A probabilistic approach to the asymptotics of the length of the longest alternating subsequence
ABSTRACT: Let $LA_{n}(\tau)$ be the length of the longest alternating subsequence of a uniform random permutation $\tau\in[n]$. Classical probabilistic arguments are used to rederive the asymptotic mean, variance and limiting law of $LA_{n}(\tau)$. Our methodology is robust enough to tackle similar...
- Autores:
-
Restrepo López, Ricardo
Houdré, Christian
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2010
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/40130
- Acceso en línea:
- https://hdl.handle.net/10495/40130
- Palabra clave:
- Teorema del límite central
Central limit theorem
Logaritmos
Logarithms
Longest alternating subsequence
Random permutations
Random words
M-dependence
http://id.loc.gov/authorities/subjects/sh85021905
http://id.loc.gov/authorities/subjects/sh85078091
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
