Sobre relaciones asintóticas de sistemas ortogonales tipo Sóbolev

La presente monografía está basada en el artículo Relative Asymptotics for Orthogonal Polynomials with a Sobolev Inner Product de Francisco Marcellán y Walter Van Assche. En este trabajo se propone estudiar y detallar las demostraciones dadas en el artículo de los teoremas que establecen la relación...

Full description

Autores:
Hortua Tamayo, Xiury Noraya
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/23751
Acceso en línea:
http://hdl.handle.net/11349/23751
Palabra clave:
Sistemas ortogonales de polinomios
Clases de Nevai
Producto interno tipo Sóbolev
Soporte de una medida
Matemáticas - Tesis y disertaciones académica
Teoría de polinomios
Matemáticas - Enseñanza
Orthogonal systems of polynomials
Rights
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UDISTRITA2_38cbb91eabd32e511c671ea71c85cf7f
oai_identifier_str oai:repository.udistrital.edu.co:11349/23751
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.spa.fl_str_mv Sobre relaciones asintóticas de sistemas ortogonales tipo Sóbolev
dc.title.titleenglish.spa.fl_str_mv About asymptotic relations of Sobolev-type orthogonal systems
title Sobre relaciones asintóticas de sistemas ortogonales tipo Sóbolev
spellingShingle Sobre relaciones asintóticas de sistemas ortogonales tipo Sóbolev
Sistemas ortogonales de polinomios
Clases de Nevai
Producto interno tipo Sóbolev
Soporte de una medida
Matemáticas - Tesis y disertaciones académica
Teoría de polinomios
Matemáticas - Enseñanza
Orthogonal systems of polynomials
title_short Sobre relaciones asintóticas de sistemas ortogonales tipo Sóbolev
title_full Sobre relaciones asintóticas de sistemas ortogonales tipo Sóbolev
title_fullStr Sobre relaciones asintóticas de sistemas ortogonales tipo Sóbolev
title_full_unstemmed Sobre relaciones asintóticas de sistemas ortogonales tipo Sóbolev
title_sort Sobre relaciones asintóticas de sistemas ortogonales tipo Sóbolev
dc.creator.fl_str_mv Hortua Tamayo, Xiury Noraya
dc.contributor.advisor.spa.fl_str_mv Mora Valbuena, Luis Oriol
dc.contributor.author.spa.fl_str_mv Hortua Tamayo, Xiury Noraya
dc.subject.spa.fl_str_mv Sistemas ortogonales de polinomios
Clases de Nevai
Producto interno tipo Sóbolev
Soporte de una medida
topic Sistemas ortogonales de polinomios
Clases de Nevai
Producto interno tipo Sóbolev
Soporte de una medida
Matemáticas - Tesis y disertaciones académica
Teoría de polinomios
Matemáticas - Enseñanza
Orthogonal systems of polynomials
dc.subject.lemb.spa.fl_str_mv Matemáticas - Tesis y disertaciones académica
Teoría de polinomios
Matemáticas - Enseñanza
dc.subject.keyword.spa.fl_str_mv Orthogonal systems of polynomials
description La presente monografía está basada en el artículo Relative Asymptotics for Orthogonal Polynomials with a Sobolev Inner Product de Francisco Marcellán y Walter Van Assche. En este trabajo se propone estudiar y detallar las demostraciones dadas en el artículo de los teoremas que establecen la relación asintótica entre un sistema ortogonal de polinomios con respecto a un producto interno tipo Sóbolev y un sistema ortogonal de polinomios con respecto a una medida que pertenece a la clase de Nevai M(0,1).
publishDate 2019
dc.date.created.spa.fl_str_mv 2019-10-28
dc.date.accessioned.none.fl_str_mv 2020-05-29T23:51:38Z
dc.date.available.none.fl_str_mv 2020-05-29T23:51:38Z
dc.type.degree.spa.fl_str_mv Monografía
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/23751
url http://hdl.handle.net/11349/23751
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv pdf
institution Universidad Distrital Francisco José de Caldas
bitstream.url.fl_str_mv https://repository.udistrital.edu.co/bitstreams/4fb9b441-06ba-4de9-b2a7-c5910863aa6b/download
https://repository.udistrital.edu.co/bitstreams/70ac8d57-fbee-47a0-aa88-719986ec08cb/download
https://repository.udistrital.edu.co/bitstreams/cb79e2c8-9f93-48d2-8ad1-9fc7a4d5e462/download
https://repository.udistrital.edu.co/bitstreams/cf7265fd-c0e0-4aa4-a653-6b808fd11212/download
https://repository.udistrital.edu.co/bitstreams/b2a7bd9b-1a88-429a-a8c5-23321bd1e32a/download
https://repository.udistrital.edu.co/bitstreams/c02801c9-00a6-4db1-84d8-b9f4182bf939/download
bitstream.checksum.fl_str_mv 6b299a8aafe39c3d2301156b21218d32
da5c6a3ca62d5dd4853000a60fee7083
cd1a2b9bb35aecd08e8612c797493b62
321f3992dd3875151d8801b773ab32ed
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Distrital
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1837007267824664576
spelling Mora Valbuena, Luis OriolHortua Tamayo, Xiury Noraya2020-05-29T23:51:38Z2020-05-29T23:51:38Z2019-10-28http://hdl.handle.net/11349/23751La presente monografía está basada en el artículo Relative Asymptotics for Orthogonal Polynomials with a Sobolev Inner Product de Francisco Marcellán y Walter Van Assche. En este trabajo se propone estudiar y detallar las demostraciones dadas en el artículo de los teoremas que establecen la relación asintótica entre un sistema ortogonal de polinomios con respecto a un producto interno tipo Sóbolev y un sistema ortogonal de polinomios con respecto a una medida que pertenece a la clase de Nevai M(0,1).This monograph is based on the article "Relative Asymptotics for Orthogonal Polynomials with a Sobolev Inner Product" by Francisco Marcellán and Walter Van Assche. The goal of this work is to study and detail the proofs given in the article of the theorems that establish the asymptotic relation between a system of orthogonal polynomials respecting to a Sobolev-type inner product and a system of orthogonal polynomials respecting to a Nevai's class M(0,1) measure.pdfspaAtribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Sistemas ortogonales de polinomiosClases de NevaiProducto interno tipo SóbolevSoporte de una medidaMatemáticas - Tesis y disertaciones académicaTeoría de polinomiosMatemáticas - EnseñanzaOrthogonal systems of polynomialsSobre relaciones asintóticas de sistemas ortogonales tipo SóbolevAbout asymptotic relations of Sobolev-type orthogonal systemsMonografíainfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fTHUMBNAILHortuaTamayoXiuryNoraya2019.pdf.jpgHortuaTamayoXiuryNoraya2019.pdf.jpgIM Thumbnailimage/jpeg6292https://repository.udistrital.edu.co/bitstreams/4fb9b441-06ba-4de9-b2a7-c5910863aa6b/download6b299a8aafe39c3d2301156b21218d32MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-87163https://repository.udistrital.edu.co/bitstreams/70ac8d57-fbee-47a0-aa88-719986ec08cb/downloadda5c6a3ca62d5dd4853000a60fee7083MD55ORIGINALHortuaTamayoXiuryNoraya2019.pdfHortuaTamayoXiuryNoraya2019.pdfapplication/pdf693848https://repository.udistrital.edu.co/bitstreams/cb79e2c8-9f93-48d2-8ad1-9fc7a4d5e462/downloadcd1a2b9bb35aecd08e8612c797493b62MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-843https://repository.udistrital.edu.co/bitstreams/cf7265fd-c0e0-4aa4-a653-6b808fd11212/download321f3992dd3875151d8801b773ab32edMD52license_textlicense_texttext/html; charset=utf-80https://repository.udistrital.edu.co/bitstreams/b2a7bd9b-1a88-429a-a8c5-23321bd1e32a/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://repository.udistrital.edu.co/bitstreams/c02801c9-00a6-4db1-84d8-b9f4182bf939/downloadd41d8cd98f00b204e9800998ecf8427eMD5411349/23751oai:repository.udistrital.edu.co:11349/237512023-10-03 10:31:58.147http://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacionalopen.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMClTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIHVzbyBwYXJhIHB1YmxpY2FjacOzbiBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChSSVVEKQoKQ29tbyB0aXR1bGFyKGVzKSBkZWwob3MpIGRlcmVjaG8ocykgZGUgYXV0b3IsIGNvbmZpZXJvIChlcmltb3MpIGEgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMgKGVuIGFkZWxhbnRlLCBMQSBVTklWRVJTSURBRCkgdW5hIGxpY2VuY2lhIHBhcmEgdXNvIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBpbnRlZ3JhcsOhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgKGVuIGFkZWxhbnRlLCBSSVVEKSwgZGUgYWN1ZXJkbyBhIGxhcyBzaWd1aWVudGVzIHJlZ2xhcywgbGFzIGN1YWxlcyBkZWNsYXJvIChhbW9zKSBjb25vY2VyIHkgYWNlcHRhcjoKCmEpCUVzdGFyw6EgdmlnZW50ZSBhIHBhcnRpciBkZSBsYSBmZWNoYSBlbiBxdWUgc2UgaW5jbHV5YSBlbiBlbCBSSVVEIHkgaGFzdGEgcG9yIHVuIHBsYXpvIGRlIGRpZXogKDEwKSBBw7FvcywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gcXVlIGR1cmUgZWwgZGVyZWNobyBQYXRyaW1vbmlhbCBkZWwgYXV0b3I7IGxhIGN1YWwgcG9kcsOhIGRhcnNlIHBvciB0ZXJtaW5hZGEgcHJldmlhIHNvbGljaXR1ZCBhIExBIFVOSVZFUlNJREFEIHBvciBlc2NyaXRvIGNvbiB1bmEgYW50ZWxhY2nDs24gZGUgZG9zICgyKSBtZXNlcyBhbnRlcyBkZWwgdmVuY2ltaWVudG8gZGVsIHBsYXpvIGluaWNpYWwgbyBlbCBkZSBzdShzKSBwcsOzcnJvZ2EocykuICAKCmIpCUxBIFVOSVZFUlNJREFEIHBvZHLDoSBwdWJsaWNhciBsYSBvYnJhIGVuIGxhcyBkaXN0aW50YXMgdmVyc2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVsIFJJVUQgKGRpZ2l0YWwsIGltcHJlc28sIGVsZWN0csOzbmljbyB1IG90cm8gbWVkaW8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikgTEEgVU5JVkVSU0lEQUQgbm8gc2Vyw6EgcmVzcG9uc2FibGUgZW4gZWwgZXZlbnRvIHF1ZSBlbCBkb2N1bWVudG8gYXBhcmV6Y2EgcmVmZXJlbmNpYWRvIGVuIG1vdG9yZXMgZGUgYsO6c3F1ZWRhIG8gcmVwb3NpdG9yaW9zIGRpZmVyZW50ZXMgYWwgUklVRCwgdW5hIHZleiBlbChvcykgYXV0b3IoZXMpIHNvbGljaXRlbiBzdSBlbGltaW5hY2nDs24gZGVsIFJJVUQsIGRhZG8gcXVlIGxhIG1pc21hIHNlcsOhIHB1YmxpY2FkYSBlbiBJbnRlcm5ldC4gCgpjKQlMYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIGxvcyBhdXRvcmVzIHJlbnVuY2lhbiBhIHJlY2liaXIgYmVuZWZpY2lvIGFsZ3VubyBwb3IgbGEgcHVibGljYWNpw7NuLCBkaXN0cmlidWNpw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSBkZSB1c28gY29uIHF1ZSBzZSBwdWJsaWNhIChDcmVhdGl2ZSBDb21tb25zKS4KCmQpCUxvcyBjb250ZW5pZG9zIHB1YmxpY2Fkb3MgZW4gZWwgUklVRCBzb24gb2JyYShzKSBvcmlnaW5hbChlcykgc29icmUgbGEgY3VhbChlcykgZWwob3MpIGF1dG9yKGVzKSBjb21vIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IsIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgTEEgVU5JVkVSU0lEQUQgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gTEEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uCgplKQlMQSBVTklWRVJTSURBRCBwb2Ryw6EgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIG1heGltaXphciBsYSB2aXNpYmlsaWRhZCBlbCB1c28geSBlbCBpbXBhY3RvIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhLCBhcnTDrXN0aWNhIHkgYWNhZMOpbWljYSBlbiBsYSBjb211bmlkYWQgbG9jYWwsIG5hY2lvbmFsIG8gaW50ZXJuYWNpb25hbC4gCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbyAJCkF1dG9yCUFwZWxsaWRvcwlOb21icmVzCjEJCQoyCQkKMwkJCiAKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8gIAoKaykJQWNlcHRvKGFtb3MpIHF1ZSBMQSBVTklWRVJTSURBRCBubyBzZSByZXNwb25zYWJpbGl6YSBwb3IgbGFzIGluZnJhY2Npb25lcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIERlcmVjaG9zIGRlIEF1dG9yIGNhdXNhZGFzIHBvciBsb3MgdGl0dWxhcmVzIGRlIGxhIHByZXNlbnRlIExpY2VuY2lhIHkgZGVjbGFyYW1vcyBxdWUgbWFudGVuZHLDqSAoZW1vcykgaW5kZW1uZSBhIExBIFVOSVZFUlNJREFEIHBvciBsYXMgcmVjbGFtYWNpb25lcyBsZWdhbGVzIGRlIGN1YWxxdWllciB0aXBvIHF1ZSBsbGVnYXJlbiBhIHByZXNlbnRhcnNlIHBvciB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGEgbGEgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gZGUgQXV0b3IgcmVsYWNpb25hZG9zIGNvbiBsb3MgZG9jdW1lbnRvcyByZWdpc3RyYWRvcyBlbiBlbCBSSVVELgoKbCkJRWwgKGxvcykgYXV0b3IoZXMpIG1hbmlmaWVzdGEobW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCwgZGUgZXhjbHVzaXZhIGF1dG9yw61hLCB5IHNlIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zOyBkZSB0YWwgc3VlcnRlLCBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhLCBlbCAobG9zKSBlc3R1ZGlhbnRlKHMpIOKAkyBhdXRvcihlcykgYXN1bWlyw6EobikgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgeSBzYWxkcsOhKG4pIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zLiBQYXJhIHRvZG9zIGxvcyBlZmVjdG9zLCBMQSBVTklWRVJTSURBRCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAgIAoKCm0pCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGNvbm96Y28oY2Vtb3MpIGxhIGF1dG9ub23DrWEgeSBsb3MgZGVyZWNob3MsIHF1ZSBwb3NlZShtb3MpIHNvYnJlIGxhIG9icmEgeSwgY29tbyB0YWwsIGVzIChzb21vcykgcmVzcG9uc2FibGUocykgZGVsIGFsY2FuY2UganVyw61kaWNvIHkgbGVnYWwsIGRlIGVzY29nZXIgbGEgb3BjacOzbiBkZSBsYSBwdWJsaWNhY2nDs24gbyBkZSByZXN0cmljY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIGRlbCBkb2N1bWVudG8gcmVnaXN0cmFkbyBlbiBlbCBSSVVELgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgCkRFUkVDSE9TIFkgT0JMSUdBQ0lPTkVTIFJFUVVFUklET1MgUE9SIEVMIFJFU1BFQ1RJVk8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKCgoKCgoKCgoKCgoKCgoKCgoKCgpFbiBjb25zdGFuY2lhIGRlIGxvIGFudGVyaW9yLCBmaXJtbyhhbW9zKSBlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGVuIGxhIGNpdWRhZCBkZSBCb2dvdMOhLCBELkMuLCBhIGxvcyAKCgpGSVJNQSBERSBMT1MgVElUVUxBUkVTIERFIERFUkVDSE9TIERFIEFVVE9SCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCUNvcnJlbyBFbGVjdHLDs25pY28gCjEJCjIJCjMJCgpOb21icmUgZGUgRGlyZWN0b3IoZXMpIGRlIEdyYWRvOgoKMQkKMgkKMwkKCk5vbWJyZSBGYWN1bHRhZCB5IFByb3llY3RvIEN1cnJpY3VsYXI6CgpGYWN1bHRhZAlQcm95ZWN0byBDdXJyaWN1bGFyCgkKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEKCgo=