A probabilistic approach to the asymptotics of the length of the longest alternating subsequence

ABSTRACT: Let $LA_{n}(\tau)$ be the length of the longest alternating subsequence of a uniform random permutation $\tau\in[n]$. Classical probabilistic arguments are used to rederive the asymptotic mean, variance and limiting law of $LA_{n}(\tau)$. Our methodology is robust enough to tackle similar...

Full description

Autores:
Restrepo López, Ricardo
Houdré, Christian
Tipo de recurso:
Article of investigation
Fecha de publicación:
2010
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/40130
Acceso en línea:
https://hdl.handle.net/10495/40130
Palabra clave:
Teorema del límite central
Central limit theorem
Logaritmos
Logarithms
Longest alternating subsequence
Random permutations
Random words
M-dependence
http://id.loc.gov/authorities/subjects/sh85021905
http://id.loc.gov/authorities/subjects/sh85078091
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/