Plasticidad sináptica para mitigar el problema del olvido catastrófico durante el aprendizaje continuo en redes neuronales artificiales
RESUMEN : Abordar el problema del olvido catastrófico en redes neuronales artificiales (ANNs), es crucial en la liberación de su potencial para adaptarse y aprender continuamente en diferentes contextos y dominios sin perder el conocimiento previamente aprendido. Mitigarlo puede convertir a las ANNs...
- Autores:
-
Campaña Rosero, Jairo David
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/35601
- Acceso en línea:
- https://hdl.handle.net/10495/35601
- Palabra clave:
- Redes Neurales de la Computación
Neural Networks, Computer
Pruebas Neuropsicológicas
Neuropsychological Tests
Aprendizaje a lo largo de la vida
Lifelong learning
Machine Learning
Computación neural y evolutiva
http://vocabularies.unesco.org/thesaurus/concept1488
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/2.5/co/
| Summary: | RESUMEN : Abordar el problema del olvido catastrófico en redes neuronales artificiales (ANNs), es crucial en la liberación de su potencial para adaptarse y aprender continuamente en diferentes contextos y dominios sin perder el conocimiento previamente aprendido. Mitigarlo puede convertir a las ANNs en sistemas óptimos y versátiles. Este estudio realiza un análisis comparativo de dos estrategias de aprendizaje continuo bio-inspiradas en la plasticidad sináptica: Learning to Continually Learn (LCL) y Continual Learning Through Synaptic Intelligence (SI). Estas estrategias buscan mitigar el problema del olvido catastrófico en el contexto de clasificación de imágenes. La investigación evalúa y contrasta las capacidades de LCL y SI para permitirle a las ANNs aprender continuamente en múltiples tareas y dominios. Los resultados experimentales muestran como las estrategias se desempeñan en tres escenarios. Pese a su baja capacidad de representación, la estrategia LCL muestra comportamientos interesantes, como tasas de olvido relativamente bajas, permitiéndole aprender nuevas clases o instancias sin afectar negativamente las previamente aprendidas. Por otro lado, la estrategia SI presentó problemas graves de olvido catastrófico al aprender nuevas clases. Esta investigación ofrece información valiosa sobre el comportamiento de las estrategias LCL y SI, basadas en la plasticidad sináptica, para abordar el problema del olvido catastrófico en las ANNs. Las implicaciones de estos resultados destacan la importancia de investigaciones y desarrollos adicionales, para refinar las estrategias de aprendizaje continuo y ampliar su impacto potencial en diversas aplicaciones de inteligencia artificial. Este estudio contribuye a la búsqueda de modelos de aprendizaje más adaptables y eficientes. |
|---|
