aleatory variable whose parameter will be definite for the amount of the parameters of each one in the aleatory initials variables. Some distributions or probability, also have property when. They observe the normal distribution we perceive that the amount of two normal distributions with definited parameters we discover that the amount of two normal distributions with definited parameters, gives as result as new normal distribution that will get parameters in each one of the initial distributions we can get this process if we apply the convolution. Thereafter well study the behavior of some distributions of probability for with the amount preserve its function of probability density, this is base for studing the estability functions and probability distribution.pdfspaAtribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Variable aleatoriaConvoluciónMatemáticas - Tesis y disertaciones académicasVariables aleatoriasProbabilidadesAleatory VariableConvolutionSuma de variables aleatorias que preservan la función de densidad de probabilidadAmount aleatory who preserve the function of probabilty´s densityCreación o Interpretacióninfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fTHUMBNAILLombanaJeisson2016.pdf.jpgLombanaJeisson2016.pdf.jpgIM Thumbnailimage/jpeg5184https://repository.udistrital.edu.co/bitstreams/97da48ee-21d6-49bc-9c6c-50b5a8310f0e/download252b78255578dd67e6ef00b16a4da1c8MD56CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repository.udistrital.edu.co/bitstreams/39bd460f-f744-4e83-94ca-5d10b32883e1/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80https://repository.udistrital.edu.co/bitstreams/bebc9ac3-75ec-43d3-99fa-f235b796e951/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://repository.udistrital.edu.co/bitstreams/c5120a66-a5f8-4a32-88be-7d4b282db9dc/downloadd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-87163https://repository.udistrital.edu.co/bitstreams/60d9eb15-1d3d-4e3c-b40a-5f8a0f7b08b0/downloadda5c6a3ca62d5dd4853000a60fee7083MD55ORIGINALLombanaJeisson2016.pdfLombanaJeisson2016.pdfTesis de Gradoapplication/pdf87804https://repository.udistrital.edu.co/bitstreams/17777fb0-7e0d-4d0c-a062-c2203fb98afd/download75d291900b5eba083b48b4923caf5152MD5111349/25453oai:repository.udistrital.edu.co:11349/254532023-10-03 10:31:57.544http://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacionalopen.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMClTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIHVzbyBwYXJhIHB1YmxpY2FjacOzbiBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChSSVVEKQoKQ29tbyB0aXR1bGFyKGVzKSBkZWwob3MpIGRlcmVjaG8ocykgZGUgYXV0b3IsIGNvbmZpZXJvIChlcmltb3MpIGEgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMgKGVuIGFkZWxhbnRlLCBMQSBVTklWRVJTSURBRCkgdW5hIGxpY2VuY2lhIHBhcmEgdXNvIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBpbnRlZ3JhcsOhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgKGVuIGFkZWxhbnRlLCBSSVVEKSwgZGUgYWN1ZXJkbyBhIGxhcyBzaWd1aWVudGVzIHJlZ2xhcywgbGFzIGN1YWxlcyBkZWNsYXJvIChhbW9zKSBjb25vY2VyIHkgYWNlcHRhcjoKCmEpCUVzdGFyw6EgdmlnZW50ZSBhIHBhcnRpciBkZSBsYSBmZWNoYSBlbiBxdWUgc2UgaW5jbHV5YSBlbiBlbCBSSVVEIHkgaGFzdGEgcG9yIHVuIHBsYXpvIGRlIGRpZXogKDEwKSBBw7FvcywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gcXVlIGR1cmUgZWwgZGVyZWNobyBQYXRyaW1vbmlhbCBkZWwgYXV0b3I7IGxhIGN1YWwgcG9kcsOhIGRhcnNlIHBvciB0ZXJtaW5hZGEgcHJldmlhIHNvbGljaXR1ZCBhIExBIFVOSVZFUlNJREFEIHBvciBlc2NyaXRvIGNvbiB1bmEgYW50ZWxhY2nDs24gZGUgZG9zICgyKSBtZXNlcyBhbnRlcyBkZWwgdmVuY2ltaWVudG8gZGVsIHBsYXpvIGluaWNpYWwgbyBlbCBkZSBzdShzKSBwcsOzcnJvZ2EocykuICAKCmIpCUxBIFVOSVZFUlNJREFEIHBvZHLDoSBwdWJsaWNhciBsYSBvYnJhIGVuIGxhcyBkaXN0aW50YXMgdmVyc2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVsIFJJVUQgKGRpZ2l0YWwsIGltcHJlc28sIGVsZWN0csOzbmljbyB1IG90cm8gbWVkaW8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikgTEEgVU5JVkVSU0lEQUQgbm8gc2Vyw6EgcmVzcG9uc2FibGUgZW4gZWwgZXZlbnRvIHF1ZSBlbCBkb2N1bWVudG8gYXBhcmV6Y2EgcmVmZXJlbmNpYWRvIGVuIG1vdG9yZXMgZGUgYsO6c3F1ZWRhIG8gcmVwb3NpdG9yaW9zIGRpZmVyZW50ZXMgYWwgUklVRCwgdW5hIHZleiBlbChvcykgYXV0b3IoZXMpIHNvbGljaXRlbiBzdSBlbGltaW5hY2nDs24gZGVsIFJJVUQsIGRhZG8gcXVlIGxhIG1pc21hIHNlcsOhIHB1YmxpY2FkYSBlbiBJbnRlcm5ldC4gCgpjKQlMYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIGxvcyBhdXRvcmVzIHJlbnVuY2lhbiBhIHJlY2liaXIgYmVuZWZpY2lvIGFsZ3VubyBwb3IgbGEgcHVibGljYWNpw7NuLCBkaXN0cmlidWNpw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSBkZSB1c28gY29uIHF1ZSBzZSBwdWJsaWNhIChDcmVhdGl2ZSBDb21tb25zKS4KCmQpCUxvcyBjb250ZW5pZG9zIHB1YmxpY2Fkb3MgZW4gZWwgUklVRCBzb24gb2JyYShzKSBvcmlnaW5hbChlcykgc29icmUgbGEgY3VhbChlcykgZWwob3MpIGF1dG9yKGVzKSBjb21vIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IsIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgTEEgVU5JVkVSU0lEQUQgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gTEEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uCgplKQlMQSBVTklWRVJTSURBRCBwb2Ryw6EgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIG1heGltaXphciBsYSB2aXNpYmlsaWRhZCBlbCB1c28geSBlbCBpbXBhY3RvIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhLCBhcnTDrXN0aWNhIHkgYWNhZMOpbWljYSBlbiBsYSBjb211bmlkYWQgbG9jYWwsIG5hY2lvbmFsIG8gaW50ZXJuYWNpb25hbC4gCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbyAJCkF1dG9yCUFwZWxsaWRvcwlOb21icmVzCjEJCQoyCQkKMwkJCiAKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8gIAoKaykJQWNlcHRvKGFtb3MpIHF1ZSBMQSBVTklWRVJTSURBRCBubyBzZSByZXNwb25zYWJpbGl6YSBwb3IgbGFzIGluZnJhY2Npb25lcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIERlcmVjaG9zIGRlIEF1dG9yIGNhdXNhZGFzIHBvciBsb3MgdGl0dWxhcmVzIGRlIGxhIHByZXNlbnRlIExpY2VuY2lhIHkgZGVjbGFyYW1vcyBxdWUgbWFudGVuZHLDqSAoZW1vcykgaW5kZW1uZSBhIExBIFVOSVZFUlNJREFEIHBvciBsYXMgcmVjbGFtYWNpb25lcyBsZWdhbGVzIGRlIGN1YWxxdWllciB0aXBvIHF1ZSBsbGVnYXJlbiBhIHByZXNlbnRhcnNlIHBvciB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGEgbGEgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gZGUgQXV0b3IgcmVsYWNpb25hZG9zIGNvbiBsb3MgZG9jdW1lbnRvcyByZWdpc3RyYWRvcyBlbiBlbCBSSVVELgoKbCkJRWwgKGxvcykgYXV0b3IoZXMpIG1hbmlmaWVzdGEobW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCwgZGUgZXhjbHVzaXZhIGF1dG9yw61hLCB5IHNlIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zOyBkZSB0YWwgc3VlcnRlLCBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhLCBlbCAobG9zKSBlc3R1ZGlhbnRlKHMpIOKAkyBhdXRvcihlcykgYXN1bWlyw6EobikgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgeSBzYWxkcsOhKG4pIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zLiBQYXJhIHRvZG9zIGxvcyBlZmVjdG9zLCBMQSBVTklWRVJTSURBRCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAgIAoKCm0pCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGNvbm96Y28oY2Vtb3MpIGxhIGF1dG9ub23DrWEgeSBsb3MgZGVyZWNob3MsIHF1ZSBwb3NlZShtb3MpIHNvYnJlIGxhIG9icmEgeSwgY29tbyB0YWwsIGVzIChzb21vcykgcmVzcG9uc2FibGUocykgZGVsIGFsY2FuY2UganVyw61kaWNvIHkgbGVnYWwsIGRlIGVzY29nZXIgbGEgb3BjacOzbiBkZSBsYSBwdWJsaWNhY2nDs24gbyBkZSByZXN0cmljY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIGRlbCBkb2N1bWVudG8gcmVnaXN0cmFkbyBlbiBlbCBSSVVELgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgCkRFUkVDSE9TIFkgT0JMSUdBQ0lPTkVTIFJFUVVFUklET1MgUE9SIEVMIFJFU1BFQ1RJVk8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKCgoKCgoKCgoKCgoKCgoKCgoKCgpFbiBjb25zdGFuY2lhIGRlIGxvIGFudGVyaW9yLCBmaXJtbyhhbW9zKSBlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGVuIGxhIGNpdWRhZCBkZSBCb2dvdMOhLCBELkMuLCBhIGxvcyAKCgpGSVJNQSBERSBMT1MgVElUVUxBUkVTIERFIERFUkVDSE9TIERFIEFVVE9SCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCUNvcnJlbyBFbGVjdHLDs25pY28gCjEJCjIJCjMJCgpOb21icmUgZGUgRGlyZWN0b3IoZXMpIGRlIEdyYWRvOgoKMQkKMgkKMwkKCk5vbWJyZSBGYWN1bHRhZCB5IFByb3llY3RvIEN1cnJpY3VsYXI6CgpGYWN1bHRhZAlQcm95ZWN0byBDdXJyaWN1bGFyCgkKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEKCgo=