Variabilidad en la correlación lineal de la temperatura superficial terrestre (LST) y los índices espectrales utilizando imágenes de satélite. Caso de estudio : Ciudad de Bogotá, Colombia
Esta investigación tiene como objetivo evaluar la variabilidad de la correlación lineal entre la temperatura superficial terrestre (LST) y los índices espectrales NDVI, NDWI, NDBI y NDBaI en la zona urbana de Bogotá, Colombia durante el periodo de tiempo comprendido entre 1997 y 2022. Se tendrían tr...
- Autores:
-
Torres Plazas, Germán Stiwar
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/42298
- Acceso en línea:
- http://hdl.handle.net/11349/42298
- Palabra clave:
- Landsat
Temperatura de la superficie terrestre
Correlación lineal
Islas de calor
Indices espectrales
Ingeniería Topográfica -- Tesis y disertaciones académicas
Temperatura superficial terrestre (LST) -- Bogotá (Colombia)
Índices espectrales -- Bogotá (Colombia)
Análisis de imágenes satelitales -- Bogotá (Colombia)
Clima urbano -- Bogotá (Colombia)
Landsat
Land surface temperature
Linear correlation
Heat islands
Spectral indices
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
UDISTRITA2_ab4e32ad80478a8f2359cfcdf57368cb |
---|---|
oai_identifier_str |
oai:repository.udistrital.edu.co:11349/42298 |
network_acronym_str |
UDISTRITA2 |
network_name_str |
RIUD: repositorio U. Distrital |
repository_id_str |
|
dc.title.none.fl_str_mv |
Variabilidad en la correlación lineal de la temperatura superficial terrestre (LST) y los índices espectrales utilizando imágenes de satélite. Caso de estudio : Ciudad de Bogotá, Colombia |
dc.title.titleenglish.none.fl_str_mv |
Variability in the linear correlation of land surface temperature (LST) and spectral indices using satellite imagery. (LST) and spectral indices using satellite images. Case study : City of Bogota, Colombia |
title |
Variabilidad en la correlación lineal de la temperatura superficial terrestre (LST) y los índices espectrales utilizando imágenes de satélite. Caso de estudio : Ciudad de Bogotá, Colombia |
spellingShingle |
Variabilidad en la correlación lineal de la temperatura superficial terrestre (LST) y los índices espectrales utilizando imágenes de satélite. Caso de estudio : Ciudad de Bogotá, Colombia Landsat Temperatura de la superficie terrestre Correlación lineal Islas de calor Indices espectrales Ingeniería Topográfica -- Tesis y disertaciones académicas Temperatura superficial terrestre (LST) -- Bogotá (Colombia) Índices espectrales -- Bogotá (Colombia) Análisis de imágenes satelitales -- Bogotá (Colombia) Clima urbano -- Bogotá (Colombia) Landsat Land surface temperature Linear correlation Heat islands Spectral indices |
title_short |
Variabilidad en la correlación lineal de la temperatura superficial terrestre (LST) y los índices espectrales utilizando imágenes de satélite. Caso de estudio : Ciudad de Bogotá, Colombia |
title_full |
Variabilidad en la correlación lineal de la temperatura superficial terrestre (LST) y los índices espectrales utilizando imágenes de satélite. Caso de estudio : Ciudad de Bogotá, Colombia |
title_fullStr |
Variabilidad en la correlación lineal de la temperatura superficial terrestre (LST) y los índices espectrales utilizando imágenes de satélite. Caso de estudio : Ciudad de Bogotá, Colombia |
title_full_unstemmed |
Variabilidad en la correlación lineal de la temperatura superficial terrestre (LST) y los índices espectrales utilizando imágenes de satélite. Caso de estudio : Ciudad de Bogotá, Colombia |
title_sort |
Variabilidad en la correlación lineal de la temperatura superficial terrestre (LST) y los índices espectrales utilizando imágenes de satélite. Caso de estudio : Ciudad de Bogotá, Colombia |
dc.creator.fl_str_mv |
Torres Plazas, Germán Stiwar |
dc.contributor.advisor.none.fl_str_mv |
Quintana Puentes, Robinson |
dc.contributor.author.none.fl_str_mv |
Torres Plazas, Germán Stiwar |
dc.contributor.orcid.none.fl_str_mv |
Quintana Puentes, Robinson [0000-0002-3523-6203] |
dc.subject.none.fl_str_mv |
Landsat Temperatura de la superficie terrestre Correlación lineal Islas de calor Indices espectrales |
topic |
