Vertex-degree-based topological indices over starlike trees
ABSTRACT: Given a graph G with n vertices, a vertex-degree-based topological index is defined from a set of real numbers {φij} as TI(G)=∑mij(G)φij, where mij(G) is the number of edges between vertices of degree i and degree j, and the sum runs over all 1≤i≤j≤n−1. We find conditions on the numbers {φ...
- Autores:
-
Cruz Rodes, Roberto
Betancur, Clara Inés
Rada Rincón, Juan Pablo
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2015
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/44391
- Acceso en línea:
- https://hdl.handle.net/10495/44391
- Palabra clave:
- Vertex-degree-based topological indices
Starlike trees
Índices topológicos
Topological indices
- Rights
- openAccess
- License
- Derechos reservados - Está prohibida la reproducción parcial o total de esta publicación
| Summary: | ABSTRACT: Given a graph G with n vertices, a vertex-degree-based topological index is defined from a set of real numbers {φij} as TI(G)=∑mij(G)φij, where mij(G) is the number of edges between vertices of degree i and degree j, and the sum runs over all 1≤i≤j≤n−1. We find conditions on the numbers {φij} which are easy to verify, under which the extremal values of TI over the set of starlike trees can be calculated. As an application we find the extremal values of many well-known vertex-degree-based topological indices over Ωn. |
|---|
