Síntesis de Ni-MOF-74 y su combinación con Mg y zeolita X para el tratamiento de compuestos orgánicos volátiles

Los compuestos orgánicos volátiles, VOCs por sus siglas en inglés, constituyen uno de los contaminantes más presentes en la atmósfera, y por ello son considerados gases de alto impacto en el aumento de enfermedades pulmonares y cardiovasculares. La disminución de estos gases, mediante la captura o d...

Full description

Autores:
De La Rosa Muñoz, María Laura
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/45758
Acceso en línea:
https://hdl.handle.net/10495/45758
Palabra clave:
Redes metalorgánicas
Metal-organic frameworks
Compuestos orgánicos volátiles
Volatile organic compounds
Oxidos
Oxides
Gases - Absorción y adsorción
Gases - Absorption and adsorption
Zeolitas
Zeolites
Oxidación catalítica
http://id.loc.gov/authorities/subjects/sh2020006026
http://id.loc.gov/authorities/subjects/sh93000972
http://id.loc.gov/authorities/subjects/sh85096314
http://id.loc.gov/authorities/subjects/sh85053381
http://id.loc.gov/authorities/subjects/sh85149750
ODS 11: Ciudades y comunidades sostenibles. Lograr que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 14: Vida submarina. Conservar y utilizar sosteniblemente los océanos, los mares y los recursos marinos para el desarrollo sostenible
ODS 13: Acción por el Clima. Adoptar medidas urgentes para combatir el cambio climático y sus efectos
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_fc01bc475fc982e0ac5a89fd4d365d5c
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/45758
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Síntesis de Ni-MOF-74 y su combinación con Mg y zeolita X para el tratamiento de compuestos orgánicos volátiles
title Síntesis de Ni-MOF-74 y su combinación con Mg y zeolita X para el tratamiento de compuestos orgánicos volátiles
spellingShingle Síntesis de Ni-MOF-74 y su combinación con Mg y zeolita X para el tratamiento de compuestos orgánicos volátiles
Redes metalorgánicas
Metal-organic frameworks
Compuestos orgánicos volátiles
Volatile organic compounds
Oxidos
Oxides
Gases - Absorción y adsorción
Gases - Absorption and adsorption
Zeolitas
Zeolites
Oxidación catalítica
http://id.loc.gov/authorities/subjects/sh2020006026
http://id.loc.gov/authorities/subjects/sh93000972
http://id.loc.gov/authorities/subjects/sh85096314
http://id.loc.gov/authorities/subjects/sh85053381
http://id.loc.gov/authorities/subjects/sh85149750
ODS 11: Ciudades y comunidades sostenibles. Lograr que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 14: Vida submarina. Conservar y utilizar sosteniblemente los océanos, los mares y los recursos marinos para el desarrollo sostenible
ODS 13: Acción por el Clima. Adoptar medidas urgentes para combatir el cambio climático y sus efectos
title_short Síntesis de Ni-MOF-74 y su combinación con Mg y zeolita X para el tratamiento de compuestos orgánicos volátiles
title_full Síntesis de Ni-MOF-74 y su combinación con Mg y zeolita X para el tratamiento de compuestos orgánicos volátiles
title_fullStr Síntesis de Ni-MOF-74 y su combinación con Mg y zeolita X para el tratamiento de compuestos orgánicos volátiles
title_full_unstemmed Síntesis de Ni-MOF-74 y su combinación con Mg y zeolita X para el tratamiento de compuestos orgánicos volátiles
title_sort Síntesis de Ni-MOF-74 y su combinación con Mg y zeolita X para el tratamiento de compuestos orgánicos volátiles
dc.creator.fl_str_mv De La Rosa Muñoz, María Laura
dc.contributor.advisor.none.fl_str_mv Manrique Hernández, Cecilia
Urán Castaño, Laura Cristina
dc.contributor.author.none.fl_str_mv De La Rosa Muñoz, María Laura
dc.contributor.researchgroup.none.fl_str_mv Catalizadores y Adsorbentes
dc.contributor.jury.none.fl_str_mv Tapia, Juan David
Alarcón Durango, Edwin Alexis
dc.subject.lcsh.none.fl_str_mv Redes metalorgánicas
Metal-organic frameworks
Compuestos orgánicos volátiles
Volatile organic compounds
Oxidos
Oxides
Gases - Absorción y adsorción
Gases - Absorption and adsorption
Zeolitas
Zeolites
topic Redes metalorgánicas
Metal-organic frameworks
Compuestos orgánicos volátiles
Volatile organic compounds
Oxidos
Oxides
Gases - Absorción y adsorción
Gases - Absorption and adsorption
Zeolitas
Zeolites
Oxidación catalítica
http://id.loc.gov/authorities/subjects/sh2020006026
http://id.loc.gov/authorities/subjects/sh93000972
http://id.loc.gov/authorities/subjects/sh85096314
http://id.loc.gov/authorities/subjects/sh85053381
http://id.loc.gov/authorities/subjects/sh85149750
ODS 11: Ciudades y comunidades sostenibles. Lograr que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 14: Vida submarina. Conservar y utilizar sosteniblemente los océanos, los mares y los recursos marinos para el desarrollo sostenible
ODS 13: Acción por el Clima. Adoptar medidas urgentes para combatir el cambio climático y sus efectos
dc.subject.proposal.spa.fl_str_mv Oxidación catalítica
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh2020006026
http://id.loc.gov/authorities/subjects/sh93000972
http://id.loc.gov/authorities/subjects/sh85096314
http://id.loc.gov/authorities/subjects/sh85053381
http://id.loc.gov/authorities/subjects/sh85149750
dc.subject.ods.none.fl_str_mv ODS 11: Ciudades y comunidades sostenibles. Lograr que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 14: Vida submarina. Conservar y utilizar sosteniblemente los océanos, los mares y los recursos marinos para el desarrollo sostenible
ODS 13: Acción por el Clima. Adoptar medidas urgentes para combatir el cambio climático y sus efectos
description Los compuestos orgánicos volátiles, VOCs por sus siglas en inglés, constituyen uno de los contaminantes más presentes en la atmósfera, y por ello son considerados gases de alto impacto en el aumento de enfermedades pulmonares y cardiovasculares. La disminución de estos gases, mediante la captura o descomposición en sustancias con menor impacto ambiental, se ha convertido en uno de los grandes retos en la historia de la humanidad. En este contexto, el uso de materiales porosos ha surgido como una alternativa prometedora para mitigar la contaminación atmosférica. Los MOFs son materiales que destacan por su elevada área superficial (500 y 2000 m²/g)[1], porosidad significativa (2-50nm)[1] y morfología uniforme, las cuales son propiedades importantes para la captura de gases. Adicionalmente, el óxido derivado del MOF puede heredar estas propiedades junto con el aumento significativo de vacancias de oxígeno, las cuales son características que potencian su capacidad para descomponer eficazmente los VOCs, además de tener mayor estabilidad térmica. Como métodos de tratamiento se destacan la adsorción debido a la posible reutilización del adsorbente junto con la remoción selectiva de VOCs incluso en bajas concentraciones y la oxidación catalítica dada su alta eficiencia y bajos requerimientos energéticos. En este trabajo se sintetizaron materiales tipo MOF mono y bimetálicos de níquel y magnesio, y composites zeolita/MOF a través del método solvotérmico con propiedades químicas y físicas mejoradas. A partir de estos materiales se obtuvieron óxidos metálicos derivados de los materiales mencionados anteriormente. Todos los materiales fueron caracterizados mediante DRX, FTIR, TGA, SEM y TPR-H2. Los materiales tipo MOF y composites zeolita/MOF fueron evaluados para determinar su capacidad de adsorción de BTEX (benceno, tolueno, etil benceno y (o-, m-, p-) xileno) a temperatura ambiente. Los resultados mostraron que los materiales tenían una mayor afinidad por el grupo de (o-, m-, p-) xileno, siendo más representativa la adsorción en el composite FAU-X/Ni-MOF-74-3 (41.8%). Los óxidos obtenidos fueron evaluados en la oxidación catalítica de tolueno en fase gaseosa diluida (1000 ppm), con una velocidad espacial de 30.000 cm3/g.h y a presión atmosférica. Los resultados muestran la obtención de catalizadores que permitieron la oxidación total del tolueno, a temperaturas por debajo de los 400°C. Esta temperatura se toma como referencia en la oxidación de tolueno, ya que a partir de esta temperatura prevalece la oxidación no catalítica. Estos resultados, representan un logro para la aplicación de estos materiales porosos.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-04-29T18:20:57Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_7a1f
status_str draft
dc.identifier.citation.none.fl_str_mv De La Rosa Muñoz, M. L. (2025). Síntesis de Ni-MOF-74 y su combinación con Mg y zeolita X para el tratamiento de compuestos orgánicos volátiles [Trabajo de grado profesional]. Universidad de Antioquia, Medellín, Colombia.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/45758
identifier_str_mv De La Rosa Muñoz, M. L. (2025). Síntesis de Ni-MOF-74 y su combinación con Mg y zeolita X para el tratamiento de compuestos orgánicos volátiles [Trabajo de grado profesional]. Universidad de Antioquia, Medellín, Colombia.
url https://hdl.handle.net/10495/45758
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv M. Ahmadi, M. Ebrahimnia, M.-A. Shahbazi, R. Keçili, and F. Ghorbani-Bidkorbeh, “Microporous metal–organic frameworks: Synthesis and applications,” J. Ind. Eng. Chem., vol. 115, pp. 1–11, Nov. 2022, doi: 10.1016/j.jiec.2022.07.047.
R. Koppmann, “Volatile Organic Compounds in the Atmosphere,” Volatile Org. Compd. Atmos., vol. 90, no. 52, pp. 1–500, 2007, doi: 10.1002/9780470988657.
F. Golbabaei, F. Dehghani, M. Saatchi, and S. A. Zakerian, “Evaluation of occupational exposure to different levels of mixed organic solvents and cognitive function in the painting unit of an automotive industry,” Heal. Promot. Perspect., vol. 8, no. 4, pp. 296–302, Oct. 2018, doi: 10.15171/hpp.2018.42.
Z. Du et al., “High-solution emission patterns and health risks of volatile organic compounds from automobile repair industries in Beijing.” Aug. 04, 2023. doi: 10.21203/rs.3.rs-3016653/v1.
J. F. Franco, J. Pacheco, L. C. Belalcázar, and E. Behrentz, “Characterization and source identification of VOC species in Bogotá, Colombia,” Atmósfera, vol. 28, no. 1, pp. 1–11, Jan. 2015, doi: 10.1016/S0187-6236(15)72155-7.
MADS, Guía nacional para el control, monitoreo y seguimiento de emisiones de compuestos orgánicos volátiles, vol. 2. 2021. [Online]. Available: https://www.minambiente.gov.co/documento-entidad/guia-nacional-para-el-control-monitoreo-y-seguimiento-de-emisiones-de-compuestos-organicos-volatiles/
X. Ma et al., “MOF-derived FeOx with highly dispersed active sites as an efficient catalyst for enchaning catalytic oxidation of VOCs,” J. Environ. Chem. Eng., vol. 12, no. 2, 2024, doi: 10.1016/j.jece.2024.111966.
R. Rao et al., “Recent advances of metal-organic framework-based and derivative materials in the heterogeneous catalytic removal of volatile organic compounds,” J. Colloid Interface Sci., vol. 636, pp. 55–72, 2023, doi: 10.1016/j.jcis.2022.12.167.
F. Almomani, R. R. Bhosale, and M. Khraisheh, “Moderate Temperature Treatment of Gas-Phase Volatile Organic Toluene Using NiO and NiO–TiO2 Nano-catalysts: Characterization and Kinetic Behaviors,” Waste and Biomass Valorization, vol. 12, no. 6, pp. 3075–3089, Jun. 2021, doi: 10.1007/s12649-020-01270-4.
S. I. Mazhar, A. Ali, T. B. Tilly, M. H. Khan, and C.-Y. Wu, “Efficient adsorption of aromatic and aliphatic hydrocarbons by electrospun hydrophobic PTFE-NiO composite nanofiber filter mats,” Discov. Nano, vol. 18, no. 1, p. 65, Apr. 2023, doi: 10.1186/s11671-023-03834-4.
Q. Shen, X. Zhu, J. Dong, and Z. Zhu, “Hydrodealkylation of C9 + Heavy Aromatics to BTX over Zeolite-Supported Nickel Oxide and Molybdenum Oxide Catalysts,” Catal. Letters, vol. 129, no. 1–2, pp. 170–180, Apr. 2009, doi: 10.1007/s10562-008-9786-9.
H. An et al., “Boosting the CO2 adsorption performance by defect-rich hierarchical porous Mg-MOF-74,” Chem. Eng. J., vol. 469, no. 30, 2023, doi: 10.1016/j.cej.2023.144052.
Y. Fang et al., “Effect of mineralizing agents on the adsorption performance of metal–organic framework MIL-100(Fe) towards chromium(VI),” Chem. Eng. J., vol. 337, no. November 2017, pp. 532–540, 2018, doi: 10.1016/j.cej.2017.12.136.
H. Wu et al., “Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption,” J. Am. Chem. Soc., vol. 135, no. 28, pp. 10525–10532, 2013, doi: 10.1021/ja404514r.
R. Elakkiya and G. Maduraiveeran, “Metal-organic frameworks: preparation and application in electrocatalytic CO2 reduction reaction,” in Metal-Organic Frameworks for Chemical Reactions, Elsevier, 2021, pp. 331–347. doi: 10.1016/B978-0-12-822099-3.00013-7.
H. Kim et al., “Control of the Metal Composition in Bimetallic Mg/Zn(dobpdc) Constructed from a One-Dimensional Zn-Based Template,” Inorg. Chem., vol. 58, no. 20, pp. 14107–14111, 2019, doi: 10.1021/acs.inorgchem.9b02126.
C. Chen, M. Kosari, M. Jing, and C. He, “Microwave-assisted synthesis of bimetallic NiCo-MOF-74 with enhanced open metal site for efficient CO2 capture,” Environ. Funct. Mater., vol. 1, no. 3, pp. 253–266, Sep. 2022, doi: 10.1016/J.EFMAT.2023.01.002.
G. Ayoub et al., “Rational Synthesis of Mixed-Metal Microporous Metal-Organic Frameworks with Controlled Composition Using Mechanochemistry,” Chem. Mater., vol. 31, no. 15, pp. 5494–5501, 2019, doi: 10.1021/acs.chemmater.9b01068.
R. H. Crabtree, The Organometallic Chemistry of the Transition Metals, Fouth edit. Wiley, 2005. doi: 10.1002/0471718769.
H. F. Zhou, B. Liu, H. H. Wang, L. Hou, W. Y. Zhang, and Y. Y. Wang, “Construction of Highly Porous Pillared Metal-Organic Frameworks: Rational Synthesis, Structure, and Gas Sorption Properties,” Inorg. Chem., vol. 56, no. 15, pp. 9147–9155, 2017, doi: 10.1021/acs.inorgchem.7b01197.
C. Elschenbroich, Organometallics, Thir editi. 2006.
J. L. Snider et al., “Stabilized open metal sites in bimetallic metal-organic framework catalysts for hydrogen production from alcohols,” J. Mater. Chem. A, vol. 9, no. 17, pp. 10869–10881, 2021, doi: 10.1039/d1ta00222h.
Z. Hu et al., “Facile synthesis of organic framework with tailored nanostructure for effective volatile organic compounds adsorption,” 2022.
S. E. Henkelis, P. T. Judge, S. E. Hayes, and T. M. Nenoff, “Preferential SOxAdsorption in Mg-MOF-74 from a Humid Acid Gas Stream,” ACS Appl. Mater. Interfaces, vol. 13, no. 6, pp. 7278–7284, 2021, doi: 10.1021/acsami.0c21298.
J. H. Choe, H. Kim, and C. S. Hong, “MOF-74 type variants for CO 2 capture,” Mater. Chem. Front., vol. 5, no. 14, pp. 5172–5185, 2021, doi: 10.1039/D1QM00205H.
R. M. Marti et al., “CO2 dynamics in pure and mixed-metal MOFs with open metal sites,” J. Phys. Chem. C, vol. 121, no. 39, pp. 25778–25787, 2017, doi: 10.1021/acs.jpcc.7b07179.
Y. Liao, L. Zhang, M. H. Weston, W. Morris, J. T. Hupp, and O. K. Farha, “Tuning ethylene gas adsorption via metal node modulation: Cu-MOF-74 for a high ethylene deliverable capacity,” Chem. Commun., vol. 53, no. 67, pp. 9376–9379, 2017, doi: 10.1039/C7CC04160H.
T. Ghanbari, F. Abnisa, and W. M. A. Wan Daud, “A review on production of metal organic frameworks (MOF) for CO2 adsorption,” Sci. Total Environ., vol. 707, 2020, doi: 10.1016/j.scitotenv.2019.135090.
H. Wang, Y. Cao, Z. Chen, Q. Yu, and S. Wu, “High-efficiency removal of NOx over natural mordenite using an enhanced plasma-catalytic process at ambient temperature,” Fuel, vol. 224, no. February, pp. 323–330, 2018, doi: 10.1016/j.fuel.2018.03.065.
Y. Teramoto, H. H. Kim, N. Negishi, and A. Ogata, “The role of ozone in the reaction mechanism of a bare zeolite-plasma hybrid system,” Catalysts, vol. 5, no. 2, pp. 838–850, 2015, doi: 10.3390/catal5020838.
J. Dhainaut et al., “Synthesis of FAU and EMT-type zeolites using structure-directing agents specifically designed by molecular modelling,” Microporous Mesoporous Mater., vol. 174, pp. 117–125, 2013, doi: 10.1016/j.micromeso.2013.03.006.
M. Diboune et al., “Efficient removal of volatile organic compounds by FAU-type zeolite coatings,” Molecules, vol. 25, no. 15, pp. 1–13, 2020, doi: 10.3390/molecules25153336.
A. J. Schwanke, R. Balzer, and S. Pergher, “Degradation of volatile organic compounds with catalysts-containing zeolite and ordered mesoporous silica,” Handb. Ecomater., vol. 1, pp. 607–618, 2019, doi: 10.1007/978-3-319-68255-6_71.
Jujarama, K. Wijaya, M. Shidiq, M. Fahrurrozi, and Suheryanto, “Synthesis of biogasoline from used palm cooking oil through catalytic hydrocracking by using Cr-activated natural zeolite as catalyst,” Asian J. Chem., vol. 26, no. 16, pp. 5033–5038, 2014, doi: 10.14233/ajchem.2014.16299.
T. Pan, Z. Wu, and A. C. K. Yip, “Advances in the green synthesis of microporous and hierarchical zeolites: A short review,” Catalysts, vol. 9, no. 3, pp. 1–18, 2019, doi: 10.3390/catal9030274.
T. Derbe, S. Temesgen, and M. Bitew, “A Short Review on Synthesis, Characterization, and Applications of Zeolites,” Adv. Mater. Sci. Eng., vol. 2021, 2021, doi: 10.1155/2021/6637898.
W. Gao, W. Gou, R. Wei, X. Bu, Y. Ma, and J. C. Ho, “In situ electrochemical conversion of cobalt oxide@MOF-74 core-shell structure as an efficient and robust electrocatalyst for water oxidation,” Appl. Mater. Today, vol. 21, p. 100820, 2020, doi: 10.1016/j.apmt.2020.100820.
P. Rani, V. Kasneryk, and M. Opanasenko, “MOF-inorganic nanocomposites: Bridging a gap with inorganic materials,” Appl. Mater. Today, vol. 26, 2022, doi: 10.1016/j.apmt.2021.101283.
K. L. Tate, S. Li, M. Yu, and M. A. Carreon, “Zeolite adsorbent-MOF layered nanovalves for CH4 storage,” Adsorption, vol. 23, no. 1, pp. 19–24, 2017, doi: 10.1007/s10450-016-9813-x.
J. Li et al., “Hollow cavity engineering of MOFs-derived hierarchical MnOx structure for highly efficient photothermal degradation of ethyl acetate under light irradiation,” Chem. Eng. J., vol. 464, no. March, 2023, doi: 10.1016/j.cej.2023.142412.
G. Jiang et al., “Insight into the Ag-CeO2 interface and mechanism of catalytic oxidation of formaldehyde,” Appl. Surf. Sci., vol. 549, no. September 2020, 2021, doi: 10.1016/j.apsusc.2021.149277.
D. T. Wang, N. Guo, L. X. Jiang, S. Z. Lian, and Z. W. Wang, “Metal organic frameworks derived metal oxides prepared by oxygen vacancy engineering with the enhanced catalytic activity for toluene oxidation,” J. Environ. Chem. Eng., vol. 10, no. 6, 2022, doi: 10.1016/j.jece.2022.108798.
“Technical Overview of Volatile Organic Compounds | US EPA.” Accessed: Nov. 08, 2024. [Online]. Available: https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds
K. Vikrant, K. H. Kim, W. Peng, S. Ge, and Y. Sik Ok, “Adsorption performance of standard biochar materials against volatile organic compounds in air: A case study using benzene and methyl ethyl ketone,” Chem. Eng. J., vol. 387, no. December 2019, 2020, doi: 10.1016/j.cej.2019.123943.
K. Yang, C. Wang, S. Xue, W. Li, J. Liu, and L. Li, “The identification, health risks and olfactory effects assessment of VOCs released from the wastewater storage tank in a pesticide plant,” Ecotoxicol. Environ. Saf., vol. 184, no. March, 2019, doi: 10.1016/j.ecoenv.2019.109665.
A. Atamaleki, S. Motesaddi Zarandi, M. Massoudinejad, A. Esrafili, and A. Mousavi Khaneghah, “Emission of BTEX compounds from the frying process: Quantification, environmental effects, and probabilistic health risk assessment,” Environ. Res., vol. 204, no. August 2021, 2022, doi: 10.1016/j.envres.2021.112295.
B. Yu, Z. Yuan, Z. Yu, and F. Xue-song, “BTEX in the environment: An update on sources, fate, distribution, pretreatment, analysis, and removal techniques,” Chem. Eng. J., vol. 435, no. October 2021, 2022, doi: 10.1016/j.cej.2022.134825.
F. I. Khan and A. Kr. Ghoshal, “Removal of Volatile Organic Compounds from polluted air,” J. Loss Prev. Process Ind., vol. 13, no. 6, pp. 527–545, Nov. 2000, doi: 10.1016/S0950-4230(00)00007-3.
S. S. T. Bastos, S. A. C. Carabineiro, J. J. M. Órfão, M. F. R. Pereira, J. J. Delgado, and J. L. Figueiredo, “Total oxidation of ethyl acetate, ethanol and toluene catalyzed by exotemplated manganese and cerium oxides loaded with gold,” Catal. Today, vol. 180, no. 1, pp. 148–154, Jan. 2012, doi: 10.1016/j.cattod.2011.01.049.
H. Tian, J. He, X. Zhang, L. Zhou, and D. Wang, “Facile synthesis of porous manganese oxide K-OMS-2 materials and their catalytic activity for formaldehyde oxidation,” Microporous Mesoporous Mater., vol. 138, no. 1–3, pp. 118–122, 2011, doi: 10.1016/j.micromeso.2010.09.022.
L. Liao et al., “Constructing MOFs-derived Co3O4 microsphere with atomic p-n homojunction as an efficient photothermal catalyst for boosting ethyl acetate oxidation under light irradiation,” Sep. Purif. Technol., vol. 309, no. October 2022, 2023, doi: 10.1016/j.seppur.2022.122939.
Z. Wang et al., “Advances in functional guest materials for resistive gas sensors,” RSC Adv., vol. 12, no. 38, pp. 24614–24632, 2022, doi: 10.1039/D2RA04063H.
K. L. Alford and N. Kumar, “Pulmonary Health Effects of Indoor Volatile Organic Compounds — A Meta-Analysis,” 2021.
Q. Al-Naddaf, H. Thakkar, and F. Rezaei, “Novel Zeolite-5A@MOF-74 Composite Adsorbents with Core-Shell Structure for H2 Purification,” ACS Appl. Mater. Interfaces, vol. 10, no. 35, pp. 29656–29666, Sep. 2018, doi: 10.1021/acsami.8b10494.
J. Li et al., “Advances in the study of metal–organic frameworks and their biomolecule composites for osteoporosis therapeutic applications,” Biomater. Sci., vol. 12, no. 23, pp. 5912–5932, 2024, doi: 10.1039/D4BM01081G.
M. T. Ritter, I. Padilla, M. Á. Lobo-Recio, M. Romero, and A. López-Delgado, “Waste Symbiosis through the Synthesis of Highly Crystalline LTA and SOD Zeolites,” Materials (Basel)., vol. 17, no. 17, 2024, doi: 10.3390/ma17174310.
A. Jalali, A. Ahmadpour, M. Ghahramaninezhad, and E. Yasari, “Hierarchical nanocomposites derived from UiO-66 framework and zeolite for enhanced CO2 adsorption,” J. Environ. Chem. Eng., vol. 11, no. 6, Dec. 2023, doi: 10.1016/j.jece.2023.111294.
Q. Al-Naddaf, H. Thakkar, and F. Rezaei, “Novel Zeolite-5A@MOF-74 Composite Adsorbents with Core–Shell Structure for H 2 Purification,” ACS Appl. Mater. Interfaces, vol. 10, no. 35, pp. 29656–29666, Sep. 2018, doi: 10.1021/acsami.8b10494.
X. Feng, C. Chen, C. He, S. Chai, Y. Yu, and J. Cheng, “Non-thermal plasma coupled with MOF-74 derived Mn-Co-Ni-O porous composite oxide for toluene efficient degradation,” J. Hazard. Mater., vol. 383, p. 121143, Feb. 2020, doi: 10.1016/j.jhazmat.2019.121143.
C. Chen et al., “Microwave-Assisted Rapid Synthesis of Well-Shaped MOF-74 (Ni) for CO 2 Efficient Capture,” Inorg. Chem., vol. 58, no. 4, pp. 2717–2728, Feb. 2019, doi: 10.1021/acs.inorgchem.8b03271.
N. Ouafek, N. Keghouche, P. Beaunier, J. Belloni, and M. Mostafavi, “Antibacterial activity of intermetallic NixMgy and NiO–MgO phases in nickel-magnesium oxide nanocomposites,” Radiat. Phys. Chem., vol. 202, p. 110499, Jan. 2023, doi: 10.1016/j.radphyschem.2022.110499.
S. Norouzbahari, Z. Mehri Lighvan, A. Ghadimi, and B. Sadatnia, “ZIF-8@Zn-MOF-74 core–shell metal–organic framework (MOF) with open metal sites: Synthesis, characterization, and gas adsorption performance,” Fuel, vol. 339, no. January, 2023, doi: 10.1016/j.fuel.2023.127463.
N. M. Musyoka, L. F. Petrik, E. Hums, A. Kuhnt, and W. Schwieger, “Thermal stability studies of zeolites A and X synthesized from South African coal fly ash,” Res. Chem. Intermed., vol. 41, no. 2, pp. 575–582, 2015, doi: 10.1007/s11164-013-1211-3.
M. Wen, F. Dong, Z. Tang, and J. Zhang, “In situ confined encapsulation strategy for construction of Co3O4@SiO2 catalyst for the efficient elimination of toluene,” Microporous Mesoporous Mater., vol. 322, p. 111156, Jul. 2021, doi: 10.1016/j.micromeso.2021.111156.
D. Romero et al., “Removal of toluene over naX zeolite exchanged with Cu2+,” Catalysts, vol. 5, no. 3, pp. 1479–1497, 2015, doi: 10.3390/catal5031479.
M. I. Gonzalez et al., “Separation of Xylene Isomers through Multiple Metal Site Interactions in Metal–Organic Frameworks,” J. Am. Chem. Soc., vol. 140, no. 9, pp. 3412–3422, Mar. 2018, doi: 10.1021/jacs.7b13825.
Y. Pei, C. Ye, X. Pei, and W. Li, “Xylene adsorption behaviors of Co-MOF-74(X) synthesized from Co(II) salt with different anions,” Inorganica Chim. Acta, vol. 568, no. March, pp. 11–13, 2024, doi: 10.1016/j.ica.2024.122083.
S. Li, “Preparation and characterization of Bimetal MOF-74-Co/Cu and its toluene adsorption performances,” J. Porous Mater., vol. 30, no. 2, pp. 421–432, 2023, doi: 10.1007/s10934-022-01353-8.
C. Huang, R. Liu, W. Yang, Y. Li, J. Huang, and H. Zhu, “Enhanced catalytic activity of MnCo-MOF-74 for highly selective aerobic oxidation of substituted toluene,” Inorg. Chem. Front., vol. 5, no. 8, pp. 1923–1932, 2018, doi: 10.1039/c8qi00429c.
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 76 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Química
dc.publisher.department.none.fl_str_mv Instituto de Química
dc.publisher.place.none.fl_str_mv Medellín, Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Exactas y Naturales
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudad Universitaria
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/2694555e-1146-4b53-8627-d5e9d16d0db7/download
https://bibliotecadigital.udea.edu.co/bitstreams/5c425d1d-1357-429c-a0ba-3ab8e833d9ca/download
https://bibliotecadigital.udea.edu.co/bitstreams/15d66ac6-ec21-4dd7-a591-f0d616542cbd/download
https://bibliotecadigital.udea.edu.co/bitstreams/ef0a4c3e-ed51-415f-b2d2-d14966fe2fc3/download
https://bibliotecadigital.udea.edu.co/bitstreams/ad1d6321-7926-4761-a6b9-f02eaba79619/download
bitstream.checksum.fl_str_mv b76e7a76e24cf2f94b3ce0ae5ed275d0
2fb089474cd39b0d5755a2eaab088ae5
5643bfd9bcf29d560eeec56d584edaa9
7747a80025e2f9fe45e09e4d7d63b474
fe6ec95902920cd9d1bff5bf3cca4bd1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052176233725952
spelling Manrique Hernández, CeciliaUrán Castaño, Laura CristinaDe La Rosa Muñoz, María LauraCatalizadores y AdsorbentesTapia, Juan DavidAlarcón Durango, Edwin Alexis2025-04-29T18:20:57Z2025De La Rosa Muñoz, M. L. (2025). Síntesis de Ni-MOF-74 y su combinación con Mg y zeolita X para el tratamiento de compuestos orgánicos volátiles [Trabajo de grado profesional]. Universidad de Antioquia, Medellín, Colombia.https://hdl.handle.net/10495/45758Los compuestos orgánicos volátiles, VOCs por sus siglas en inglés, constituyen uno de los contaminantes más presentes en la atmósfera, y por ello son considerados gases de alto impacto en el aumento de enfermedades pulmonares y cardiovasculares. La disminución de estos gases, mediante la captura o descomposición en sustancias con menor impacto ambiental, se ha convertido en uno de los grandes retos en la historia de la humanidad. En este contexto, el uso de materiales porosos ha surgido como una alternativa prometedora para mitigar la contaminación atmosférica. Los MOFs son materiales que destacan por su elevada área superficial (500 y 2000 m²/g)[1], porosidad significativa (2-50nm)[1] y morfología uniforme, las cuales son propiedades importantes para la captura de gases. Adicionalmente, el óxido derivado del MOF puede heredar estas propiedades junto con el aumento significativo de vacancias de oxígeno, las cuales son características que potencian su capacidad para descomponer eficazmente los VOCs, además de tener mayor estabilidad térmica. Como métodos de tratamiento se destacan la adsorción debido a la posible reutilización del adsorbente junto con la remoción selectiva de VOCs incluso en bajas concentraciones y la oxidación catalítica dada su alta eficiencia y bajos requerimientos energéticos. En este trabajo se sintetizaron materiales tipo MOF mono y bimetálicos de níquel y magnesio, y composites zeolita/MOF a través del método solvotérmico con propiedades químicas y físicas mejoradas. A partir de estos materiales se obtuvieron óxidos metálicos derivados de los materiales mencionados anteriormente. Todos los materiales fueron caracterizados mediante DRX, FTIR, TGA, SEM y TPR-H2. Los materiales tipo MOF y composites zeolita/MOF fueron evaluados para determinar su capacidad de adsorción de BTEX (benceno, tolueno, etil benceno y (o-, m-, p-) xileno) a temperatura ambiente. Los resultados mostraron que los materiales tenían una mayor afinidad por el grupo de (o-, m-, p-) xileno, siendo más representativa la adsorción en el composite FAU-X/Ni-MOF-74-3 (41.8%). Los óxidos obtenidos fueron evaluados en la oxidación catalítica de tolueno en fase gaseosa diluida (1000 ppm), con una velocidad espacial de 30.000 cm3/g.h y a presión atmosférica. Los resultados muestran la obtención de catalizadores que permitieron la oxidación total del tolueno, a temperaturas por debajo de los 400°C. Esta temperatura se toma como referencia en la oxidación de tolueno, ya que a partir de esta temperatura prevalece la oxidación no catalítica. Estos resultados, representan un logro para la aplicación de estos materiales porosos.Volatile organic compounds (VOCs) are among the most prevalent pollutants in the atmosphere, and are therefore considered high-impact gases in the increase of pulmonary and cardiovascular diseases. Reducing these gases, through capture or decomposition into substances with lower environmental impact, has become one of the great challenges in human history. In this context, the use of porous materials has emerged as a promising alternative to mitigate air pollution. MOFs are materials that stand out for their high surface area (500 to 2000 m²/g), significant porosity (2-50nm), and uniform morphology, which are important properties for gas capture. Additionally, MOF-derived oxides can inherit these properties along with a significant increase in oxygen vacancies, which are characteristics that enhance their ability to effectively decompose VOCs, in addition to having greater thermal stability. Adsorption stands out as a treatment method due to the possible reuse of the adsorbent along with the selective removal of VOCs even in low concentrations, and catalytic oxidation due to its high efficiency and low energy requirements. In this work, mono- and bimetallic nickel and magnesium MOF-type materials, and zeolite/MOF composites were synthesized via the solvothermal method with improved chemical and physical properties. From these materials, metal oxides derived from were obtained from the materials mentioned above. All materials were characterized by XRD, FTIR, TGA, SEM, and TPR-H2. The MOF-type materials and zeolite/MOF composites were evaluated to determine their BTEX (benzene, toluene, ethylbenzene, and (o-, m-, p-) xylene) adsorption capacity at room temperature. The results showed that the materials had a greater affinity for the (o-, m-, p-) xylene group, with the adsorption in the FAU-X/Ni-MOF-74-3 composite being the most representative (41.8%). The obtained oxides were evaluated in the catalytic oxidation of toluene in a dilute gas phase (1000 ppm), with a space velocity of 30.000 cm3/g.h and at atmospheric pressure. The results show the achievement of catalysts that allowed the total oxidation of toluene at temperatures below 400°C. This temperature is taken as a reference in the oxidation of toluene, since non-catalytic oxidation prevails from this temperature onwards. These results represent an achievement for the application of these porous materials.Síntesis y caracterización de catalizadores y adsorbentes para aplicaciones ambientales.COL0001923PregradoQuímico76 páginasapplication/pdfspaUniversidad de AntioquiaQuímicaInstituto de QuímicaMedellín, ColombiaFacultad de Ciencias Exactas y NaturalesCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Redes metalorgánicasMetal-organic frameworksCompuestos orgánicos volátilesVolatile organic compoundsOxidosOxidesGases - Absorción y adsorciónGases - Absorption and adsorptionZeolitasZeolitesOxidación catalíticahttp://id.loc.gov/authorities/subjects/sh2020006026http://id.loc.gov/authorities/subjects/sh93000972http://id.loc.gov/authorities/subjects/sh85096314http://id.loc.gov/authorities/subjects/sh85053381http://id.loc.gov/authorities/subjects/sh85149750ODS 11: Ciudades y comunidades sostenibles. Lograr que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sosteniblesODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edadesODS 14: Vida submarina. Conservar y utilizar sosteniblemente los océanos, los mares y los recursos marinos para el desarrollo sostenibleODS 13: Acción por el Clima. Adoptar medidas urgentes para combatir el cambio climático y sus efectosSíntesis de Ni-MOF-74 y su combinación con Mg y zeolita X para el tratamiento de compuestos orgánicos volátilesTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/draftM. Ahmadi, M. Ebrahimnia, M.-A. Shahbazi, R. Keçili, and F. Ghorbani-Bidkorbeh, “Microporous metal–organic frameworks: Synthesis and applications,” J. Ind. Eng. Chem., vol. 115, pp. 1–11, Nov. 2022, doi: 10.1016/j.jiec.2022.07.047.R. Koppmann, “Volatile Organic Compounds in the Atmosphere,” Volatile Org. Compd. Atmos., vol. 90, no. 52, pp. 1–500, 2007, doi: 10.1002/9780470988657.F. Golbabaei, F. Dehghani, M. Saatchi, and S. A. Zakerian, “Evaluation of occupational exposure to different levels of mixed organic solvents and cognitive function in the painting unit of an automotive industry,” Heal. Promot. Perspect., vol. 8, no. 4, pp. 296–302, Oct. 2018, doi: 10.15171/hpp.2018.42.Z. Du et al., “High-solution emission patterns and health risks of volatile organic compounds from automobile repair industries in Beijing.” Aug. 04, 2023. doi: 10.21203/rs.3.rs-3016653/v1.J. F. Franco, J. Pacheco, L. C. Belalcázar, and E. Behrentz, “Characterization and source identification of VOC species in Bogotá, Colombia,” Atmósfera, vol. 28, no. 1, pp. 1–11, Jan. 2015, doi: 10.1016/S0187-6236(15)72155-7.MADS, Guía nacional para el control, monitoreo y seguimiento de emisiones de compuestos orgánicos volátiles, vol. 2. 2021. [Online]. Available: https://www.minambiente.gov.co/documento-entidad/guia-nacional-para-el-control-monitoreo-y-seguimiento-de-emisiones-de-compuestos-organicos-volatiles/X. Ma et al., “MOF-derived FeOx with highly dispersed active sites as an efficient catalyst for enchaning catalytic oxidation of VOCs,” J. Environ. Chem. Eng., vol. 12, no. 2, 2024, doi: 10.1016/j.jece.2024.111966.R. Rao et al., “Recent advances of metal-organic framework-based and derivative materials in the heterogeneous catalytic removal of volatile organic compounds,” J. Colloid Interface Sci., vol. 636, pp. 55–72, 2023, doi: 10.1016/j.jcis.2022.12.167.F. Almomani, R. R. Bhosale, and M. Khraisheh, “Moderate Temperature Treatment of Gas-Phase Volatile Organic Toluene Using NiO and NiO–TiO2 Nano-catalysts: Characterization and Kinetic Behaviors,” Waste and Biomass Valorization, vol. 12, no. 6, pp. 3075–3089, Jun. 2021, doi: 10.1007/s12649-020-01270-4.S. I. Mazhar, A. Ali, T. B. Tilly, M. H. Khan, and C.-Y. Wu, “Efficient adsorption of aromatic and aliphatic hydrocarbons by electrospun hydrophobic PTFE-NiO composite nanofiber filter mats,” Discov. Nano, vol. 18, no. 1, p. 65, Apr. 2023, doi: 10.1186/s11671-023-03834-4.Q. Shen, X. Zhu, J. Dong, and Z. Zhu, “Hydrodealkylation of C9 + Heavy Aromatics to BTX over Zeolite-Supported Nickel Oxide and Molybdenum Oxide Catalysts,” Catal. Letters, vol. 129, no. 1–2, pp. 170–180, Apr. 2009, doi: 10.1007/s10562-008-9786-9.H. An et al., “Boosting the CO2 adsorption performance by defect-rich hierarchical porous Mg-MOF-74,” Chem. Eng. J., vol. 469, no. 30, 2023, doi: 10.1016/j.cej.2023.144052.Y. Fang et al., “Effect of mineralizing agents on the adsorption performance of metal–organic framework MIL-100(Fe) towards chromium(VI),” Chem. Eng. J., vol. 337, no. November 2017, pp. 532–540, 2018, doi: 10.1016/j.cej.2017.12.136.H. Wu et al., “Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption,” J. Am. Chem. Soc., vol. 135, no. 28, pp. 10525–10532, 2013, doi: 10.1021/ja404514r.R. Elakkiya and G. Maduraiveeran, “Metal-organic frameworks: preparation and application in electrocatalytic CO2 reduction reaction,” in Metal-Organic Frameworks for Chemical Reactions, Elsevier, 2021, pp. 331–347. doi: 10.1016/B978-0-12-822099-3.00013-7.H. Kim et al., “Control of the Metal Composition in Bimetallic Mg/Zn(dobpdc) Constructed from a One-Dimensional Zn-Based Template,” Inorg. Chem., vol. 58, no. 20, pp. 14107–14111, 2019, doi: 10.1021/acs.inorgchem.9b02126.C. Chen, M. Kosari, M. Jing, and C. He, “Microwave-assisted synthesis of bimetallic NiCo-MOF-74 with enhanced open metal site for efficient CO2 capture,” Environ. Funct. Mater., vol. 1, no. 3, pp. 253–266, Sep. 2022, doi: 10.1016/J.EFMAT.2023.01.002.G. Ayoub et al., “Rational Synthesis of Mixed-Metal Microporous Metal-Organic Frameworks with Controlled Composition Using Mechanochemistry,” Chem. Mater., vol. 31, no. 15, pp. 5494–5501, 2019, doi: 10.1021/acs.chemmater.9b01068.R. H. Crabtree, The Organometallic Chemistry of the Transition Metals, Fouth edit. Wiley, 2005. doi: 10.1002/0471718769.H. F. Zhou, B. Liu, H. H. Wang, L. Hou, W. Y. Zhang, and Y. Y. Wang, “Construction of Highly Porous Pillared Metal-Organic Frameworks: Rational Synthesis, Structure, and Gas Sorption Properties,” Inorg. Chem., vol. 56, no. 15, pp. 9147–9155, 2017, doi: 10.1021/acs.inorgchem.7b01197.C. Elschenbroich, Organometallics, Thir editi. 2006.J. L. Snider et al., “Stabilized open metal sites in bimetallic metal-organic framework catalysts for hydrogen production from alcohols,” J. Mater. Chem. A, vol. 9, no. 17, pp. 10869–10881, 2021, doi: 10.1039/d1ta00222h.Z. Hu et al., “Facile synthesis of organic framework with tailored nanostructure for effective volatile organic compounds adsorption,” 2022.S. E. Henkelis, P. T. Judge, S. E. Hayes, and T. M. Nenoff, “Preferential SOxAdsorption in Mg-MOF-74 from a Humid Acid Gas Stream,” ACS Appl. Mater. Interfaces, vol. 13, no. 6, pp. 7278–7284, 2021, doi: 10.1021/acsami.0c21298.J. H. Choe, H. Kim, and C. S. Hong, “MOF-74 type variants for CO 2 capture,” Mater. Chem. Front., vol. 5, no. 14, pp. 5172–5185, 2021, doi: 10.1039/D1QM00205H.R. M. Marti et al., “CO2 dynamics in pure and mixed-metal MOFs with open metal sites,” J. Phys. Chem. C, vol. 121, no. 39, pp. 25778–25787, 2017, doi: 10.1021/acs.jpcc.7b07179.Y. Liao, L. Zhang, M. H. Weston, W. Morris, J. T. Hupp, and O. K. Farha, “Tuning ethylene gas adsorption via metal node modulation: Cu-MOF-74 for a high ethylene deliverable capacity,” Chem. Commun., vol. 53, no. 67, pp. 9376–9379, 2017, doi: 10.1039/C7CC04160H.T. Ghanbari, F. Abnisa, and W. M. A. Wan Daud, “A review on production of metal organic frameworks (MOF) for CO2 adsorption,” Sci. Total Environ., vol. 707, 2020, doi: 10.1016/j.scitotenv.2019.135090.H. Wang, Y. Cao, Z. Chen, Q. Yu, and S. Wu, “High-efficiency removal of NOx over natural mordenite using an enhanced plasma-catalytic process at ambient temperature,” Fuel, vol. 224, no. February, pp. 323–330, 2018, doi: 10.1016/j.fuel.2018.03.065.Y. Teramoto, H. H. Kim, N. Negishi, and A. Ogata, “The role of ozone in the reaction mechanism of a bare zeolite-plasma hybrid system,” Catalysts, vol. 5, no. 2, pp. 838–850, 2015, doi: 10.3390/catal5020838.J. Dhainaut et al., “Synthesis of FAU and EMT-type zeolites using structure-directing agents specifically designed by molecular modelling,” Microporous Mesoporous Mater., vol. 174, pp. 117–125, 2013, doi: 10.1016/j.micromeso.2013.03.006.M. Diboune et al., “Efficient removal of volatile organic compounds by FAU-type zeolite coatings,” Molecules, vol. 25, no. 15, pp. 1–13, 2020, doi: 10.3390/molecules25153336.A. J. Schwanke, R. Balzer, and S. Pergher, “Degradation of volatile organic compounds with catalysts-containing zeolite and ordered mesoporous silica,” Handb. Ecomater., vol. 1, pp. 607–618, 2019, doi: 10.1007/978-3-319-68255-6_71.Jujarama, K. Wijaya, M. Shidiq, M. Fahrurrozi, and Suheryanto, “Synthesis of biogasoline from used palm cooking oil through catalytic hydrocracking by using Cr-activated natural zeolite as catalyst,” Asian J. Chem., vol. 26, no. 16, pp. 5033–5038, 2014, doi: 10.14233/ajchem.2014.16299.T. Pan, Z. Wu, and A. C. K. Yip, “Advances in the green synthesis of microporous and hierarchical zeolites: A short review,” Catalysts, vol. 9, no. 3, pp. 1–18, 2019, doi: 10.3390/catal9030274.T. Derbe, S. Temesgen, and M. Bitew, “A Short Review on Synthesis, Characterization, and Applications of Zeolites,” Adv. Mater. Sci. Eng., vol. 2021, 2021, doi: 10.1155/2021/6637898.W. Gao, W. Gou, R. Wei, X. Bu, Y. Ma, and J. C. Ho, “In situ electrochemical conversion of cobalt oxide@MOF-74 core-shell structure as an efficient and robust electrocatalyst for water oxidation,” Appl. Mater. Today, vol. 21, p. 100820, 2020, doi: 10.1016/j.apmt.2020.100820.P. Rani, V. Kasneryk, and M. Opanasenko, “MOF-inorganic nanocomposites: Bridging a gap with inorganic materials,” Appl. Mater. Today, vol. 26, 2022, doi: 10.1016/j.apmt.2021.101283.K. L. Tate, S. Li, M. Yu, and M. A. Carreon, “Zeolite adsorbent-MOF layered nanovalves for CH4 storage,” Adsorption, vol. 23, no. 1, pp. 19–24, 2017, doi: 10.1007/s10450-016-9813-x.J. Li et al., “Hollow cavity engineering of MOFs-derived hierarchical MnOx structure for highly efficient photothermal degradation of ethyl acetate under light irradiation,” Chem. Eng. J., vol. 464, no. March, 2023, doi: 10.1016/j.cej.2023.142412.G. Jiang et al., “Insight into the Ag-CeO2 interface and mechanism of catalytic oxidation of formaldehyde,” Appl. Surf. Sci., vol. 549, no. September 2020, 2021, doi: 10.1016/j.apsusc.2021.149277.D. T. Wang, N. Guo, L. X. Jiang, S. Z. Lian, and Z. W. Wang, “Metal organic frameworks derived metal oxides prepared by oxygen vacancy engineering with the enhanced catalytic activity for toluene oxidation,” J. Environ. Chem. Eng., vol. 10, no. 6, 2022, doi: 10.1016/j.jece.2022.108798.“Technical Overview of Volatile Organic Compounds | US EPA.” Accessed: Nov. 08, 2024. [Online]. Available: https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compoundsK. Vikrant, K. H. Kim, W. Peng, S. Ge, and Y. Sik Ok, “Adsorption performance of standard biochar materials against volatile organic compounds in air: A case study using benzene and methyl ethyl ketone,” Chem. Eng. J., vol. 387, no. December 2019, 2020, doi: 10.1016/j.cej.2019.123943.K. Yang, C. Wang, S. Xue, W. Li, J. Liu, and L. Li, “The identification, health risks and olfactory effects assessment of VOCs released from the wastewater storage tank in a pesticide plant,” Ecotoxicol. Environ. Saf., vol. 184, no. March, 2019, doi: 10.1016/j.ecoenv.2019.109665.A. Atamaleki, S. Motesaddi Zarandi, M. Massoudinejad, A. Esrafili, and A. Mousavi Khaneghah, “Emission of BTEX compounds from the frying process: Quantification, environmental effects, and probabilistic health risk assessment,” Environ. Res., vol. 204, no. August 2021, 2022, doi: 10.1016/j.envres.2021.112295.B. Yu, Z. Yuan, Z. Yu, and F. Xue-song, “BTEX in the environment: An update on sources, fate, distribution, pretreatment, analysis, and removal techniques,” Chem. Eng. J., vol. 435, no. October 2021, 2022, doi: 10.1016/j.cej.2022.134825.F. I. Khan and A. Kr. Ghoshal, “Removal of Volatile Organic Compounds from polluted air,” J. Loss Prev. Process Ind., vol. 13, no. 6, pp. 527–545, Nov. 2000, doi: 10.1016/S0950-4230(00)00007-3.S. S. T. Bastos, S. A. C. Carabineiro, J. J. M. Órfão, M. F. R. Pereira, J. J. Delgado, and J. L. Figueiredo, “Total oxidation of ethyl acetate, ethanol and toluene catalyzed by exotemplated manganese and cerium oxides loaded with gold,” Catal. Today, vol. 180, no. 1, pp. 148–154, Jan. 2012, doi: 10.1016/j.cattod.2011.01.049.H. Tian, J. He, X. Zhang, L. Zhou, and D. Wang, “Facile synthesis of porous manganese oxide K-OMS-2 materials and their catalytic activity for formaldehyde oxidation,” Microporous Mesoporous Mater., vol. 138, no. 1–3, pp. 118–122, 2011, doi: 10.1016/j.micromeso.2010.09.022.L. Liao et al., “Constructing MOFs-derived Co3O4 microsphere with atomic p-n homojunction as an efficient photothermal catalyst for boosting ethyl acetate oxidation under light irradiation,” Sep. Purif. Technol., vol. 309, no. October 2022, 2023, doi: 10.1016/j.seppur.2022.122939.Z. Wang et al., “Advances in functional guest materials for resistive gas sensors,” RSC Adv., vol. 12, no. 38, pp. 24614–24632, 2022, doi: 10.1039/D2RA04063H.K. L. Alford and N. Kumar, “Pulmonary Health Effects of Indoor Volatile Organic Compounds — A Meta-Analysis,” 2021.Q. Al-Naddaf, H. Thakkar, and F. Rezaei, “Novel Zeolite-5A@MOF-74 Composite Adsorbents with Core-Shell Structure for H2 Purification,” ACS Appl. Mater. Interfaces, vol. 10, no. 35, pp. 29656–29666, Sep. 2018, doi: 10.1021/acsami.8b10494.J. Li et al., “Advances in the study of metal–organic frameworks and their biomolecule composites for osteoporosis therapeutic applications,” Biomater. Sci., vol. 12, no. 23, pp. 5912–5932, 2024, doi: 10.1039/D4BM01081G.M. T. Ritter, I. Padilla, M. Á. Lobo-Recio, M. Romero, and A. López-Delgado, “Waste Symbiosis through the Synthesis of Highly Crystalline LTA and SOD Zeolites,” Materials (Basel)., vol. 17, no. 17, 2024, doi: 10.3390/ma17174310.A. Jalali, A. Ahmadpour, M. Ghahramaninezhad, and E. Yasari, “Hierarchical nanocomposites derived from UiO-66 framework and zeolite for enhanced CO2 adsorption,” J. Environ. Chem. Eng., vol. 11, no. 6, Dec. 2023, doi: 10.1016/j.jece.2023.111294.Q. Al-Naddaf, H. Thakkar, and F. Rezaei, “Novel Zeolite-5A@MOF-74 Composite Adsorbents with Core–Shell Structure for H 2 Purification,” ACS Appl. Mater. Interfaces, vol. 10, no. 35, pp. 29656–29666, Sep. 2018, doi: 10.1021/acsami.8b10494.X. Feng, C. Chen, C. He, S. Chai, Y. Yu, and J. Cheng, “Non-thermal plasma coupled with MOF-74 derived Mn-Co-Ni-O porous composite oxide for toluene efficient degradation,” J. Hazard. Mater., vol. 383, p. 121143, Feb. 2020, doi: 10.1016/j.jhazmat.2019.121143.C. Chen et al., “Microwave-Assisted Rapid Synthesis of Well-Shaped MOF-74 (Ni) for CO 2 Efficient Capture,” Inorg. Chem., vol. 58, no. 4, pp. 2717–2728, Feb. 2019, doi: 10.1021/acs.inorgchem.8b03271.N. Ouafek, N. Keghouche, P. Beaunier, J. Belloni, and M. Mostafavi, “Antibacterial activity of intermetallic NixMgy and NiO–MgO phases in nickel-magnesium oxide nanocomposites,” Radiat. Phys. Chem., vol. 202, p. 110499, Jan. 2023, doi: 10.1016/j.radphyschem.2022.110499.S. Norouzbahari, Z. Mehri Lighvan, A. Ghadimi, and B. Sadatnia, “ZIF-8@Zn-MOF-74 core–shell metal–organic framework (MOF) with open metal sites: Synthesis, characterization, and gas adsorption performance,” Fuel, vol. 339, no. January, 2023, doi: 10.1016/j.fuel.2023.127463.N. M. Musyoka, L. F. Petrik, E. Hums, A. Kuhnt, and W. Schwieger, “Thermal stability studies of zeolites A and X synthesized from South African coal fly ash,” Res. Chem. Intermed., vol. 41, no. 2, pp. 575–582, 2015, doi: 10.1007/s11164-013-1211-3.M. Wen, F. Dong, Z. Tang, and J. Zhang, “In situ confined encapsulation strategy for construction of Co3O4@SiO2 catalyst for the efficient elimination of toluene,” Microporous Mesoporous Mater., vol. 322, p. 111156, Jul. 2021, doi: 10.1016/j.micromeso.2021.111156.D. Romero et al., “Removal of toluene over naX zeolite exchanged with Cu2+,” Catalysts, vol. 5, no. 3, pp. 1479–1497, 2015, doi: 10.3390/catal5031479.M. I. Gonzalez et al., “Separation of Xylene Isomers through Multiple Metal Site Interactions in Metal–Organic Frameworks,” J. Am. Chem. Soc., vol. 140, no. 9, pp. 3412–3422, Mar. 2018, doi: 10.1021/jacs.7b13825.Y. Pei, C. Ye, X. Pei, and W. Li, “Xylene adsorption behaviors of Co-MOF-74(X) synthesized from Co(II) salt with different anions,” Inorganica Chim. Acta, vol. 568, no. March, pp. 11–13, 2024, doi: 10.1016/j.ica.2024.122083.S. Li, “Preparation and characterization of Bimetal MOF-74-Co/Cu and its toluene adsorption performances,” J. Porous Mater., vol. 30, no. 2, pp. 421–432, 2023, doi: 10.1007/s10934-022-01353-8.C. Huang, R. Liu, W. Yang, Y. Li, J. Huang, and H. Zhu, “Enhanced catalytic activity of MnCo-MOF-74 for highly selective aerobic oxidation of substituted toluene,” Inorg. Chem. Front., vol. 5, no. 8, pp. 1923–1932, 2018, doi: 10.1039/c8qi00429c.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/2694555e-1146-4b53-8627-d5e9d16d0db7/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD51falseAnonymousREADORIGINALDeLaRosaLaura_2025_TratamientoCompuestosOrganicos.pdfDeLaRosaLaura_2025_TratamientoCompuestosOrganicos.pdfapplication/pdf4242585https://bibliotecadigital.udea.edu.co/bitstreams/5c425d1d-1357-429c-a0ba-3ab8e833d9ca/download2fb089474cd39b0d5755a2eaab088ae5MD52trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/15d66ac6-ec21-4dd7-a591-f0d616542cbd/download5643bfd9bcf29d560eeec56d584edaa9MD53falseAnonymousREADTEXTDeLaRosaLaura_2025_TratamientoCompuestosOrganicos.pdf.txtDeLaRosaLaura_2025_TratamientoCompuestosOrganicos.pdf.txtExtracted texttext/plain102142https://bibliotecadigital.udea.edu.co/bitstreams/ef0a4c3e-ed51-415f-b2d2-d14966fe2fc3/download7747a80025e2f9fe45e09e4d7d63b474MD54falseAnonymousREADTHUMBNAILDeLaRosaLaura_2025_TratamientoCompuestosOrganicos.pdf.jpgDeLaRosaLaura_2025_TratamientoCompuestosOrganicos.pdf.jpgGenerated Thumbnailimage/jpeg6928https://bibliotecadigital.udea.edu.co/bitstreams/ad1d6321-7926-4761-a6b9-f02eaba79619/downloadfe6ec95902920cd9d1bff5bf3cca4bd1MD55falseAnonymousREAD10495/45758oai:bibliotecadigital.udea.edu.co:10495/457582025-04-30 04:02:46.585http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=