Landsat Temperatura de la superficie terrestre Correlación lineal Islas de calor Indices espectrales Ingeniería Topográfica -- Tesis y disertaciones académicas Temperatura superficial terrestre (LST) -- Bogotá (Colombia) Índices espectrales -- Bogotá (Colombia) Análisis de imágenes satelitales -- Bogotá (Colombia) Clima urbano -- Bogotá (Colombia) Landsat Land surface temperature Linear correlation Heat islands Spectral indices |
dc.subject.lemb.none.fl_str_mv |
Ingeniería Topográfica -- Tesis y disertaciones académicas Temperatura superficial terrestre (LST) -- Bogotá (Colombia) Índices espectrales -- Bogotá (Colombia) Análisis de imágenes satelitales -- Bogotá (Colombia) Clima urbano -- Bogotá (Colombia) |
dc.subject.keyword.none.fl_str_mv |
Landsat Land surface temperature Linear correlation Heat islands Spectral indices |
description |
Esta investigación tiene como objetivo evaluar la variabilidad de la correlación lineal entre la temperatura superficial terrestre (LST) y los índices espectrales NDVI, NDWI, NDBI y NDBaI en la zona urbana de Bogotá, Colombia durante el periodo de tiempo comprendido entre 1997 y 2022. Se tendrían tres variables: tres índices y la temperatura, siendo la dependiente SWIR y las independientes las demás. Los datos serían de carácter anual, entre 1997 y 2022. Esto en razón a que las variaciones climáticas no son tan significativas como en regiones donde se dan las estaciones. Además de que se presenta escasez de imágenes. Metodológicamente, tendrá un enfoque cuali-cuantitativo, para la recolección y procesamiento de la información se utilizará la plataforma de Google Earth Engine -GEE- y el software MiraMon el cual ofrece las ventajas de facilitar el cálculo de los índices espectrales, usar la herramienta de reclasificación Raster, y realizar el cálculo del coeficiente de regresión múltiple. |
publishDate |
2023 |
dc.date.created.none.fl_str_mv |
2023-11-29 |
dc.date.accessioned.none.fl_str_mv |
2024-10-28T16:04:21Z |
dc.date.available.none.fl_str_mv |
2024-10-28T16:04:21Z |
dc.type.spa.fl_str_mv |
bachelorThesis |
dc.type.degree.spa.fl_str_mv |
Investigación-Innovación |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11349/42298 |
url |
http://hdl.handle.net/11349/42298 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
institution |
Universidad Distrital Francisco José de Caldas |
bitstream.url.fl_str_mv |
https://repository.udistrital.edu.co/bitstreams/ae2a5314-bb88-4ebb-bdeb-b0adba9a341a/download https://repository.udistrital.edu.co/bitstreams/0ba7c964-898e-4c01-abb6-5c016c6dba65/download https://repository.udistrital.edu.co/bitstreams/33ef22b2-78b0-4dc8-a355-7fc393d13b7f/download https://repository.udistrital.edu.co/bitstreams/82304154-8138-4b2c-8dba-0d14142d0803/download https://repository.udistrital.edu.co/bitstreams/0ec38b5b-9ee7-4a18-a10e-98d65485e799/download https://repository.udistrital.edu.co/bitstreams/9e046d9f-8465-405d-8945-c6ef14e851f4/download https://repository.udistrital.edu.co/bitstreams/ab66f150-10ad-4ce8-977f-81dd649809a7/download |
bitstream.checksum.fl_str_mv |
f3d6228faa693bb1669d89b0c61a17df 6210e6852d26d2e88bcbcb90852102b4 83f109c2f1c6839ef2a875fa21adc19f 4460e5956bc1d1639be9ae6146a50347 997daf6c648c962d566d7b082dac908d 7310c415ee645204b26a0c947ab3cff3 e1dd11eae7209b954dccbe5edc1b4bed |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Distrital |
repository.mail.fl_str_mv |
repositorio@udistrital.edu.co |
_version_ |
1837006834167185408 |
spelling |
Quintana Puentes, RobinsonTorres Plazas, Germán StiwarQuintana Puentes, Robinson [0000-0002-3523-6203]2024-10-28T16:04:21Z2024-10-28T16:04:21Z2023-11-29http://hdl.handle.net/11349/42298Esta investigación tiene como objetivo evaluar la variabilidad de la correlación lineal entre la temperatura superficial terrestre (LST) y los índices espectrales NDVI, NDWI, NDBI y NDBaI en la zona urbana de Bogotá, Colombia durante el periodo de tiempo comprendido entre 1997 y 2022. Se tendrían tres variables: tres índices y la temperatura, siendo la dependiente SWIR y las independientes las demás. Los datos serían de carácter anual, entre 1997 y 2022. Esto en razón a que las variaciones climáticas no son tan significativas como en regiones donde se dan las estaciones. Además de que se presenta escasez de imágenes. Metodológicamente, tendrá un enfoque cuali-cuantitativo, para la recolección y procesamiento de la información se utilizará la plataforma de Google Earth Engine -GEE- y el software MiraMon el cual ofrece las ventajas de facilitar el cálculo de los índices espectrales, usar la herramienta de reclasificación Raster, y realizar el cálculo del coeficiente de regresión múltiple.This research aims to evaluate the variability of the linear correlation between land surface temperature (LST) and the spectral indices NDVI, NDWI, NDBI and NDBaI in the between land surface temperature (LST) and the spectral indices NDVI, NDWI, NDBI and NDBaI in the urban area of Bogota, Colombia Bogotá, Colombia during the time period from 1997 to 2022. There would be three variables: three indices and the temperature three variables: three indices and temperature, being the dependent SWIR and the independent ones the others. others. The data would be annual, between 1997 and 2022. This is due to the fact that climate variations are not as significant as in 1997 and 2022. variations are not as significant as in regions where the stations are located. In addition, there is a shortage of images. Methodologically, it will have a qualitative-quantitative approach, and for the information collection and processing will use the Google Earth Engine -GEE- platform and MiraMon software, which will be used and the MiraMon software, which offers the advantages of facilitating the calculation of spectral indices, using the Raster reclassification tool, and the the Raster reclassification tool, and the calculation of the multiple regression coefficient.pdfspaAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2LandsatTemperatura de la superficie terrestreCorrelación linealIslas de calorIndices espectralesIngeniería Topográfica -- Tesis y disertaciones académicasTemperatura superficial terrestre (LST) -- Bogotá (Colombia)Índices espectrales -- Bogotá (Colombia)Análisis de imágenes satelitales -- Bogotá (Colombia)Clima urbano -- Bogotá (Colombia)LandsatLand surface temperatureLinear correlationHeat islandsSpectral indicesVariabilidad en la correlación lineal de la temperatura superficial terrestre (LST) y los índices espectrales utilizando imágenes de satélite. Caso de estudio : Ciudad de Bogotá, ColombiaVariability in the linear correlation of land surface temperature (LST) and spectral indices using satellite imagery. (LST) and spectral indices using satellite images. Case study : City of Bogota, ColombiabachelorThesisInvestigación-Innovacióninfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fORIGINALTrabajo de gradoTrabajo de gradoArticulo principalapplication/pdf3651872https://repository.udistrital.edu.co/bitstreams/ae2a5314-bb88-4ebb-bdeb-b0adba9a341a/downloadf3d6228faa693bb1669d89b0c61a17dfMD51AnexosAnexosapplication/zip227876https://repository.udistrital.edu.co/bitstreams/0ba7c964-898e-4c01-abb6-5c016c6dba65/download6210e6852d26d2e88bcbcb90852102b4MD53Licencia de uso y autorizaciónLicencia de uso y autorizaciónLicencia y autorización de los autores para publicarapplication/pdf260688https://repository.udistrital.edu.co/bitstreams/33ef22b2-78b0-4dc8-a355-7fc393d13b7f/download83f109c2f1c6839ef2a875fa21adc19fMD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.udistrital.edu.co/bitstreams/82304154-8138-4b2c-8dba-0d14142d0803/download4460e5956bc1d1639be9ae6146a50347MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-87167https://repository.udistrital.edu.co/bitstreams/0ec38b5b-9ee7-4a18-a10e-98d65485e799/download997daf6c648c962d566d7b082dac908dMD57THUMBNAILTrabajo de grado.jpgTrabajo de grado.jpgIM Thumbnailimage/jpeg2563https://repository.udistrital.edu.co/bitstreams/9e046d9f-8465-405d-8945-c6ef14e851f4/download7310c415ee645204b26a0c947ab3cff3MD58Licencia de uso y autorización.jpgLicencia de uso y autorización.jpgIM Thumbnailimage/jpeg9511https://repository.udistrital.edu.co/bitstreams/ab66f150-10ad-4ce8-977f-81dd649809a7/downloade1dd11eae7209b954dccbe5edc1b4bedMD5911349/42298oai:repository.udistrital.edu.co:11349/422982025-01-14 01:11:25.432http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK |