Despacho económico-ambiental de centrales de generación térmica empleando el algoritmo de optimización de Newton-Raphson

Este artículo presenta una investigación centrada en la minimización de los costos de generación y la reducción de emisiones de gases de efecto invernadero en sistemas eléctricos predominantemente térmicos, utilizando un algoritmo de optimización basado en Newton-Raphson. La metodología aplicada inv...

Full description

Autores:
Tohapanta Quiranza, David Alejandro
Sedano Duque, Jairo Andrés
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
OAI Identifier:
oai:repository.udistrital.edu.co:11349/94325
Acceso en línea:
http://hdl.handle.net/11349/94325
Palabra clave:
Unidad de generación térmica
Despacho económico-ambiental
Algoritmo de optimización de Newton-Raphson
Efecto punto de válvula
Balance de potencia
Ingeniería Eléctrica -- Tesis y disertaciones académicas
Distribución de energía eléctrica
Producción de energía eléctrica
Gases de invernadero
Optimización matemática
Thermal generation unit
Economic-environmental dispatch
Newton-Raphson optimization algorithm
Valve point effect
Power balance
Rights
License
Abierto (Texto Completo)
id UDISTRITA2_74bcddcc487dfe5dacdd6f2f61625128
oai_identifier_str oai:repository.udistrital.edu.co:11349/94325
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.none.fl_str_mv Despacho económico-ambiental de centrales de generación térmica empleando el algoritmo de optimización de Newton-Raphson
dc.title.titleenglish.none.fl_str_mv Economic-environmental dispatch of thermal generation plants using the Newton-Raphson optimization algorithm
title Despacho económico-ambiental de centrales de generación térmica empleando el algoritmo de optimización de Newton-Raphson
spellingShingle Despacho económico-ambiental de centrales de generación térmica empleando el algoritmo de optimización de Newton-Raphson
Unidad de generación térmica
Despacho económico-ambiental
Algoritmo de optimización de Newton-Raphson
Efecto punto de válvula
Balance de potencia
Ingeniería Eléctrica -- Tesis y disertaciones académicas
Distribución de energía eléctrica
Producción de energía eléctrica
Gases de invernadero
Optimización matemática
Thermal generation unit
Economic-environmental dispatch
Newton-Raphson optimization algorithm
Valve point effect
Power balance
title_short Despacho económico-ambiental de centrales de generación térmica empleando el algoritmo de optimización de Newton-Raphson
title_full Despacho económico-ambiental de centrales de generación térmica empleando el algoritmo de optimización de Newton-Raphson
title_fullStr Despacho económico-ambiental de centrales de generación térmica empleando el algoritmo de optimización de Newton-Raphson
title_full_unstemmed Despacho económico-ambiental de centrales de generación térmica empleando el algoritmo de optimización de Newton-Raphson
title_sort Despacho económico-ambiental de centrales de generación térmica empleando el algoritmo de optimización de Newton-Raphson
dc.creator.fl_str_mv Tohapanta Quiranza, David Alejandro
Sedano Duque, Jairo Andrés
dc.contributor.advisor.none.fl_str_mv Montoya Giraldo, Oscar Danilo
dc.contributor.author.none.fl_str_mv Tohapanta Quiranza, David Alejandro
Sedano Duque, Jairo Andrés
dc.contributor.orcid.none.fl_str_mv Montoya Giraldo; Oscar Danilo [0000-0001-6051-4925]
dc.subject.none.fl_str_mv Unidad de generación térmica
Despacho económico-ambiental
Algoritmo de optimización de Newton-Raphson
Efecto punto de válvula
Balance de potencia
topic Unidad de generación térmica
Despacho económico-ambiental
Algoritmo de optimización de Newton-Raphson
Efecto punto de válvula
Balance de potencia
Ingeniería Eléctrica -- Tesis y disertaciones académicas
Distribución de energía eléctrica
Producción de energía eléctrica
Gases de invernadero
Optimización matemática
Thermal generation unit
Economic-environmental dispatch
Newton-Raphson optimization algorithm
Valve point effect
Power balance
dc.subject.lemb.none.fl_str_mv Ingeniería Eléctrica -- Tesis y disertaciones académicas
Distribución de energía eléctrica
Producción de energía eléctrica
Gases de invernadero
Optimización matemática
dc.subject.keyword.none.fl_str_mv Thermal generation unit
Economic-environmental dispatch
Newton-Raphson optimization algorithm
Valve point effect
Power balance
description Este artículo presenta una investigación centrada en la minimización de los costos de generación y la reducción de emisiones de gases de efecto invernadero en sistemas eléctricos predominantemente térmicos, utilizando un algoritmo de optimización basado en Newton-Raphson. La metodología aplicada involucra la resolución del problema de despacho económico-ambiental, considerando el efecto de punto de válvula y diversas restricciones operativas de los sistemas eléctricos de potencia. Se compara el rendimiento del algoritmo de Newton-Raphson con otros algoritmos empleados en casos de estudio similares. Los resultados obtenidos a partir de estudios con sistemas de generación térmica de 3 y 10 unidades muestran que el algoritmo propuesto ofrece soluciones óptimas y superiores en comparación con otros métodos. La estrategia demuestra su efectividad al equilibrar costos de combustibles y emisiones, resolviendo eficazmente el problema de despacho económico-ambiental.
publishDate 2024
dc.date.created.none.fl_str_mv 2024-11-21
dc.date.accessioned.none.fl_str_mv 2025-03-28T18:51:36Z
dc.date.available.none.fl_str_mv 2025-03-28T18:51:36Z
dc.type.none.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.degree.none.fl_str_mv Producción Académica
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/94325
url http://hdl.handle.net/11349/94325
dc.relation.references.none.fl_str_mv S. Rajasomashekar and P. Aravindhababu, “Biogeography based optimization technique for best compromise solution of economic emission dispatch,” Swarm Evol. Comput., vol. 7, pp. 47–57, 2012, doi: https://doi.org/10.1016/j.swevo.2012.06.001.
S. Duman, U. Güvenç, and N. Yörükeren, “Gravitational search algorithm for economic dispatch with valve-point effects,” Int. Rev. Electr. Eng., vol. 5, no. 6, pp. 2890–2895, 2010.
X. Xia and A. M. Elaiw, “Optimal dynamic economic dispatch of generation: A review,” Electr. Power Syst. Res., vol. 80, no. 8, pp. 975–986, 2010, doi: https://doi.org/10.1016/j.epsr.2009.12.012.
T. N. Malik, A. Ul Asar, M. F. Wyne, and S. Akhtar, “A new hybrid approach for the solution of nonconvex economic dispatch problem with valve-point effects,” Electr. Power Syst. Res., vol. 80, no. 9, pp. 1128–1136, 2010, doi: https://doi.org/10.1016/j.epsr.2010.03.004.
F. Ruiz-Tipán and A. Valenzuela, “Literary review of economic environmental dispatch considering bibliometric analysis,” Iteckne, vol. 19, no. 1, pp. 26–38, 2021, doi: https://doi.org/10.15332/iteckne.v19i1.2631.
W. Luo, X. Yu, and Y. Wei, “Solving combined economic and emission dispatch problems using reinforcement learning-based adaptive differential evolution algorithm,” Eng. Appl. Artif. Intell., vol. 126, no. PC, p. 107002, 2023, doi: https://doi.org/10.1016/j.engappai.2023.107002.
Y. Yang, S. Xia, P. Huang, and J. Qian, “Energy transition: Connotations, mechanisms and effects,” Energy Strateg. Rev., vol. 52, no. January, p. 101320, 2024, doi: https://doi.org/10.1016/j.esr.2024.101320.
S. Habib, M. Ahmadi Kamarposhti, H. Shokouhandeh, I. Colak, and E. M. Barhoumi, “Economic dispatch optimization considering operation cost and environmental constraints using the HBMO method,” Energy Reports, vol. 10, pp. 1718–1725, 2023, doi: https://doi.org/10.1016/j.egyr.2023.08.032.
K. de J. Berrio Castro, “Método de solución para el despacho económico en línea considerando restricciones y reglas de un mercado eléctrico,” p. 95, 2016, [Online]. Available: http://www.bdigital.unal.edu.co/54139/.
Y. Sharifian and H. Abdi, “Multi-area economic dispatch problem: Methods, uncertainties, and future directions,” Renew. Sustain. Energy Rev., vol. 191, p. 114093, 2024, doi: https://doi.org/10.1016/j.rser.2023.114093.
C. Ortiz Rodríguez, “Algoritmos heurísticos y metaheurísticos para el problema de localización de regeneradores.,” pp. 11–26, 2010, [Online]. Available: http://eciencia.urjc.es/handle/10115/4129.
J. S. Dhillon and D. P. Kothari, “Power System Optimization (2nd edition),” pp. 18–21, 2010.
B. Jeddi and V. Vahidinasab, “A modified harmony search method for environmental/economic load dispatch of real-world power systems,” Energy Convers. Manag., vol. 78, pp. 661–675, 2014, doi: https://doi.org/10.1016/j.enconman.2013.11.027.
B. Shaw, V. Mukherjee, and S. P. Ghoshal, “A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems,” Int. J. Electr. Power Energy Syst., vol. 35, no. 1, pp. 21–33, 2012, doi: https://doi.org/10.1016/j.ijepes.2011.08.012.
K. Bhattacharjee, A. Bhattacharya, and S. Halder Nee Dey, “Solution of Economic Emission Load Dispatch problems of power systems by Real Coded Chemical Reaction algorithm,” Int. J. Electr. Power Energy Syst., vol. 59, pp. 176–187, 2014, doi: https://doi.org/10.1016/j.ijepes.2014.02.006.
N. I. Nwulu and X. Xia, “Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs,” Energy, vol. 91, pp. 404–419, 2015, doi: https://doi.org/10.1016/j.energy.2015.08.042.
H. Wu, H. Zhuang, W. Zhang, and M. Ding, “Electrical Power and Energy Systems Optimal allocation of microgrid considering economic dispatch based on hybrid weighted bilevel planning method and algorithm improvement,” Int. J. Electr. POWER ENERGY Syst., vol. 75, pp. 28–37, 2016, doi: https://doi.org/10.1016/j.ijepes.2015.08.011.
A. Ghasemi, M. Gheydi, M. J. Golkar, and M. Eslami, “Modeling of Wind/Environment/Economic Dispatch in power system and solving via an online learning meta-heuristic method,” Appl. Soft Comput. J., vol. 43, pp. 454–468, 2016, doi: https://doi.org/10.1016/j.asoc.2016.02.046.
L. Jebaraj, C. Venkatesan, I. Soubache, and C. C. A. Rajan, “Application of differential evolution algorithm in static and dynamic economic or emission dispatch problem: A review,” Renew. Sustain. Energy Rev., vol. 77, no. March, pp. 1206–1220, 2017, doi: https://doi.org/10.1016/j.rser.2017.03.097.
M. Kheshti and L. Ding, “Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems,” Renew. Energy, 2018, doi: https://doi.org/10.1016/j.renene.2018.03.024.
N. Karthik, A. K. Parvathy, and R. Arul, “Multi-objective economic emission dispatch using interior search algorithm,” Int. Trans. Electr. Energy Syst., vol. 29, no. 1, pp. 1–18, 2019, doi: https://doi.org/10.1002/etep.2683.
G. Yuan and W. Yang, “Study on optimization of economic dispatching of electric power system based on Hybrid Intelligent Algorithms (PSO and AFSA),” Energy, vol. 183, pp. 926–935, 2019, doi: https://doi.org/10.1016/j.energy.2019.07.008.
A. Srivastava and D. K. Das, “A new Kho-Kho optimization Algorithm: An application to solve combined emission economic dispatch and combined heat and power economic dispatch problem,” Eng. Appl. Artif. Intell., vol. 94, no. January, p. 103763, 2020, doi: https://doi.org/10.1016/j.engappai.2020.103763.
M. Basu, “Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II,” Int. J. Electr. Power Energy Syst., vol. 30, no. 2, pp. 140–149, 2008, doi: https://doi.org/10.1016/j.ijepes.2007.06.009.
A. Sundaram, “Multiobjective multi-verse optimization algorithm to solve combined economic, heat and power emission dispatch problems,” Appl. Soft Comput. J., vol. 91, p. 106195, 2020, doi: https://doi.org/10.1016/j.asoc.2020.106195.
M. T. Hagh, S. M. S. Kalajahi, and N. Ghorbani, “Solution to economic emission dispatch problem including wind farms using Exchange Market Algorithm Method,” Appl. Soft Comput. J., vol. 88, p. 106044, 2020, doi: https://doi.org/10.1016/j.asoc.2019.106044.
E. H. Talbi, L. Abaali, R. Skouri, and M. El Moudden, “Solution of Economic and Environmental Power Dispatch Problem of an Electrical Power System using BFGS-AL Algorithm,” Procedia Comput. Sci., vol. 170, no. 2019, pp. 857–862, 2020, doi: https://doi.org/10.1016/j.procs.2020.03.144.
V. P. Sakthivel, M. Suman, and P. D. Sathya, “Combined economic and emission power dispatch problems through multi-objective squirrel search algorithm,” Appl. Soft Comput., vol. 100, p. 106950, 2021, doi: https://doi.org/10.1016/j.asoc.2020.106950.
L. L. Li, Z. F. Liu, M. L. Tseng, S. J. Zheng, and M. K. Lim, “Improved tunicate swarm algorithm: Solving the dynamic economic emission dispatch problems,” Appl. Soft Comput., vol. 108, p. 107504, 2021, doi: https://doi.org/10.1016/j.asoc.2021.107504.
M. H. Hassan, E. H. Houssein, M. A. Mahdy, and S. Kamel, “An improved Manta ray foraging optimizer for cost-effective emission dispatch problems,” Eng. Appl. Artif. Intell., vol. 100, no. January, p. 104155, 2021, doi: https://doi.org/10.1016/j.engappai.2021.104155.
M. H. Hassan, S. Kamel, L. Abualigah, and A. Eid, “Development and application of slime mould algorithm for optimal economic emission dispatch,” Expert Syst. Appl., vol. 182, no. May, p. 115205, 2021, doi: https://doi.org/10.1016/j.eswa.2021.115205.
Z. Liu, Y. Liu, H. Xu, S. Liao, K. Zhu, and X. Jiang, “Dynamic economic dispatch of power system based on DDPG algorithm,” Energy Reports, vol. 8, pp. 1122–1129, 2022, doi: https://doi.org/10.1016/j.egyr.2022.02.231.
M. Dashtdar et al., “Solving the environmental/economic dispatch problem using the hybrid FA-GA multi-objective algorithm,” Energy Reports, vol. 8, pp. 13766–13779, 2022, doi: https://doi.org/10.1016/j.egyr.2022.10.054.
X. Yu, Y. Duan, and W. Luo, “A knee-guided algorithm to solve multi-objective economic emission dispatch problem,” Energy, vol. 259, p. 124876, 2022, doi: https://doi.org/10.1016/j.energy.2022.124876.
M. H. Hassan, S. Kamel, F. Jurado, M. Ebeed, and M. F. Elnaggar, “Economic load dispatch solution of large-scale power systems using an enhanced beluga whale optimizer,” Alexandria Eng. J., vol. 72, pp. 573–591, 2023, doi: https://doi.org/10.1016/j.aej.2023.04.002.
R. Sowmya, M. Premkumar, and P. Jangir, “Newton-Raphson-based optimizer: A new population-based metaheuristic algorithm for continuous optimization problems,” Eng. Appl. Artif. Intell., vol. 128, no. December 2023, p. 107532, 2024, doi: https://doi.org/10.1016/j.engappai.2023.107532.
L. Wang and L. P. Li, “An effective differential harmony search algorithm for the solving non-convex economic load dispatch problems,” Int. J. Electr. Power Energy Syst., vol. 44, no. 1, pp. 832–843, 2013, doi: https://doi.org/10.1016/j.ijepes.2012.08.021.
A. Y. Abdelaziz, E. S. Ali, and S. M. Abd Elazim, “Flower pollination algorithm to solve combined economic and emission dispatch problems,” Eng. Sci. Technol. an Int. J., vol. 19, no. 2, pp. 980–990, 2016, doi: https://doi.org/10.1016/j.jestch.2015.11.005.
I. Ahmadianfar, O. Bozorg-Haddad, and X. Chu, “Gradient-based optimizer: A new metaheuristic optimization algorithm,” Inf. Sci. (Ny)., vol. 540, pp. 131–159, 2020, doi: https://doi.org/10.1016/j.ins.2020.06.037.
K. Senthil, “Combined Economic Emission Dispatch using Evolutionary Programming Technique,” Ecot, pp. 62–66, 2010, doi: https://doi.org/10.5120/1539-142.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.none.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv pdf
institution Universidad Distrital Francisco José de Caldas
bitstream.url.fl_str_mv https://repository.udistrital.edu.co/bitstreams/82eb73fb-8cd5-42d8-84f0-6025cdbb3658/download
https://repository.udistrital.edu.co/bitstreams/1f4173bf-e917-46a9-a5b1-4bdafd17038b/download
https://repository.udistrital.edu.co/bitstreams/42e5658b-eccb-4406-b952-245f0ddc2c7e/download
bitstream.checksum.fl_str_mv 3a7b8aa5179f8c15d529236d9ccd6081
738be1d70e03a56e40b84b558477339e
997daf6c648c962d566d7b082dac908d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Distrital
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1837007018206953472
spelling Montoya Giraldo, Oscar DaniloTohapanta Quiranza, David AlejandroSedano Duque, Jairo AndrésMontoya Giraldo; Oscar Danilo [0000-0001-6051-4925]2025-03-28T18:51:36Z2025-03-28T18:51:36Z2024-11-21http://hdl.handle.net/11349/94325Este artículo presenta una investigación centrada en la minimización de los costos de generación y la reducción de emisiones de gases de efecto invernadero en sistemas eléctricos predominantemente térmicos, utilizando un algoritmo de optimización basado en Newton-Raphson. La metodología aplicada involucra la resolución del problema de despacho económico-ambiental, considerando el efecto de punto de válvula y diversas restricciones operativas de los sistemas eléctricos de potencia. Se compara el rendimiento del algoritmo de Newton-Raphson con otros algoritmos empleados en casos de estudio similares. Los resultados obtenidos a partir de estudios con sistemas de generación térmica de 3 y 10 unidades muestran que el algoritmo propuesto ofrece soluciones óptimas y superiores en comparación con otros métodos. La estrategia demuestra su efectividad al equilibrar costos de combustibles y emisiones, resolviendo eficazmente el problema de despacho económico-ambiental.This article presents research focused on minimizing generation costs and reducing greenhouse gas emissions in predominantly thermal power systems, using a Newton-Raphson-based optimization algorithm. The applied methodology involves the resolution of the economic-environmental dispatch problem, considering the valve point effect and various operational restrictions of electrical power systems. The performance of the Newton-Raphson algorithm is compared with other algorithms used in similar case studies. The results obtained from studies with thermal generation systems of 3 and 10 units show that the proposed algorithm offers optimal and superior solutions compared to other methods. The strategy demonstrates its effectiveness by balancing fuel costs and emissions, effectively solving the economic-environmental dispatch problem.pdfUnidad de generación térmicaDespacho económico-ambientalAlgoritmo de optimización de Newton-RaphsonEfecto punto de válvulaBalance de potenciaIngeniería Eléctrica -- Tesis y disertaciones académicasDistribución de energía eléctricaProducción de energía eléctricaGases de invernaderoOptimización matemáticaThermal generation unitEconomic-environmental dispatchNewton-Raphson optimization algorithmValve point effectPower balanceDespacho económico-ambiental de centrales de generación térmica empleando el algoritmo de optimización de Newton-RaphsonEconomic-environmental dispatch of thermal generation plants using the Newton-Raphson optimization algorithmbachelorThesisProducción Académicahttp://purl.org/coar/resource_type/c_7a1fAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2S. Rajasomashekar and P. Aravindhababu, “Biogeography based optimization technique for best compromise solution of economic emission dispatch,” Swarm Evol. Comput., vol. 7, pp. 47–57, 2012, doi: https://doi.org/10.1016/j.swevo.2012.06.001.S. Duman, U. Güvenç, and N. Yörükeren, “Gravitational search algorithm for economic dispatch with valve-point effects,” Int. Rev. Electr. Eng., vol. 5, no. 6, pp. 2890–2895, 2010.X. Xia and A. M. Elaiw, “Optimal dynamic economic dispatch of generation: A review,” Electr. Power Syst. Res., vol. 80, no. 8, pp. 975–986, 2010, doi: https://doi.org/10.1016/j.epsr.2009.12.012.T. N. Malik, A. Ul Asar, M. F. Wyne, and S. Akhtar, “A new hybrid approach for the solution of nonconvex economic dispatch problem with valve-point effects,” Electr. Power Syst. Res., vol. 80, no. 9, pp. 1128–1136, 2010, doi: https://doi.org/10.1016/j.epsr.2010.03.004.F. Ruiz-Tipán and A. Valenzuela, “Literary review of economic environmental dispatch considering bibliometric analysis,” Iteckne, vol. 19, no. 1, pp. 26–38, 2021, doi: https://doi.org/10.15332/iteckne.v19i1.2631.W. Luo, X. Yu, and Y. Wei, “Solving combined economic and emission dispatch problems using reinforcement learning-based adaptive differential evolution algorithm,” Eng. Appl. Artif. Intell., vol. 126, no. PC, p. 107002, 2023, doi: https://doi.org/10.1016/j.engappai.2023.107002.Y. Yang, S. Xia, P. Huang, and J. Qian, “Energy transition: Connotations, mechanisms and effects,” Energy Strateg. Rev., vol. 52, no. January, p. 101320, 2024, doi: https://doi.org/10.1016/j.esr.2024.101320.S. Habib, M. Ahmadi Kamarposhti, H. Shokouhandeh, I. Colak, and E. M. Barhoumi, “Economic dispatch optimization considering operation cost and environmental constraints using the HBMO method,” Energy Reports, vol. 10, pp. 1718–1725, 2023, doi: https://doi.org/10.1016/j.egyr.2023.08.032.K. de J. Berrio Castro, “Método de solución para el despacho económico en línea considerando restricciones y reglas de un mercado eléctrico,” p. 95, 2016, [Online]. Available: http://www.bdigital.unal.edu.co/54139/.Y. Sharifian and H. Abdi, “Multi-area economic dispatch problem: Methods, uncertainties, and future directions,” Renew. Sustain. Energy Rev., vol. 191, p. 114093, 2024, doi: https://doi.org/10.1016/j.rser.2023.114093.C. Ortiz Rodríguez, “Algoritmos heurísticos y metaheurísticos para el problema de localización de regeneradores.,” pp. 11–26, 2010, [Online]. Available: http://eciencia.urjc.es/handle/10115/4129.J. S. Dhillon and D. P. Kothari, “Power System Optimization (2nd edition),” pp. 18–21, 2010.B. Jeddi and V. Vahidinasab, “A modified harmony search method for environmental/economic load dispatch of real-world power systems,” Energy Convers. Manag., vol. 78, pp. 661–675, 2014, doi: https://doi.org/10.1016/j.enconman.2013.11.027.B. Shaw, V. Mukherjee, and S. P. Ghoshal, “A novel opposition-based gravitational search algorithm for combined economic and emission dispatch problems of power systems,” Int. J. Electr. Power Energy Syst., vol. 35, no. 1, pp. 21–33, 2012, doi: https://doi.org/10.1016/j.ijepes.2011.08.012.K. Bhattacharjee, A. Bhattacharya, and S. Halder Nee Dey, “Solution of Economic Emission Load Dispatch problems of power systems by Real Coded Chemical Reaction algorithm,” Int. J. Electr. Power Energy Syst., vol. 59, pp. 176–187, 2014, doi: https://doi.org/10.1016/j.ijepes.2014.02.006.N. I. Nwulu and X. Xia, “Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs,” Energy, vol. 91, pp. 404–419, 2015, doi: https://doi.org/10.1016/j.energy.2015.08.042.H. Wu, H. Zhuang, W. Zhang, and M. Ding, “Electrical Power and Energy Systems Optimal allocation of microgrid considering economic dispatch based on hybrid weighted bilevel planning method and algorithm improvement,” Int. J. Electr. POWER ENERGY Syst., vol. 75, pp. 28–37, 2016, doi: https://doi.org/10.1016/j.ijepes.2015.08.011.A. Ghasemi, M. Gheydi, M. J. Golkar, and M. Eslami, “Modeling of Wind/Environment/Economic Dispatch in power system and solving via an online learning meta-heuristic method,” Appl. Soft Comput. J., vol. 43, pp. 454–468, 2016, doi: https://doi.org/10.1016/j.asoc.2016.02.046.L. Jebaraj, C. Venkatesan, I. Soubache, and C. C. A. Rajan, “Application of differential evolution algorithm in static and dynamic economic or emission dispatch problem: A review,” Renew. Sustain. Energy Rev., vol. 77, no. March, pp. 1206–1220, 2017, doi: https://doi.org/10.1016/j.rser.2017.03.097.M. Kheshti and L. Ding, “Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems,” Renew. Energy, 2018, doi: https://doi.org/10.1016/j.renene.2018.03.024.N. Karthik, A. K. Parvathy, and R. Arul, “Multi-objective economic emission dispatch using interior search algorithm,” Int. Trans. Electr. Energy Syst., vol. 29, no. 1, pp. 1–18, 2019, doi: https://doi.org/10.1002/etep.2683.G. Yuan and W. Yang, “Study on optimization of economic dispatching of electric power system based on Hybrid Intelligent Algorithms (PSO and AFSA),” Energy, vol. 183, pp. 926–935, 2019, doi: https://doi.org/10.1016/j.energy.2019.07.008.A. Srivastava and D. K. Das, “A new Kho-Kho optimization Algorithm: An application to solve combined emission economic dispatch and combined heat and power economic dispatch problem,” Eng. Appl. Artif. Intell., vol. 94, no. January, p. 103763, 2020, doi: https://doi.org/10.1016/j.engappai.2020.103763.M. Basu, “Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II,” Int. J. Electr. Power Energy Syst., vol. 30, no. 2, pp. 140–149, 2008, doi: https://doi.org/10.1016/j.ijepes.2007.06.009.A. Sundaram, “Multiobjective multi-verse optimization algorithm to solve combined economic, heat and power emission dispatch problems,” Appl. Soft Comput. J., vol. 91, p. 106195, 2020, doi: https://doi.org/10.1016/j.asoc.2020.106195.M. T. Hagh, S. M. S. Kalajahi, and N. Ghorbani, “Solution to economic emission dispatch problem including wind farms using Exchange Market Algorithm Method,” Appl. Soft Comput. J., vol. 88, p. 106044, 2020, doi: https://doi.org/10.1016/j.asoc.2019.106044.E. H. Talbi, L. Abaali, R. Skouri, and M. El Moudden, “Solution of Economic and Environmental Power Dispatch Problem of an Electrical Power System using BFGS-AL Algorithm,” Procedia Comput. Sci., vol. 170, no. 2019, pp. 857–862, 2020, doi: https://doi.org/10.1016/j.procs.2020.03.144.V. P. Sakthivel, M. Suman, and P. D. Sathya, “Combined economic and emission power dispatch problems through multi-objective squirrel search algorithm,” Appl. Soft Comput., vol. 100, p. 106950, 2021, doi: https://doi.org/10.1016/j.asoc.2020.106950.L. L. Li, Z. F. Liu, M. L. Tseng, S. J. Zheng, and M. K. Lim, “Improved tunicate swarm algorithm: Solving the dynamic economic emission dispatch problems,” Appl. Soft Comput., vol. 108, p. 107504, 2021, doi: https://doi.org/10.1016/j.asoc.2021.107504.M. H. Hassan, E. H. Houssein, M. A. Mahdy, and S. Kamel, “An improved Manta ray foraging optimizer for cost-effective emission dispatch problems,” Eng. Appl. Artif. Intell., vol. 100, no. January, p. 104155, 2021, doi: https://doi.org/10.1016/j.engappai.2021.104155.M. H. Hassan, S. Kamel, L. Abualigah, and A. Eid, “Development and application of slime mould algorithm for optimal economic emission dispatch,” Expert Syst. Appl., vol. 182, no. May, p. 115205, 2021, doi: https://doi.org/10.1016/j.eswa.2021.115205.Z. Liu, Y. Liu, H. Xu, S. Liao, K. Zhu, and X. Jiang, “Dynamic economic dispatch of power system based on DDPG algorithm,” Energy Reports, vol. 8, pp. 1122–1129, 2022, doi: https://doi.org/10.1016/j.egyr.2022.02.231.M. Dashtdar et al., “Solving the environmental/economic dispatch problem using the hybrid FA-GA multi-objective algorithm,” Energy Reports, vol. 8, pp. 13766–13779, 2022, doi: https://doi.org/10.1016/j.egyr.2022.10.054.X. Yu, Y. Duan, and W. Luo, “A knee-guided algorithm to solve multi-objective economic emission dispatch problem,” Energy, vol. 259, p. 124876, 2022, doi: https://doi.org/10.1016/j.energy.2022.124876.M. H. Hassan, S. Kamel, F. Jurado, M. Ebeed, and M. F. Elnaggar, “Economic load dispatch solution of large-scale power systems using an enhanced beluga whale optimizer,” Alexandria Eng. J., vol. 72, pp. 573–591, 2023, doi: https://doi.org/10.1016/j.aej.2023.04.002.R. Sowmya, M. Premkumar, and P. Jangir, “Newton-Raphson-based optimizer: A new population-based metaheuristic algorithm for continuous optimization problems,” Eng. Appl. Artif. Intell., vol. 128, no. December 2023, p. 107532, 2024, doi: https://doi.org/10.1016/j.engappai.2023.107532.L. Wang and L. P. Li, “An effective differential harmony search algorithm for the solving non-convex economic load dispatch problems,” Int. J. Electr. Power Energy Syst., vol. 44, no. 1, pp. 832–843, 2013, doi: https://doi.org/10.1016/j.ijepes.2012.08.021.A. Y. Abdelaziz, E. S. Ali, and S. M. Abd Elazim, “Flower pollination algorithm to solve combined economic and emission dispatch problems,” Eng. Sci. Technol. an Int. J., vol. 19, no. 2, pp. 980–990, 2016, doi: https://doi.org/10.1016/j.jestch.2015.11.005.I. Ahmadianfar, O. Bozorg-Haddad, and X. Chu, “Gradient-based optimizer: A new metaheuristic optimization algorithm,” Inf. Sci. (Ny)., vol. 540, pp. 131–159, 2020, doi: https://doi.org/10.1016/j.ins.2020.06.037.K. Senthil, “Combined Economic Emission Dispatch using Evolutionary Programming Technique,” Ecot, pp. 62–66, 2010, doi: https://doi.org/10.5120/1539-142.ORIGINALSedanoDuqueJairoAndres2024.pdfSedanoDuqueJairoAndres2024.pdfapplication/pdf738555https://repository.udistrital.edu.co/bitstreams/82eb73fb-8cd5-42d8-84f0-6025cdbb3658/download3a7b8aa5179f8c15d529236d9ccd6081MD51Licencia de uso y autorizaciónLicencia de uso y autorizaciónapplication/pdf638991https://repository.udistrital.edu.co/bitstreams/1f4173bf-e917-46a9-a5b1-4bdafd17038b/download738be1d70e03a56e40b84b558477339eMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-87167https://repository.udistrital.edu.co/bitstreams/42e5658b-eccb-4406-b952-245f0ddc2c7e/download997daf6c648c962d566d7b082dac908dMD5311349/94325oai:repository.udistrital.edu.co:11349/943252025-03-28 13:51:38.95open.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK