Integración eficiente de generadores solares fotovoltaicos en redes DC monopolares a través de un modelo de optimización entero-mixto convexo

El problema relacionado con la ubicación y el dimensionamiento óptimos de las unidades de generación fotovoltaica (PV) en redes de distribución eléctrica con tecnología de operación de corriente continua (DC) monopolar se abordó en esta investigación proponiendo un enfoque de optimización convexa en...

Full description

Autores:
Vargas Sosa, Diego Fernando
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/38743
Acceso en línea:
http://hdl.handle.net/11349/38743
Palabra clave:
Minimización de costos operativos anuales
Enfoque de optimización en dos etapas
Optimización convexa de enteros mixtos
Generación fotovoltaica
Redes DC monopolares
Ingeniería Eléctrica -- Tesis y disertaciones académicas
Energías renovables
Optimización de sistemas eléctricos
Modelado y simulación de sistemas de potencia
Sistemas fotovoltaicos
Annual operating costs minimization
Two-stage optimization approach
Mixed-integer convex optimization
Photovoltaic generation
Monopolar DC networks
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UDISTRITA2_b21ba9d9087ce930458a3765a9e8d1f7
oai_identifier_str oai:repository.udistrital.edu.co:11349/38743
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.spa.fl_str_mv Integración eficiente de generadores solares fotovoltaicos en redes DC monopolares a través de un modelo de optimización entero-mixto convexo
dc.title.titleenglish.spa.fl_str_mv Efficient integration of photovoltaic solar generators in monopolar DC networks through a convex mixed-integer optimization model
title Integración eficiente de generadores solares fotovoltaicos en redes DC monopolares a través de un modelo de optimización entero-mixto convexo
spellingShingle Integración eficiente de generadores solares fotovoltaicos en redes DC monopolares a través de un modelo de optimización entero-mixto convexo
Minimización de costos operativos anuales
Enfoque de optimización en dos etapas
Optimización convexa de enteros mixtos
Generación fotovoltaica
Redes DC monopolares
Ingeniería Eléctrica -- Tesis y disertaciones académicas
Energías renovables
Optimización de sistemas eléctricos
Modelado y simulación de sistemas de potencia
Sistemas fotovoltaicos
Annual operating costs minimization
Two-stage optimization approach
Mixed-integer convex optimization
Photovoltaic generation
Monopolar DC networks
title_short Integración eficiente de generadores solares fotovoltaicos en redes DC monopolares a través de un modelo de optimización entero-mixto convexo
title_full Integración eficiente de generadores solares fotovoltaicos en redes DC monopolares a través de un modelo de optimización entero-mixto convexo
title_fullStr Integración eficiente de generadores solares fotovoltaicos en redes DC monopolares a través de un modelo de optimización entero-mixto convexo
title_full_unstemmed Integración eficiente de generadores solares fotovoltaicos en redes DC monopolares a través de un modelo de optimización entero-mixto convexo
title_sort Integración eficiente de generadores solares fotovoltaicos en redes DC monopolares a través de un modelo de optimización entero-mixto convexo
dc.creator.fl_str_mv Vargas Sosa, Diego Fernando
dc.contributor.advisor.none.fl_str_mv Montoya Giraldo, Oscar Danilo
dc.contributor.author.none.fl_str_mv Vargas Sosa, Diego Fernando
dc.contributor.orcid.spa.fl_str_mv Montoya Giraldo, Oscar Danilo [0000-0001-6051-4925]
dc.subject.spa.fl_str_mv Minimización de costos operativos anuales
Enfoque de optimización en dos etapas
Optimización convexa de enteros mixtos
Generación fotovoltaica
Redes DC monopolares
topic Minimización de costos operativos anuales
Enfoque de optimización en dos etapas
Optimización convexa de enteros mixtos
Generación fotovoltaica
Redes DC monopolares
Ingeniería Eléctrica -- Tesis y disertaciones académicas
Energías renovables
Optimización de sistemas eléctricos
Modelado y simulación de sistemas de potencia
Sistemas fotovoltaicos
Annual operating costs minimization
Two-stage optimization approach
Mixed-integer convex optimization
Photovoltaic generation
Monopolar DC networks
dc.subject.lemb.spa.fl_str_mv Ingeniería Eléctrica -- Tesis y disertaciones académicas
Energías renovables
Optimización de sistemas eléctricos
Modelado y simulación de sistemas de potencia
Sistemas fotovoltaicos
dc.subject.keyword.spa.fl_str_mv Annual operating costs minimization
Two-stage optimization approach
Mixed-integer convex optimization
Photovoltaic generation
Monopolar DC networks
description El problema relacionado con la ubicación y el dimensionamiento óptimos de las unidades de generación fotovoltaica (PV) en redes de distribución eléctrica con tecnología de operación de corriente continua (DC) monopolar se abordó en esta investigación proponiendo un enfoque de optimización convexa en dos etapas (TSCO). En la primera etapa, la formulación de la programación no lineal entera mixta exacta (MINLP) se relajó a través de la programación lineal entera mixta, definiendo los nodos donde se deben ubicar las unidades de generación fotovoltaica. En la segunda etapa, el problema de flujo de potencia óptimo asociado con el dimensionamiento de PV se resolvió aproximando el componente no lineal exacto del modelo MINLP en un equivalente de programación de cono de segundo orden. La principal contribución de esta investigación es el uso de dos aproximaciones para resolver eficientemente el problema estudiado, aprovechando los modelos de optimización convexos. Los resultados numéricos en la versión DC monopolar de la red de bus IEEE 33 demuestran la eficacia del enfoque propuesto en comparación con múltiples métodos de optimización combinatoria. Se realizaron dos evaluaciones para confirmar la eficiencia del modelo de optimización propuesto. La primera evaluación consideró la red de bus IEEE 33 sin limitaciones actuales en todas las ramas de distribución, para luego compararla con diferentes enfoques metaheurísticos (versiones discretas del algoritmo genético de Chu y Beasley, el algoritmo de búsqueda de vórtices y el optimizador de distribución normal generalizada); la segunda simulación incluyó los límites de corriente térmica en la optimización del modelo. Los resultados numéricos mostraron que cuando el seguimiento de la potencia máxima del punto no se consideró como criterio de toma de decisiones, la inversión anual esperada y los costos operativos exhibieron mejores desempeños, es decir, reducciones adicionales de alrededor de USD 100.000 en los casos de simulación en comparación con los escenarios que involucran el punto de máxima potencia. seguimiento.
publishDate 2023
dc.date.created.none.fl_str_mv 2023-10-02
dc.date.accessioned.none.fl_str_mv 2024-07-26T14:17:28Z
dc.date.available.none.fl_str_mv 2024-07-26T14:17:28Z
dc.type.spa.fl_str_mv bachelorThesis
dc.type.degree.spa.fl_str_mv Producción Académica
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/38743
url http://hdl.handle.net/11349/38743
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv pdf
institution Universidad Distrital Francisco José de Caldas
bitstream.url.fl_str_mv https://repository.udistrital.edu.co/bitstreams/84457573-fa23-4619-a7be-de34905d1316/download
https://repository.udistrital.edu.co/bitstreams/8720573f-6ca9-4529-b7b8-0a2cbc974e39/download
https://repository.udistrital.edu.co/bitstreams/1a47e038-7a87-447c-aa49-2eccf18982c4/download
https://repository.udistrital.edu.co/bitstreams/ba97777f-21e0-44fd-bd37-2be63ea1d703/download
bitstream.checksum.fl_str_mv 997daf6c648c962d566d7b082dac908d
4460e5956bc1d1639be9ae6146a50347
9149146dfef400171c517736548a398f
ec0a5e92a1624bc37cba55df4998453d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Distrital
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1837007119499395072
spelling Montoya Giraldo, Oscar DaniloVargas Sosa, Diego FernandoMontoya Giraldo, Oscar Danilo [0000-0001-6051-4925]2024-07-26T14:17:28Z2024-07-26T14:17:28Z2023-10-02http://hdl.handle.net/11349/38743El problema relacionado con la ubicación y el dimensionamiento óptimos de las unidades de generación fotovoltaica (PV) en redes de distribución eléctrica con tecnología de operación de corriente continua (DC) monopolar se abordó en esta investigación proponiendo un enfoque de optimización convexa en dos etapas (TSCO). En la primera etapa, la formulación de la programación no lineal entera mixta exacta (MINLP) se relajó a través de la programación lineal entera mixta, definiendo los nodos donde se deben ubicar las unidades de generación fotovoltaica. En la segunda etapa, el problema de flujo de potencia óptimo asociado con el dimensionamiento de PV se resolvió aproximando el componente no lineal exacto del modelo MINLP en un equivalente de programación de cono de segundo orden. La principal contribución de esta investigación es el uso de dos aproximaciones para resolver eficientemente el problema estudiado, aprovechando los modelos de optimización convexos. Los resultados numéricos en la versión DC monopolar de la red de bus IEEE 33 demuestran la eficacia del enfoque propuesto en comparación con múltiples métodos de optimización combinatoria. Se realizaron dos evaluaciones para confirmar la eficiencia del modelo de optimización propuesto. La primera evaluación consideró la red de bus IEEE 33 sin limitaciones actuales en todas las ramas de distribución, para luego compararla con diferentes enfoques metaheurísticos (versiones discretas del algoritmo genético de Chu y Beasley, el algoritmo de búsqueda de vórtices y el optimizador de distribución normal generalizada); la segunda simulación incluyó los límites de corriente térmica en la optimización del modelo. Los resultados numéricos mostraron que cuando el seguimiento de la potencia máxima del punto no se consideró como criterio de toma de decisiones, la inversión anual esperada y los costos operativos exhibieron mejores desempeños, es decir, reducciones adicionales de alrededor de USD 100.000 en los casos de simulación en comparación con los escenarios que involucran el punto de máxima potencia. seguimiento.The problem regarding the optimal siting and sizing of photovoltaic (PV) generation units in electrical distribution networks with monopolar direct current (DC) operation technology was addressed in this research by proposing a two-stage convex optimization (TSCO) approach. In the first stage, the exact mixed-integer nonlinear programming (MINLP) formulation was relaxed via mixed-integer linear programming, defining the nodes where the PV generation units must be placed. In the second stage, the optimal power flow problem associated with PV sizing was solved by approximating the exact nonlinear component of the MINLP model into a second-order cone programming equivalent. The main contribution of this research is the use of two approximations to efficiently solve the studied problem, by taking advantage of convex optimization models. The numerical results in the monopolar DC version of the IEEE 33-bus grid demonstrate the effectiveness of the proposed approach when compared to multiple combinatorial optimization methods. Two evaluations were conducted, to confirm the efficiency of the proposed optimization model. The first evaluation considered the IEEE 33-bus grid without current limitations in all distribution branches, to later compare it to different metaheuristic approaches (discrete versions of the Chu and Beasley genetic algorithm, the vortex search algorithm, and the generalized normal distribution optimizer); the second simulation included the thermal current limits in the model’s optimization. The numerical results showed that when the maximum point power tracking was not regarded as a decisionmaking criterion, the expected annual investment and operating costs exhibited better performances, i.e., additional reductions of about USD 100,000 in the simulation cases compared to the scenarios involving maximum power point tracking.pdfspaAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Minimización de costos operativos anualesEnfoque de optimización en dos etapasOptimización convexa de enteros mixtosGeneración fotovoltaicaRedes DC monopolaresIngeniería Eléctrica -- Tesis y disertaciones académicasEnergías renovablesOptimización de sistemas eléctricosModelado y simulación de sistemas de potenciaSistemas fotovoltaicosAnnual operating costs minimizationTwo-stage optimization approachMixed-integer convex optimizationPhotovoltaic generationMonopolar DC networksIntegración eficiente de generadores solares fotovoltaicos en redes DC monopolares a través de un modelo de optimización entero-mixto convexoEfficient integration of photovoltaic solar generators in monopolar DC networks through a convex mixed-integer optimization modelbachelorThesisProducción Académicainfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fLICENSElicense.txtlicense.txttext/plain; charset=utf-87167https://repository.udistrital.edu.co/bitstreams/84457573-fa23-4619-a7be-de34905d1316/download997daf6c648c962d566d7b082dac908dMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.udistrital.edu.co/bitstreams/8720573f-6ca9-4529-b7b8-0a2cbc974e39/download4460e5956bc1d1639be9ae6146a50347MD53ORIGINALVargasSosaDiegoFernando2023.pdfVargasSosaDiegoFernando2023.pdfArticulo principalapplication/pdf338462https://repository.udistrital.edu.co/bitstreams/1a47e038-7a87-447c-aa49-2eccf18982c4/download9149146dfef400171c517736548a398fMD51Formato Licencia de Uso y Publicación.pdfFormato Licencia de Uso y Publicación.pdfLicencia de usoapplication/pdf973666https://repository.udistrital.edu.co/bitstreams/ba97777f-21e0-44fd-bd37-2be63ea1d703/downloadec0a5e92a1624bc37cba55df4998453dMD5211349/38743oai:repository.udistrital.edu.co:11349/387432024-07-26 09:17:33.083http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK