Vertex-degree-based topological indices over starlike trees

ABSTRACT: Given a graph G with n vertices, a vertex-degree-based topological index is defined from a set of real numbers {φij} as TI(G)=∑mij(G)φij, where mij(G) is the number of edges between vertices of degree i and degree j, and the sum runs over all 1≤i≤j≤n−1. We find conditions on the numbers {φ...

Full description

Autores:
Cruz Rodes, Roberto
Betancur, Clara Inés
Rada Rincón, Juan Pablo
Tipo de recurso:
Article of investigation
Fecha de publicación:
2015
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/44391
Acceso en línea:
https://hdl.handle.net/10495/44391
Palabra clave:
Vertex-degree-based topological indices
Starlike trees
Índices topológicos
Topological indices
Rights
openAccess
License
Derechos reservados - Está prohibida la reproducción parcial o total de esta publicación
Description
Summary:ABSTRACT: Given a graph G with n vertices, a vertex-degree-based topological index is defined from a set of real numbers {φij} as TI(G)=∑mij(G)φij, where mij(G) is the number of edges between vertices of degree i and degree j, and the sum runs over all 1≤i≤j≤n−1. We find conditions on the numbers {φij} which are easy to verify, under which the extremal values of TI over the set of starlike trees can be calculated. As an application we find the extremal values of many well-known vertex-degree-based topological indices over Ωn.