Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors

ABSTRACT: The use of biomaterials has proven to be an excellent alternative in tissue regeneration due to the many possibilities they can offer. Bioactive glasses are a group of bioceramics that are being used in bone tissue engineering thanks to their biological properties, one of those being the b...

Full description

Autores:
Quintero Sierra, Lindsey Alejandra
Escobar Sierra, Diana Marcela
Tipo de recurso:
Article of investigation
Fecha de publicación:
2019
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/34464
Acceso en línea:
https://hdl.handle.net/10495/34464
Palabra clave:
Vitrocerámica
Glass-ceramics
Materiales biomédicos
Biomedical materials
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id UDEA2_fd7c88770ef64ba41a3e2e8b7f509446
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/34464
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors
dc.title.translated.spa.fl_str_mv Caracterización y comportamiento bioactivo de vitrocerámica bioactiva sintetizada por vía sol-gel usando precursores no convencionales
title Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors
spellingShingle Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors
Vitrocerámica
Glass-ceramics
Materiales biomédicos
Biomedical materials
title_short Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors
title_full Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors
title_fullStr Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors
title_full_unstemmed Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors
title_sort Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors
dc.creator.fl_str_mv Quintero Sierra, Lindsey Alejandra
Escobar Sierra, Diana Marcela
dc.contributor.author.none.fl_str_mv Quintero Sierra, Lindsey Alejandra
Escobar Sierra, Diana Marcela
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Biomateriales
dc.subject.lemb.none.fl_str_mv Vitrocerámica
Glass-ceramics
Materiales biomédicos
Biomedical materials
topic Vitrocerámica
Glass-ceramics
Materiales biomédicos
Biomedical materials
description ABSTRACT: The use of biomaterials has proven to be an excellent alternative in tissue regeneration due to the many possibilities they can offer. Bioactive glasses are a group of bioceramics that are being used in bone tissue engineering thanks to their biological properties, one of those being the bioactivity behavior. These bioactive glasses require a stabilization process by thermal treatments that partially crystallize the structure acquiring a vitroceramic state. In this study, sol–gel-derived bioactive vitroceramic was synthesized in a ternary system using non-conventional calcium and phosphate precursors in order to evaluate its bioactivity in the presence of simulated body fluid (SBF). The obtained bioactive vitroceramic was evaluated through XRD, FTIR, Raman and SEM to measure its chemical composition and morphology. The bioactivity test was carried out using cylindrical discs made with bioactive vitroceramic; those discs were analyzed in 7 and 14 days of exposition. The formed layer was studied with XRD, FTIR, SEM and EDX analysis. The results have shown that synthesized bioactive vitroceramic has similar composition and crystallinity of those reported in the same system indicating the appropriate use of different precursors. Likewise, the bioactivity behavior showed the formation of a non-crystalline hydroxyapatite layer on bioactive vitroceramic surface with a Ca/P ratio similar to that in bone, which means that the synthesized material can be used in bone tissue engineering
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2023-04-04T22:57:02Z
dc.date.available.none.fl_str_mv 2023-04-04T22:57:02Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0366-3175
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/34464
dc.identifier.doi.none.fl_str_mv 10.1016/j.bsecv.2018.07.003
dc.identifier.eissn.none.fl_str_mv 2173-0431
identifier_str_mv 0366-3175
10.1016/j.bsecv.2018.07.003
2173-0431
url https://hdl.handle.net/10495/34464
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Bol. Soc. Esp. Cerám. Vidr.
dc.relation.citationendpage.spa.fl_str_mv 92
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 85
dc.relation.citationvolume.spa.fl_str_mv 58
dc.relation.ispartofjournal.spa.fl_str_mv Boletín de la Sociedad Española de Cerámica y Vidrio
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 8
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Madrid, España
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/3bccbe9b-a535-4472-9208-c065e636799c/download
https://bibliotecadigital.udea.edu.co/bitstreams/2e7c1907-5e95-452c-aa81-dd3e947ee503/download
https://bibliotecadigital.udea.edu.co/bitstreams/89baafed-2776-485c-9780-7edc188901ff/download
https://bibliotecadigital.udea.edu.co/bitstreams/c2f9a1bb-89ab-474f-b6e5-9b58f1742662/download
https://bibliotecadigital.udea.edu.co/bitstreams/ea68a17d-5d5b-42ac-a0b8-52b51843aebf/download
bitstream.checksum.fl_str_mv b88b088d9957e670ce3b3fbe2eedbc13
491b964c1e355aada37c2528df987918
8a4605be74aa9ea9d79846c1fba20a33
737c7753d8b0b62863e205e4812fd6da
392b421224fa33a7a4e0e02baf236f20
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052394578706432
spelling Quintero Sierra, Lindsey AlejandraEscobar Sierra, Diana MarcelaGrupo de Investigación en Biomateriales2023-04-04T22:57:02Z2023-04-04T22:57:02Z20190366-3175https://hdl.handle.net/10495/3446410.1016/j.bsecv.2018.07.0032173-0431ABSTRACT: The use of biomaterials has proven to be an excellent alternative in tissue regeneration due to the many possibilities they can offer. Bioactive glasses are a group of bioceramics that are being used in bone tissue engineering thanks to their biological properties, one of those being the bioactivity behavior. These bioactive glasses require a stabilization process by thermal treatments that partially crystallize the structure acquiring a vitroceramic state. In this study, sol–gel-derived bioactive vitroceramic was synthesized in a ternary system using non-conventional calcium and phosphate precursors in order to evaluate its bioactivity in the presence of simulated body fluid (SBF). The obtained bioactive vitroceramic was evaluated through XRD, FTIR, Raman and SEM to measure its chemical composition and morphology. The bioactivity test was carried out using cylindrical discs made with bioactive vitroceramic; those discs were analyzed in 7 and 14 days of exposition. The formed layer was studied with XRD, FTIR, SEM and EDX analysis. The results have shown that synthesized bioactive vitroceramic has similar composition and crystallinity of those reported in the same system indicating the appropriate use of different precursors. Likewise, the bioactivity behavior showed the formation of a non-crystalline hydroxyapatite layer on bioactive vitroceramic surface with a Ca/P ratio similar to that in bone, which means that the synthesized material can be used in bone tissue engineeringRESUMEN: El uso de los biomateriales ha probado ser una excelente alternativa en la regeneración de tejidos debido a las múltiples posibilidades que pueden ofrecer. Los vidrios bioactivos son un grupo de biocerámicos que se han usado en la Ingeniería de Tejido Óseo gracias a sus propiedades biológicas, una de ellas el comportamiento bioactivo. Estos vidrios bioactivos requieren un tratamiento térmico para estabilizar la estructura adquiriendo un estado vitrocerámico. En este trabajo se sintetizó una vitrocerámica bioactiva por el método de sol-gel en un sistema ternario usando precursores no convencionales como fuentes de calcio y fósforo con el fin de evaluar su comportamiento bioactivo en presencia de fluido corporal simulado. La vitrocerámica bioactiva obtenida se evaluó por XRD, FTIR, espectroscopía Raman y SEM para medir su composición química y morfología. El ensayo de bioactividad se realizó usando discos fabricados con la vitrocerámica bioactiva sintetizada; estos discos se sumergieron en SBF por 7 y 14 días. La capa formada en su superficie se analizó por medio de XRD, FTIR, SEM y EDX. Los resultados mostraron que la vitrocerámica sintetizada presenta una composición y cristalinidad similar a aquellos reportados en el mismo sistema lo que indica que los precursores usados son apropiados para este tipo de síntesis. Igualmente, el comportamiento bioactivo demostró que se depositó una capa de hidroxiapatita no cristalina en la superficie del material con una relación Ca/P similar a la del hueso, esto indica que la vitrocerámica bioactiva sintetizada tiene potencial para ser usado en la Ingeniería de Tejido Óseo.COL00550498application/pdfengElsevierMadrid, Españahttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursorsCaracterización y comportamiento bioactivo de vitrocerámica bioactiva sintetizada por vía sol-gel usando precursores no convencionalesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionVitrocerámicaGlass-ceramicsMateriales biomédicosBiomedical materialsBol. Soc. Esp. Cerám. Vidr.9228558Boletín de la Sociedad Española de Cerámica y VidrioPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/3bccbe9b-a535-4472-9208-c065e636799c/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADORIGINALQuinteroLindsey_2019_CharacterizationBioactivityBehavior.pdfQuinteroLindsey_2019_CharacterizationBioactivityBehavior.pdfArtículo de investigaciónapplication/pdf1919948https://bibliotecadigital.udea.edu.co/bitstreams/2e7c1907-5e95-452c-aa81-dd3e947ee503/download491b964c1e355aada37c2528df987918MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/89baafed-2776-485c-9780-7edc188901ff/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTQuinteroLindsey_2019_CharacterizationBioactivityBehavior.pdf.txtQuinteroLindsey_2019_CharacterizationBioactivityBehavior.pdf.txtExtracted texttext/plain36960https://bibliotecadigital.udea.edu.co/bitstreams/c2f9a1bb-89ab-474f-b6e5-9b58f1742662/download737c7753d8b0b62863e205e4812fd6daMD54falseAnonymousREADTHUMBNAILQuinteroLindsey_2019_CharacterizationBioactivityBehavior.pdf.jpgQuinteroLindsey_2019_CharacterizationBioactivityBehavior.pdf.jpgGenerated Thumbnailimage/jpeg14607https://bibliotecadigital.udea.edu.co/bitstreams/ea68a17d-5d5b-42ac-a0b8-52b51843aebf/download392b421224fa33a7a4e0e02baf236f20MD55falseAnonymousREAD10495/34464oai:bibliotecadigital.udea.edu.co:10495/344642025-03-26 21:36:47.024https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=