Balance óptimo de fases en redes de distribución trifásicas considerando la compensación de potencia reactiva en derivación con bancos de condensadores de paso fijo
El método de optimización de agujeros negros (BHO) se aplica en esta investigación para resolver el problema de la compensación óptima de potencia reactiva con bancos de condensadores de paso fijo en redes trifásicas considerando el problema de equilibrio de fase simultáneamente. Un enfoque de optim...
- Autores:
-
Medina Gaitán, Daniel Federico Antonio
Rozo Rodríguez, Ian Dwrley
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/36851
- Acceso en línea:
- http://hdl.handle.net/11349/36851
- Palabra clave:
- Problema de balance de fases
Compensación reactiva en derivación
Optimización agujero negro
Aproximaciones sucesivas
Solución flujo de potencia
Metodología solución en cascada
Metodología solución en simultáneo
Ingeniería Eléctrica -- Tesis y disertaciones académicas
Compensación de potencia reactiva
Bancos de condensadores
Equilibrio de fase
Optimización maestro-esclavo
Phase-balancing problem
Shunt reactive compensation
Black hole optimization
Successive approximations
Power flow solution
Cascade solution methodology
Simultaneous solution methodology
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UDISTRITA2_c739d80d0296277a77177b8f80f4957a |
---|---|
oai_identifier_str |
oai:repository.udistrital.edu.co:11349/36851 |
network_acronym_str |
UDISTRITA2 |
network_name_str |
RIUD: repositorio U. Distrital |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Balance óptimo de fases en redes de distribución trifásicas considerando la compensación de potencia reactiva en derivación con bancos de condensadores de paso fijo |
dc.title.titleenglish.spa.fl_str_mv |
Optimal phase-balancing in three-phase distribution networks considering shunt reactive power compensation with fixed-step capacitor banks |
title |
Balance óptimo de fases en redes de distribución trifásicas considerando la compensación de potencia reactiva en derivación con bancos de condensadores de paso fijo |
spellingShingle |
Balance óptimo de fases en redes de distribución trifásicas considerando la compensación de potencia reactiva en derivación con bancos de condensadores de paso fijo Problema de balance de fases Compensación reactiva en derivación Optimización agujero negro Aproximaciones sucesivas Solución flujo de potencia Metodología solución en cascada Metodología solución en simultáneo Ingeniería Eléctrica -- Tesis y disertaciones académicas Compensación de potencia reactiva Bancos de condensadores Equilibrio de fase Optimización maestro-esclavo Phase-balancing problem Shunt reactive compensation Black hole optimization Successive approximations Power flow solution Cascade solution methodology Simultaneous solution methodology |
title_short |
Balance óptimo de fases en redes de distribución trifásicas considerando la compensación de potencia reactiva en derivación con bancos de condensadores de paso fijo |
title_full |
Balance óptimo de fases en redes de distribución trifásicas considerando la compensación de potencia reactiva en derivación con bancos de condensadores de paso fijo |
title_fullStr |
Balance óptimo de fases en redes de distribución trifásicas considerando la compensación de potencia reactiva en derivación con bancos de condensadores de paso fijo |
title_full_unstemmed |
Balance óptimo de fases en redes de distribución trifásicas considerando la compensación de potencia reactiva en derivación con bancos de condensadores de paso fijo |
title_sort |
Balance óptimo de fases en redes de distribución trifásicas considerando la compensación de potencia reactiva en derivación con bancos de condensadores de paso fijo |
dc.creator.fl_str_mv |
Medina Gaitán, Daniel Federico Antonio Rozo Rodríguez, Ian Dwrley |
dc.contributor.advisor.none.fl_str_mv |
Montoya Giraldo, Oscar Danilo |
dc.contributor.author.none.fl_str_mv |
Medina Gaitán, Daniel Federico Antonio Rozo Rodríguez, Ian Dwrley |
dc.contributor.orcid.none.fl_str_mv |
Montoya Giraldo, Oscar Danilo [0000-0001-6051-4925] |
dc.subject.spa.fl_str_mv |
Problema de balance de fases Compensación reactiva en derivación Optimización agujero negro Aproximaciones sucesivas Solución flujo de potencia Metodología solución en cascada Metodología solución en simultáneo |
topic |
Problema de balance de fases Compensación reactiva en derivación Optimización agujero negro Aproximaciones sucesivas Solución flujo de potencia Metodología solución en cascada Metodología solución en simultáneo Ingeniería Eléctrica -- Tesis y disertaciones académicas Compensación de potencia reactiva Bancos de condensadores Equilibrio de fase Optimización maestro-esclavo Phase-balancing problem Shunt reactive compensation Black hole optimization Successive approximations Power flow solution Cascade solution methodology Simultaneous solution methodology |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería Eléctrica -- Tesis y disertaciones académicas Compensación de potencia reactiva Bancos de condensadores Equilibrio de fase Optimización maestro-esclavo |
dc.subject.keyword.spa.fl_str_mv |
Phase-balancing problem Shunt reactive compensation Black hole optimization Successive approximations Power flow solution Cascade solution methodology Simultaneous solution methodology |
description |
El método de optimización de agujeros negros (BHO) se aplica en esta investigación para resolver el problema de la compensación óptima de potencia reactiva con bancos de condensadores de paso fijo en redes trifásicas considerando el problema de equilibrio de fase simultáneamente. Un enfoque de optimización maestro-esclavo basado en el BHO en la etapa maestra considera una codificación discreta y el método de flujo de potencia de aproximación sucesiva en la etapa esclava. Se proponen dos evaluaciones diferentes para medir el impacto de la compensación de potencia reactiva en derivación y las estrategias de equilibrio de fase. Estas evaluaciones incluyen un enfoque de metodología de solución en cascada (CSM) y una metodología de solución simultánea (SSM). El enfoque CSM resuelve el problema de equilibrio de fase en la primera etapa. Esta solución se implementa en la red de distribución para determinar las baterías de condensadores de paso fijo instaladas en la segunda etapa. En el SSM, ambos problemas se resuelven utilizando un único vector de codificación. Los resultados numéricos en los sistemas de bus IEEE 8 e IEEE 27 demuestran la eficacia de la metodología de solución propuesta, donde el SSM presenta los mejores resultados numéricos en ambos alimentadores de prueba con reducciones de alrededor del 32,27 %. y 33,52%, respectivamente, en comparación con el CSM. Para validar todos los logros numéricos en el ambiente de programación MATLAB se utilizó el software DIgSILENT para realizar validaciones cruzadas. Cabe destacar que la selección del software DIgISLENT se basa en su amplio reconocimiento en la literatura científica y la industria por realizar validaciones cuasi-experimentales como etapa previa a la implementación física de cualquier intervención de red en redes eléctricas y de distribución |
publishDate |
2022 |
dc.date.created.none.fl_str_mv |
2022-12-26 |
dc.date.accessioned.none.fl_str_mv |
2024-06-24T17:40:26Z |
dc.date.available.none.fl_str_mv |
2024-06-24T17:40:26Z |
dc.type.spa.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11349/36851 |
url |
http://hdl.handle.net/11349/36851 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Chowdhury, P.K.R.; Weaver, J.E.; Weber, E.M.; Lunga, D.; LeDoux, S.T.M.; Rose, A.N.; Bhaduri, B.L. Electricity consumption patterns within cities: Application of a data-driven settlement characterization method. Int. J. Digit. Earth 2019, 13, 119–135. Mutumba, G.S.; Odongo, T.; Okurut, N.F.; Bagire, V. A survey of literature on energy consumption and economic growth. Energy Rep. 2021, 7, 9150–9239. Nogueira, T.; Sousa, E.; Alves, G.R. Electric vehicles growth until 2030: Impact on the distribution network power. Energy Rep. 2022, 8, 145–152. Arefi, A.; Shahnia, F.; Ledwich, G. (Eds.) Electric Distribution Network Management and Control; Springer: Singapore, 2018. Cortés-Caicedo, B.; Avellaneda-Gómez, L.S.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. Application of the Vortex Search Algorithm to the Phase-Balancing Problem in Distribution Systems. Energies 2021, 14, 1282 Arefi, A.; Olamaei, J.; Yavartalab, A.; Keshtkar, H. Loss reduction experiences in electric power distribution companies of Iran. Energy Procedia 2012, 14, 1392–1397 Abagiu, S.; Lepadat, I.; Helerea, E. Solutions for energy losses reduction in power networks with renewable energy sources. In Proceedings of the 2016 International Conference on Applied and Theoretical Electricity (ICATE), Craiova, Romania, 6–8 October 2016 Hesaroor, K.; Das, D. Annual energy loss reduction of distribution network through reconfiguration and renewable energy sources. Int. Trans. Electr. Energy Syst. 2019, 29, e12099 . Chernykh, A.G.; Barykina, Y.N.; Morozevich, O.A. Development of methods for minimizing energy losses in electrical networks. IOP Conf. Ser. Earth Environ. Sci. 2022, 1070, 012006 Prakash, D.; Lakshminarayana, C. Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm. Alex. Eng. J. 2017, 56, 499–509. Sulaiman, M.H.; Mustaffa, Z. Optimal placement and sizing of FACTS devices for optimal power flow using metaheuristic optimizers. Results Control Optim. 2022, 8, 100145. Valencia, A.; Hincapie, R.A.; Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks. J. Energy Storage 2021, 34, 102158 Ghiasi, M. Detailed study, multi-objective optimization, and design of an AC-DC smart microgrid with hybrid renewable energy resources. Energy 2019, 169, 496–507. Salau, A.O.; Gebru, Y.W.; Bitew, D. Optimal network reconfiguration for power loss minimization and voltage profile enhancement in distribution systems. Heliyon 2020, 6, e04233 Askarzadeh, A. Capacitor placement in distribution systems for power loss reduction and voltage improvement: A new methodology. IET Gener. Transm. Distrib. 2016, 10, 3631–3638 Ghiasi, M.; Olamaei, J. Optimal capacitor placement to minimizing cost and power loss in Tehran metro power distribution system using ETAP (A case study). Complexity 2016, 21, 483–493. Tamilselvan, V.; Jayabarathi, T.; Raghunathan, T.; Yang, X.S. Optimal capacitor placement in radial distribution systems using flower pollination algorithm. Alex. Eng. J. 2018, 57, 2775–2786. Devabalaji, K.; Yuvaraj, T.; Ravi, K. An efficient method for solving the optimal sitting and sizing problem of capacitor banks based on cuckoo search algorithm. Ain Shams Eng. J. 2018, 9, 589–597 Taher, S.A.; Bagherpour, R. A new approach for optimal capacitor placement and sizing in unbalanced distorted distribution systems using hybrid honey bee colony algorithm. Int. J. Electr. Power Energy Syst. 2013, 49, 430–448. . Ogita, Y.; Mori, H. Parallel Dual Tabu Search for Capacitor Placement in Smart Grids. Procedia Comput. Sci. 2012, 12, 307–313. Faiz, M.; Chang, A.Q.; Memon, N.; Pathan, A.Z.U. Optimal Capacitor Placement Using Tabu Search Algorithm to Improve the Operational Efficiency in GEPCO Network. Int. J. Electr. Electron. Eng. 2021, 8, 1–5. Gil-González, W.; Montoya, O.D.; Rajagopalan, A.; Grisales-Noreña, L.F.; Hernández, J.C. Optimal Selection and Location of Fixed-Step Capacitor Banks in Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Energies 2020, 13, 4914 Khan, N.A.; Ghosh, S.; Ghoshal, S.P. Binary Gravitational Search based Algorithm for Optimum Siting and Sizing of DG and Shunt Capacitors in Radial Distribution Systems. Energy Power Eng. 2013, 05, 1005–1010 Zadeh, A.Z.; Andami, H.; Talavat, V.; Ebrahimi, J. Optimal Capacitor Placement in the Unbalanced Distribution Networks Contaminated by Harmonic through Imperialist Competitive Algorithm. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 1230–1235. Murty, V.; Kumar, A. Capacitor Allocation in Unbalanced Distribution System under Unbalances and Loading Conditions. Energy Procedia 2014, 54, 47–74. Echeverri, M.G.; Rendón, R.A.G.; Lezama, J.M.L. Optimal Phase Balancing Planning for Loss Reduction in Distribution Systems using a Specialized Genetic Algorithm. Ing. Cienc. 2012, 8, 121–140. Khodr, H.; Zerpa, I.; de Jesu’s, P.D.O.; Matos, M. Optimal Phase Balancing in Distribution System Using Mixed-Integer Linear Programming. In Proceedings of the 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, Caracas, Venezuela, 15–18 August 2006 El Hassan, M.; Najjar, M.; Tohme, R. A Practical Way to Balance Single Phase Loads in a Three Phase System at Distribution and Unit Level. Renew. Energy Power Qual. J. 2022, 20, 173–177. . Mansani, S.; Udaykumay, R.Y. An optimal phase balancing technique for unbalanced three-phase secondary distribution systems. In Proceedings of the 2016 IEEE 7th Power India International Conference (PIICON), Bikaner, India, 25–27 November 2016. Alhmoud, L.; Nawafleh, Q.; Merrji, W. Three-Phase Feeder Load Balancing Based Optimized Neural Network Using Smart Meters. Symmetry 2021, 13, 2195. . Cruz-Reyes, J.L.; Salcedo-Marcelo, S.S.; Montoya, O.D. Application of the Hurricane-Based Optimization Algorithm to the Phase-Balancing Problem in Three-Phase Asymmetric Networks. Computers 2022, 11, 43. Pandey, A.; Jereminov, M.; Wagner, M.R.; Bromberg, D.M.; Hug, G.; Pileggi, L. Robust Power Flow and Three-Phase Power Flow Analyses. IEEE Trans. Power Syst. 2019, 34, 616–626. Garces, A. A Linear Three-Phase Load Flow for Power Distribution Systems. IEEE Trans. Power Syst. 2016, 31, 827–828. Marini, A.; Mortazavi, S.; Piegari, L.; Ghazizadeh, M.S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations. Electr. Power Syst. Res. 2019, 170, 229–243. Shen, T.; Li, Y.; Xiang, J. A Graph-Based Power Flow Method for Balanced Distribution Systems. Energies 2018, 11, 511 . Gnanambal, K.; Marimuthu, N.; Babulal, C. Three-phase power flow analysis in sequence component frame using Hybrid Particle Swarm Optimization. Appl. Soft Comput. 2011, 11, 1727–1734. Singh, M.K.; Gupta, A.R.; Kumar, A. Analysis of Unbalanced Radial Distribution System with SVR and Impact of Phase Shifter Angle considering Time Varying Loads. Smart Sci. 2021, 1–16. Swapna, M.; Udaykumar, R.Y. An algorithm for optimal phase balancing of secondary distribution systems at each node. In Proceedings of the 2016 IEEE PES 13th International Conference on Transmission & Distribution Construction, Operation & Live-Line Maintenance (ESMO), Columbus, OH, USA, 12–15 September 2016. Kumar, S.; Datta, D.; Singh, S.K. Black Hole Algorithm and Its Applications. In Studies in Computational Intelligence; Springer International Publishing: Cham, Switzerland, 2014; pp. 147–170. Abualigah, L.; Elaziz, M.A.; Sumari, P.; Khasawneh, A.M.; Alshinwan, M.; Mirjalili, S.; Shehab, M.; Abuaddous, H.Y.; Gandomi, A.H. Black hole algorithm: A comprehensive survey. Appl. Intell. 2022, 52, 11892–11915. Velasquez, O.S.; Montoya, O.D.; Garrido, V.M.; Grisales, L.F. Optimal Power Flow in Direct-Current Power Grids via Black Hole Optimization. Adv. Electr. Electron. Eng. 2019, 17, 24–32 . Arenas-Acuña, C.A.; Rodriguez-Contreras, J.A.; Montoya, O.D.; Rivas-Trujillo, E. Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures. Computers 2021, 10, 124. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184 Ramana, T.; Ganesh, V.; Sivanagaraju, S. Distributed Generator Placement In addition, Sizing in Unbalanced Radial Distribution System. Cogener. Distrib. Gener. J. 2010, 25, 52–71. Ganesh, S.; Perilla, A.; Torres, J.R.; Palensky, P.; van der Meijden, M. Validation of EMT Digital Twin Models for Dynamic Voltage Performance Assessment of 66 kV Offshore Transmission Network. Appl. Sci. 2020, 11, 244 Bifaretti, S.; Bonaiuto, V.; Pipolo, S.; Terlizzi, C.; Zanchetta, P.; Gallinelli, F.; Alessandroni, S. Power Flow Management by Active Nodes: A Case Study in Real Operating Conditions. Energies 2021, 14, 4519. |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
institution |
Universidad Distrital Francisco José de Caldas |
bitstream.url.fl_str_mv |
https://repository.udistrital.edu.co/bitstreams/74c0111a-0d23-4fbd-a0d6-fb8aca843b01/download https://repository.udistrital.edu.co/bitstreams/601db112-eae2-42ce-bdf2-aa13b3e0f780/download https://repository.udistrital.edu.co/bitstreams/49bc5829-f4e5-4885-9540-fcef0ae90d93/download https://repository.udistrital.edu.co/bitstreams/bcd9f206-b51e-4793-9ee5-88e415c6c1bf/download https://repository.udistrital.edu.co/bitstreams/264bb74d-5eb0-46cf-8342-e948747ecdb8/download https://repository.udistrital.edu.co/bitstreams/0df1d0c2-b8aa-4a69-acf0-e4f3ffde11b1/download |
bitstream.checksum.fl_str_mv |
997daf6c648c962d566d7b082dac908d 4460e5956bc1d1639be9ae6146a50347 0d953844d1aeb1d94789edc6a4dfd017 19da990c9a586a4912b99440853d8522 ad397b27b8c8707a67554012d89abfc1 5ae57f56d0267065a39dbc5b21ef5942 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Distrital |
repository.mail.fl_str_mv |
repositorio@udistrital.edu.co |
_version_ |
1837006964878475264 |
spelling |
Montoya Giraldo, Oscar DaniloMedina Gaitán, Daniel Federico AntonioRozo Rodríguez, Ian DwrleyMontoya Giraldo, Oscar Danilo [0000-0001-6051-4925]2024-06-24T17:40:26Z2024-06-24T17:40:26Z2022-12-26http://hdl.handle.net/11349/36851El método de optimización de agujeros negros (BHO) se aplica en esta investigación para resolver el problema de la compensación óptima de potencia reactiva con bancos de condensadores de paso fijo en redes trifásicas considerando el problema de equilibrio de fase simultáneamente. Un enfoque de optimización maestro-esclavo basado en el BHO en la etapa maestra considera una codificación discreta y el método de flujo de potencia de aproximación sucesiva en la etapa esclava. Se proponen dos evaluaciones diferentes para medir el impacto de la compensación de potencia reactiva en derivación y las estrategias de equilibrio de fase. Estas evaluaciones incluyen un enfoque de metodología de solución en cascada (CSM) y una metodología de solución simultánea (SSM). El enfoque CSM resuelve el problema de equilibrio de fase en la primera etapa. Esta solución se implementa en la red de distribución para determinar las baterías de condensadores de paso fijo instaladas en la segunda etapa. En el SSM, ambos problemas se resuelven utilizando un único vector de codificación. Los resultados numéricos en los sistemas de bus IEEE 8 e IEEE 27 demuestran la eficacia de la metodología de solución propuesta, donde el SSM presenta los mejores resultados numéricos en ambos alimentadores de prueba con reducciones de alrededor del 32,27 %. y 33,52%, respectivamente, en comparación con el CSM. Para validar todos los logros numéricos en el ambiente de programación MATLAB se utilizó el software DIgSILENT para realizar validaciones cruzadas. Cabe destacar que la selección del software DIgISLENT se basa en su amplio reconocimiento en la literatura científica y la industria por realizar validaciones cuasi-experimentales como etapa previa a la implementación física de cualquier intervención de red en redes eléctricas y de distribuciónThe black hole optimization (BHO) method is applied in this research to solve the problem of the optimal reactive power compensation with fixed-step capacitor banks in three-phase networks considering the phase-balancing problem simultaneously. A master–slave optimization approach based on the BHO in the master stage considers a discrete codification and the successive approximation power flow method in the slave stage. Two different evaluations are proposed to measure the impact of the shunt reactive power compensation and the phase-balancing strategies. These evaluations include a cascade solution methodology (CSM) approach and a simultaneous solution methodology (SSM). The CSM approach solves the phase-balancing problem in the first stage. This solution is implemented in the distribution network to determine the fixed-step capacitor banks installed in the second stage. In the SSM, both problems are solved using a unique codification vector. Numerical results in the IEEE 8- and IEEE 27-bus systems demonstrate the effectiveness of the proposed solution methodology, where the SSM presents the better numerical results in both test feeders with reductions of about 32.27% and 33.52%, respectively, when compared with the CSM. To validate all the numerical achievements in the MATLAB programming environment, the DIgSILENT software was used for making cross-validations. Note that the selection of the DIgISLENT software is based on its wide recognition in the scientific literature and industry for making quasi-experimental validations as a previous stage to the physical implementation of any grid intervention in power and distribution networkspdfspaAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Problema de balance de fasesCompensación reactiva en derivaciónOptimización agujero negroAproximaciones sucesivasSolución flujo de potenciaMetodología solución en cascadaMetodología solución en simultáneoIngeniería Eléctrica -- Tesis y disertaciones académicasCompensación de potencia reactivaBancos de condensadoresEquilibrio de faseOptimización maestro-esclavoPhase-balancing problemShunt reactive compensationBlack hole optimizationSuccessive approximationsPower flow solutionCascade solution methodologySimultaneous solution methodologyBalance óptimo de fases en redes de distribución trifásicas considerando la compensación de potencia reactiva en derivación con bancos de condensadores de paso fijoOptimal phase-balancing in three-phase distribution networks considering shunt reactive power compensation with fixed-step capacitor banksarticleinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_7a1fChowdhury, P.K.R.; Weaver, J.E.; Weber, E.M.; Lunga, D.; LeDoux, S.T.M.; Rose, A.N.; Bhaduri, B.L. Electricity consumption patterns within cities: Application of a data-driven settlement characterization method. Int. J. Digit. Earth 2019, 13, 119–135.Mutumba, G.S.; Odongo, T.; Okurut, N.F.; Bagire, V. A survey of literature on energy consumption and economic growth. Energy Rep. 2021, 7, 9150–9239.Nogueira, T.; Sousa, E.; Alves, G.R. Electric vehicles growth until 2030: Impact on the distribution network power. Energy Rep. 2022, 8, 145–152.Arefi, A.; Shahnia, F.; Ledwich, G. (Eds.) Electric Distribution Network Management and Control; Springer: Singapore, 2018.Cortés-Caicedo, B.; Avellaneda-Gómez, L.S.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. Application of the Vortex Search Algorithm to the Phase-Balancing Problem in Distribution Systems. Energies 2021, 14, 1282Arefi, A.; Olamaei, J.; Yavartalab, A.; Keshtkar, H. Loss reduction experiences in electric power distribution companies of Iran. Energy Procedia 2012, 14, 1392–1397Abagiu, S.; Lepadat, I.; Helerea, E. Solutions for energy losses reduction in power networks with renewable energy sources. In Proceedings of the 2016 International Conference on Applied and Theoretical Electricity (ICATE), Craiova, Romania, 6–8 October 2016Hesaroor, K.; Das, D. Annual energy loss reduction of distribution network through reconfiguration and renewable energy sources. Int. Trans. Electr. Energy Syst. 2019, 29, e12099. Chernykh, A.G.; Barykina, Y.N.; Morozevich, O.A. Development of methods for minimizing energy losses in electrical networks. IOP Conf. Ser. Earth Environ. Sci. 2022, 1070, 012006Prakash, D.; Lakshminarayana, C. Optimal siting of capacitors in radial distribution network using Whale Optimization Algorithm. Alex. Eng. J. 2017, 56, 499–509.Sulaiman, M.H.; Mustaffa, Z. Optimal placement and sizing of FACTS devices for optimal power flow using metaheuristic optimizers. Results Control Optim. 2022, 8, 100145.Valencia, A.; Hincapie, R.A.; Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks. J. Energy Storage 2021, 34, 102158Ghiasi, M. Detailed study, multi-objective optimization, and design of an AC-DC smart microgrid with hybrid renewable energy resources. Energy 2019, 169, 496–507.Salau, A.O.; Gebru, Y.W.; Bitew, D. Optimal network reconfiguration for power loss minimization and voltage profile enhancement in distribution systems. Heliyon 2020, 6, e04233Askarzadeh, A. Capacitor placement in distribution systems for power loss reduction and voltage improvement: A new methodology. IET Gener. Transm. Distrib. 2016, 10, 3631–3638Ghiasi, M.; Olamaei, J. Optimal capacitor placement to minimizing cost and power loss in Tehran metro power distribution system using ETAP (A case study). Complexity 2016, 21, 483–493.Tamilselvan, V.; Jayabarathi, T.; Raghunathan, T.; Yang, X.S. Optimal capacitor placement in radial distribution systems using flower pollination algorithm. Alex. Eng. J. 2018, 57, 2775–2786.Devabalaji, K.; Yuvaraj, T.; Ravi, K. An efficient method for solving the optimal sitting and sizing problem of capacitor banks based on cuckoo search algorithm. Ain Shams Eng. J. 2018, 9, 589–597Taher, S.A.; Bagherpour, R. A new approach for optimal capacitor placement and sizing in unbalanced distorted distribution systems using hybrid honey bee colony algorithm. Int. J. Electr. Power Energy Syst. 2013, 49, 430–448.. Ogita, Y.; Mori, H. Parallel Dual Tabu Search for Capacitor Placement in Smart Grids. Procedia Comput. Sci. 2012, 12, 307–313.Faiz, M.; Chang, A.Q.; Memon, N.; Pathan, A.Z.U. Optimal Capacitor Placement Using Tabu Search Algorithm to Improve the Operational Efficiency in GEPCO Network. Int. J. Electr. Electron. Eng. 2021, 8, 1–5.Gil-González, W.; Montoya, O.D.; Rajagopalan, A.; Grisales-Noreña, L.F.; Hernández, J.C. Optimal Selection and Location of Fixed-Step Capacitor Banks in Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Energies 2020, 13, 4914Khan, N.A.; Ghosh, S.; Ghoshal, S.P. Binary Gravitational Search based Algorithm for Optimum Siting and Sizing of DG and Shunt Capacitors in Radial Distribution Systems. Energy Power Eng. 2013, 05, 1005–1010Zadeh, A.Z.; Andami, H.; Talavat, V.; Ebrahimi, J. Optimal Capacitor Placement in the Unbalanced Distribution Networks Contaminated by Harmonic through Imperialist Competitive Algorithm. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 1230–1235.Murty, V.; Kumar, A. Capacitor Allocation in Unbalanced Distribution System under Unbalances and Loading Conditions. Energy Procedia 2014, 54, 47–74.Echeverri, M.G.; Rendón, R.A.G.; Lezama, J.M.L. Optimal Phase Balancing Planning for Loss Reduction in Distribution Systems using a Specialized Genetic Algorithm. Ing. Cienc. 2012, 8, 121–140.Khodr, H.; Zerpa, I.; de Jesu’s, P.D.O.; Matos, M. Optimal Phase Balancing in Distribution System Using Mixed-Integer Linear Programming. In Proceedings of the 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, Caracas, Venezuela, 15–18 August 2006El Hassan, M.; Najjar, M.; Tohme, R. A Practical Way to Balance Single Phase Loads in a Three Phase System at Distribution and Unit Level. Renew. Energy Power Qual. J. 2022, 20, 173–177.. Mansani, S.; Udaykumay, R.Y. An optimal phase balancing technique for unbalanced three-phase secondary distribution systems. In Proceedings of the 2016 IEEE 7th Power India International Conference (PIICON), Bikaner, India, 25–27 November 2016.Alhmoud, L.; Nawafleh, Q.; Merrji, W. Three-Phase Feeder Load Balancing Based Optimized Neural Network Using Smart Meters. Symmetry 2021, 13, 2195.. Cruz-Reyes, J.L.; Salcedo-Marcelo, S.S.; Montoya, O.D. Application of the Hurricane-Based Optimization Algorithm to the Phase-Balancing Problem in Three-Phase Asymmetric Networks. Computers 2022, 11, 43.Pandey, A.; Jereminov, M.; Wagner, M.R.; Bromberg, D.M.; Hug, G.; Pileggi, L. Robust Power Flow and Three-Phase Power Flow Analyses. IEEE Trans. Power Syst. 2019, 34, 616–626.Garces, A. A Linear Three-Phase Load Flow for Power Distribution Systems. IEEE Trans. Power Syst. 2016, 31, 827–828.Marini, A.; Mortazavi, S.; Piegari, L.; Ghazizadeh, M.S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations. Electr. Power Syst. Res. 2019, 170, 229–243.Shen, T.; Li, Y.; Xiang, J. A Graph-Based Power Flow Method for Balanced Distribution Systems. Energies 2018, 11, 511. Gnanambal, K.; Marimuthu, N.; Babulal, C. Three-phase power flow analysis in sequence component frame using Hybrid Particle Swarm Optimization. Appl. Soft Comput. 2011, 11, 1727–1734.Singh, M.K.; Gupta, A.R.; Kumar, A. Analysis of Unbalanced Radial Distribution System with SVR and Impact of Phase Shifter Angle considering Time Varying Loads. Smart Sci. 2021, 1–16.Swapna, M.; Udaykumar, R.Y. An algorithm for optimal phase balancing of secondary distribution systems at each node. In Proceedings of the 2016 IEEE PES 13th International Conference on Transmission & Distribution Construction, Operation & Live-Line Maintenance (ESMO), Columbus, OH, USA, 12–15 September 2016.Kumar, S.; Datta, D.; Singh, S.K. Black Hole Algorithm and Its Applications. In Studies in Computational Intelligence; Springer International Publishing: Cham, Switzerland, 2014; pp. 147–170.Abualigah, L.; Elaziz, M.A.; Sumari, P.; Khasawneh, A.M.; Alshinwan, M.; Mirjalili, S.; Shehab, M.; Abuaddous, H.Y.; Gandomi, A.H. Black hole algorithm: A comprehensive survey. Appl. Intell. 2022, 52, 11892–11915.Velasquez, O.S.; Montoya, O.D.; Garrido, V.M.; Grisales, L.F. Optimal Power Flow in Direct-Current Power Grids via Black Hole Optimization. Adv. Electr. Electron. Eng. 2019, 17, 24–32 .Arenas-Acuña, C.A.; Rodriguez-Contreras, J.A.; Montoya, O.D.; Rivas-Trujillo, E. Black-Hole Optimization Applied to the Parametric Estimation in Distribution Transformers Considering Voltage and Current Measures. Computers 2021, 10, 124.Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184Ramana, T.; Ganesh, V.; Sivanagaraju, S. Distributed Generator Placement In addition, Sizing in Unbalanced Radial Distribution System. Cogener. Distrib. Gener. J. 2010, 25, 52–71.Ganesh, S.; Perilla, A.; Torres, J.R.; Palensky, P.; van der Meijden, M. Validation of EMT Digital Twin Models for Dynamic Voltage Performance Assessment of 66 kV Offshore Transmission Network. Appl. Sci. 2020, 11, 244Bifaretti, S.; Bonaiuto, V.; Pipolo, S.; Terlizzi, C.; Zanchetta, P.; Gallinelli, F.; Alessandroni, S. Power Flow Management by Active Nodes: A Case Study in Real Operating Conditions. Energies 2021, 14, 4519.LICENSElicense.txtlicense.txttext/plain; charset=utf-87167https://repository.udistrital.edu.co/bitstreams/74c0111a-0d23-4fbd-a0d6-fb8aca843b01/download997daf6c648c962d566d7b082dac908dMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.udistrital.edu.co/bitstreams/601db112-eae2-42ce-bdf2-aa13b3e0f780/download4460e5956bc1d1639be9ae6146a50347MD53ORIGINALRozoRodriguezIanDwrley2022.pdfRozoRodriguezIanDwrley2022.pdfTrabajo de gradoapplication/pdf372477https://repository.udistrital.edu.co/bitstreams/49bc5829-f4e5-4885-9540-fcef0ae90d93/download0d953844d1aeb1d94789edc6a4dfd017MD51Licencia y autorización especial.pdfLicencia y autorización especial.pdfLicencia de uso y publicaciónapplication/pdf1213490https://repository.udistrital.edu.co/bitstreams/bcd9f206-b51e-4793-9ee5-88e415c6c1bf/download19da990c9a586a4912b99440853d8522MD52THUMBNAILRozoRodriguezIanDwrley2022.pdf.jpgRozoRodriguezIanDwrley2022.pdf.jpgIM Thumbnailimage/jpeg18689https://repository.udistrital.edu.co/bitstreams/264bb74d-5eb0-46cf-8342-e948747ecdb8/downloadad397b27b8c8707a67554012d89abfc1MD55Licencia y autorización especial.pdf.jpgLicencia y autorización especial.pdf.jpgIM Thumbnailimage/jpeg12864https://repository.udistrital.edu.co/bitstreams/0df1d0c2-b8aa-4a69-acf0-e4f3ffde11b1/download5ae57f56d0267065a39dbc5b21ef5942MD5611349/36851oai:repository.udistrital.edu.co:11349/368512024-06-25 01:07:32.529http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK |