Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors
ABSTRACT: The use of biomaterials has proven to be an excellent alternative in tissue regeneration due to the many possibilities they can offer. Bioactive glasses are a group of bioceramics that are being used in bone tissue engineering thanks to their biological properties, one of those being the b...
- Autores:
-
Quintero Sierra, Lindsey Alejandra
Escobar Sierra, Diana Marcela
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/34464
- Acceso en línea:
- https://hdl.handle.net/10495/34464
- Palabra clave:
- Vitrocerámica
Glass-ceramics
Materiales biomédicos
Biomedical materials
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UDEA2_fd7c88770ef64ba41a3e2e8b7f509446 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/34464 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors |
| dc.title.translated.spa.fl_str_mv |
Caracterización y comportamiento bioactivo de vitrocerámica bioactiva sintetizada por vía sol-gel usando precursores no convencionales |
| title |
Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors |
| spellingShingle |
Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors Vitrocerámica Glass-ceramics Materiales biomédicos Biomedical materials |
| title_short |
Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors |
| title_full |
Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors |
| title_fullStr |
Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors |
| title_full_unstemmed |
Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors |
| title_sort |
Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursors |
| dc.creator.fl_str_mv |
Quintero Sierra, Lindsey Alejandra Escobar Sierra, Diana Marcela |
| dc.contributor.author.none.fl_str_mv |
Quintero Sierra, Lindsey Alejandra Escobar Sierra, Diana Marcela |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Biomateriales |
| dc.subject.lemb.none.fl_str_mv |
Vitrocerámica Glass-ceramics Materiales biomédicos Biomedical materials |
| topic |
Vitrocerámica Glass-ceramics Materiales biomédicos Biomedical materials |
| description |
ABSTRACT: The use of biomaterials has proven to be an excellent alternative in tissue regeneration due to the many possibilities they can offer. Bioactive glasses are a group of bioceramics that are being used in bone tissue engineering thanks to their biological properties, one of those being the bioactivity behavior. These bioactive glasses require a stabilization process by thermal treatments that partially crystallize the structure acquiring a vitroceramic state. In this study, sol–gel-derived bioactive vitroceramic was synthesized in a ternary system using non-conventional calcium and phosphate precursors in order to evaluate its bioactivity in the presence of simulated body fluid (SBF). The obtained bioactive vitroceramic was evaluated through XRD, FTIR, Raman and SEM to measure its chemical composition and morphology. The bioactivity test was carried out using cylindrical discs made with bioactive vitroceramic; those discs were analyzed in 7 and 14 days of exposition. The formed layer was studied with XRD, FTIR, SEM and EDX analysis. The results have shown that synthesized bioactive vitroceramic has similar composition and crystallinity of those reported in the same system indicating the appropriate use of different precursors. Likewise, the bioactivity behavior showed the formation of a non-crystalline hydroxyapatite layer on bioactive vitroceramic surface with a Ca/P ratio similar to that in bone, which means that the synthesized material can be used in bone tissue engineering |
| publishDate |
2019 |
| dc.date.issued.none.fl_str_mv |
2019 |
| dc.date.accessioned.none.fl_str_mv |
2023-04-04T22:57:02Z |
| dc.date.available.none.fl_str_mv |
2023-04-04T22:57:02Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
0366-3175 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/34464 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.bsecv.2018.07.003 |
| dc.identifier.eissn.none.fl_str_mv |
2173-0431 |
| identifier_str_mv |
0366-3175 10.1016/j.bsecv.2018.07.003 2173-0431 |
| url |
https://hdl.handle.net/10495/34464 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Bol. Soc. Esp. Cerám. Vidr. |
| dc.relation.citationendpage.spa.fl_str_mv |
92 |
| dc.relation.citationissue.spa.fl_str_mv |
2 |
| dc.relation.citationstartpage.spa.fl_str_mv |
85 |
| dc.relation.citationvolume.spa.fl_str_mv |
58 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Boletín de la Sociedad Española de Cerámica y Vidrio |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
8 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Elsevier |
| dc.publisher.place.spa.fl_str_mv |
Madrid, España |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/3bccbe9b-a535-4472-9208-c065e636799c/download https://bibliotecadigital.udea.edu.co/bitstreams/2e7c1907-5e95-452c-aa81-dd3e947ee503/download https://bibliotecadigital.udea.edu.co/bitstreams/89baafed-2776-485c-9780-7edc188901ff/download https://bibliotecadigital.udea.edu.co/bitstreams/c2f9a1bb-89ab-474f-b6e5-9b58f1742662/download https://bibliotecadigital.udea.edu.co/bitstreams/ea68a17d-5d5b-42ac-a0b8-52b51843aebf/download |
| bitstream.checksum.fl_str_mv |
b88b088d9957e670ce3b3fbe2eedbc13 491b964c1e355aada37c2528df987918 8a4605be74aa9ea9d79846c1fba20a33 737c7753d8b0b62863e205e4812fd6da 392b421224fa33a7a4e0e02baf236f20 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052394578706432 |
| spelling |
Quintero Sierra, Lindsey AlejandraEscobar Sierra, Diana MarcelaGrupo de Investigación en Biomateriales2023-04-04T22:57:02Z2023-04-04T22:57:02Z20190366-3175https://hdl.handle.net/10495/3446410.1016/j.bsecv.2018.07.0032173-0431ABSTRACT: The use of biomaterials has proven to be an excellent alternative in tissue regeneration due to the many possibilities they can offer. Bioactive glasses are a group of bioceramics that are being used in bone tissue engineering thanks to their biological properties, one of those being the bioactivity behavior. These bioactive glasses require a stabilization process by thermal treatments that partially crystallize the structure acquiring a vitroceramic state. In this study, sol–gel-derived bioactive vitroceramic was synthesized in a ternary system using non-conventional calcium and phosphate precursors in order to evaluate its bioactivity in the presence of simulated body fluid (SBF). The obtained bioactive vitroceramic was evaluated through XRD, FTIR, Raman and SEM to measure its chemical composition and morphology. The bioactivity test was carried out using cylindrical discs made with bioactive vitroceramic; those discs were analyzed in 7 and 14 days of exposition. The formed layer was studied with XRD, FTIR, SEM and EDX analysis. The results have shown that synthesized bioactive vitroceramic has similar composition and crystallinity of those reported in the same system indicating the appropriate use of different precursors. Likewise, the bioactivity behavior showed the formation of a non-crystalline hydroxyapatite layer on bioactive vitroceramic surface with a Ca/P ratio similar to that in bone, which means that the synthesized material can be used in bone tissue engineeringRESUMEN: El uso de los biomateriales ha probado ser una excelente alternativa en la regeneración de tejidos debido a las múltiples posibilidades que pueden ofrecer. Los vidrios bioactivos son un grupo de biocerámicos que se han usado en la Ingeniería de Tejido Óseo gracias a sus propiedades biológicas, una de ellas el comportamiento bioactivo. Estos vidrios bioactivos requieren un tratamiento térmico para estabilizar la estructura adquiriendo un estado vitrocerámico. En este trabajo se sintetizó una vitrocerámica bioactiva por el método de sol-gel en un sistema ternario usando precursores no convencionales como fuentes de calcio y fósforo con el fin de evaluar su comportamiento bioactivo en presencia de fluido corporal simulado. La vitrocerámica bioactiva obtenida se evaluó por XRD, FTIR, espectroscopía Raman y SEM para medir su composición química y morfología. El ensayo de bioactividad se realizó usando discos fabricados con la vitrocerámica bioactiva sintetizada; estos discos se sumergieron en SBF por 7 y 14 días. La capa formada en su superficie se analizó por medio de XRD, FTIR, SEM y EDX. Los resultados mostraron que la vitrocerámica sintetizada presenta una composición y cristalinidad similar a aquellos reportados en el mismo sistema lo que indica que los precursores usados son apropiados para este tipo de síntesis. Igualmente, el comportamiento bioactivo demostró que se depositó una capa de hidroxiapatita no cristalina en la superficie del material con una relación Ca/P similar a la del hueso, esto indica que la vitrocerámica bioactiva sintetizada tiene potencial para ser usado en la Ingeniería de Tejido Óseo.COL00550498application/pdfengElsevierMadrid, Españahttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Characterization and bioactivity behavior of sol–gel derived bioactive vitroceramic from non-conventional precursorsCaracterización y comportamiento bioactivo de vitrocerámica bioactiva sintetizada por vía sol-gel usando precursores no convencionalesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionVitrocerámicaGlass-ceramicsMateriales biomédicosBiomedical materialsBol. Soc. Esp. Cerám. Vidr.9228558Boletín de la Sociedad Española de Cerámica y VidrioPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/3bccbe9b-a535-4472-9208-c065e636799c/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADORIGINALQuinteroLindsey_2019_CharacterizationBioactivityBehavior.pdfQuinteroLindsey_2019_CharacterizationBioactivityBehavior.pdfArtículo de investigaciónapplication/pdf1919948https://bibliotecadigital.udea.edu.co/bitstreams/2e7c1907-5e95-452c-aa81-dd3e947ee503/download491b964c1e355aada37c2528df987918MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/89baafed-2776-485c-9780-7edc188901ff/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTQuinteroLindsey_2019_CharacterizationBioactivityBehavior.pdf.txtQuinteroLindsey_2019_CharacterizationBioactivityBehavior.pdf.txtExtracted texttext/plain36960https://bibliotecadigital.udea.edu.co/bitstreams/c2f9a1bb-89ab-474f-b6e5-9b58f1742662/download737c7753d8b0b62863e205e4812fd6daMD54falseAnonymousREADTHUMBNAILQuinteroLindsey_2019_CharacterizationBioactivityBehavior.pdf.jpgQuinteroLindsey_2019_CharacterizationBioactivityBehavior.pdf.jpgGenerated Thumbnailimage/jpeg14607https://bibliotecadigital.udea.edu.co/bitstreams/ea68a17d-5d5b-42ac-a0b8-52b51843aebf/download392b421224fa33a7a4e0e02baf236f20MD55falseAnonymousREAD10495/34464oai:bibliotecadigital.udea.edu.co:10495/344642025-03-26 21:36:47.024https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
