Effect of Two Peptides Derived from the Venom of the Tarantula Pamphobeteus verdolaga on a Langmuir Membrane Model Representative of S. aureus
La resistencia a los antimicrobianos representa un reto importante para el tratamiento de infecciones en todo el mundo. En la búsqueda de alternativas a los antibióticos convencionales, los péptidos antimicrobianos se han convertido en una opción terapéutica prometedora, ya que pueden actuar de form...
- Autores:
-
Arbeláez Jiménez, Daniel Felipe
Ceballos Robledo, Jorge Alberto
Giraldo Cadavid, Marco Antonio
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/48048
- Acceso en línea:
- https://hdl.handle.net/10495/48048
- Palabra clave:
- Péptidos Antimicrobianos
Antimicrobial Peptides
Venenos animales
Venom
Monolayers
Surface potential
Compression modulus
Isotherms
https://id.nlm.nih.gov/mesh/D000089882
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_fa5c622f0642f9c32b534dee9902e895 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/48048 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Effect of Two Peptides Derived from the Venom of the Tarantula Pamphobeteus verdolaga on a Langmuir Membrane Model Representative of S. aureus |
| title |
Effect of Two Peptides Derived from the Venom of the Tarantula Pamphobeteus verdolaga on a Langmuir Membrane Model Representative of S. aureus |
| spellingShingle |
Effect of Two Peptides Derived from the Venom of the Tarantula Pamphobeteus verdolaga on a Langmuir Membrane Model Representative of S. aureus Péptidos Antimicrobianos Antimicrobial Peptides Venenos animales Venom Monolayers Surface potential Compression modulus Isotherms https://id.nlm.nih.gov/mesh/D000089882 ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades |
| title_short |
Effect of Two Peptides Derived from the Venom of the Tarantula Pamphobeteus verdolaga on a Langmuir Membrane Model Representative of S. aureus |
| title_full |
Effect of Two Peptides Derived from the Venom of the Tarantula Pamphobeteus verdolaga on a Langmuir Membrane Model Representative of S. aureus |
| title_fullStr |
Effect of Two Peptides Derived from the Venom of the Tarantula Pamphobeteus verdolaga on a Langmuir Membrane Model Representative of S. aureus |
| title_full_unstemmed |
Effect of Two Peptides Derived from the Venom of the Tarantula Pamphobeteus verdolaga on a Langmuir Membrane Model Representative of S. aureus |
| title_sort |
Effect of Two Peptides Derived from the Venom of the Tarantula Pamphobeteus verdolaga on a Langmuir Membrane Model Representative of S. aureus |
| dc.creator.fl_str_mv |
Arbeláez Jiménez, Daniel Felipe Ceballos Robledo, Jorge Alberto Giraldo Cadavid, Marco Antonio |
| dc.contributor.advisor.none.fl_str_mv |
Ceballos Robledo, Jorge Alberto Giraldo Cadavid, Marco Antonio |
| dc.contributor.author.none.fl_str_mv |
Arbeláez Jiménez, Daniel Felipe Ceballos Robledo, Jorge Alberto Giraldo Cadavid, Marco Antonio |
| dc.contributor.researchgroup.none.fl_str_mv |
Grupo de Biofísica - UdeA |
| dc.subject.decs.none.fl_str_mv |
Péptidos Antimicrobianos Antimicrobial Peptides |
| topic |
Péptidos Antimicrobianos Antimicrobial Peptides Venenos animales Venom Monolayers Surface potential Compression modulus Isotherms https://id.nlm.nih.gov/mesh/D000089882 ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades |
| dc.subject.lemb.none.fl_str_mv |
Venenos animales Venom |
| dc.subject.proposal.eng.fl_str_mv |
Monolayers Surface potential Compression modulus Isotherms |
| dc.subject.meshuri.none.fl_str_mv |
https://id.nlm.nih.gov/mesh/D000089882 |
| dc.subject.ods.none.fl_str_mv |
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades |
| description |
La resistencia a los antimicrobianos representa un reto importante para el tratamiento de infecciones en todo el mundo. En la búsqueda de alternativas a los antibióticos convencionales, los péptidos antimicrobianos se han convertido en una opción terapéutica prometedora, ya que pueden actuar de forma selectiva e interactuar con las membranas microbianas. En este estudio, investigamos los mecanismos de acción de dos péptidos, vrdg66 y vrdg172, derivados de la araña Pamphobeteus verdolaga. Caracterizamos sus interacciones mecánicas y eléctricas con un modelo de membrana de Langmuir de la bacteria Staphylococcus aureus en el que se imitó la composición lipídica de la membrana bacteriana. Monitoreamos los cambios que se produjeron en las monocapas tras la incorporación de los péptidos midiendo la presión superficial, el potencial superficial y el módulo de compresión. Nuestros resultados demuestran que los péptidos afectaron al ordenamiento lipídico del modelo de membrana bacteriana de forma diferencial para vrdg66 y vrdg172. Ambos péptidos redujeron el potencial superficial y fluidizaron la monocapa de S. aureus. Estos hallazgos sugieren que vrdg66 y vrdg172 son agentes terapéuticos potenciales para el tratamiento de infecciones en el contexto de la resistencia a los antimicrobianos. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-10-31T12:45:06Z |
| dc.date.issued.none.fl_str_mv |
2025 |
| dc.date.available.none.fl_str_mv |
2027-08 |
| dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
| dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_7a1f |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/48048 |
| url |
https://hdl.handle.net/10495/48048 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.references.none.fl_str_mv |
Aguilar, G. R., Swetschinski, L. R., Weaver, N. D., Ikuta, K. S., Mestrovic, T., Gray, A. P., Chung, E., Wool, E. E., Han, C., Hayoon, A. G., Araki, D. T., Abdollahi, A., Abu-Zaid, A., Adnan, M., Agarwal, R., Dehkordi, J. A., Aravkin, A. Y., Areda, D., Azzam, A. Y., Stergachis, A. (2023). The burden of antimicrobial resistance in the Americas in 2019: a cross-country systematic analysis. The Lancet Regional Health. Americas, 25, 100561. https://doi.org/10.1016/j.lana.2023.100561 Alvares, D. S., Fanani, M. L., Neto, J. R., & Wilke, N. (2015). The interfacial properties of the peptide Polybia-MP1 and its interaction with DPPC are modulated by lateral electrostatic attractions. Biochimica Et Biophysica Acta (BBA) - Biomembranes, 1858(2), 393-402. https://doi.org/10.1016/j.bbamem.2015.12.010 Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K. F., & Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infection And Drug Resistance, Volume 11, 1645-1658. https://doi.org/10.2147/idr.s173867 Barbosa, S. C., Nobre, T. M., Volpati, D., Cilli, E. M., Correa, D. S., & Oliveira, O. N. (2019). The cyclic peptide labaditin does not alter the outer membrane integrity of Salmonella enterica serovar Typhimurium. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-38551-5 Barbosa, S. C., Nobre, T. M., Volpati, D., Ciancaglini, P., Cilli, E. M., Lorenzón, E. N., & Oliveira, O. N. (2016). The importance of cyclic structure for Labaditin on its antimicrobial activity against Staphylococcus aureus. Colloids And Surfaces B Biointerfaces, 148, 453-459. https://doi.org/10.1016/j.colsurfb.2016.09.017 Barnes, G., & Gentle, I. (2011). Interfacial science: an introduction. Oxford university press. Bertrand, B., & Munoz-Garay, C. (2025). Unlocking the power of membrane biophysics: enhancing the study of antimicrobial peptides activity and selectivity. Biophysical Reviews. https://doi.org/10.1007/s12551-025-01312-y Brogden, K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3(3), 238-250. https://doi.org/10.1038/nrmicro1098 Cifuentes, Y., Estrada-Gomez, S., Vargas-Muñoz, L. J., & Perafán, C. (2016). Description and molecular characterization of a new species of tarantula, Pamphobeteus verdolaga, from Colombia (Araneae: Mygalomorphae: Theraphosidae). Zoologia, 33(6). https://doi.org/10.1590/s1984-4689zool-20160113 Casper, C. B., Verreault, D., Adams, E. M., Hua, W., & Allen, H. C. (2016). Surface Potential of DPPC Monolayers on Concentrated Aqueous Salt Solutions. The Journal Of Physical Chemistry B, 120(8), 2043-2052. https://doi.org/10.1021/acs.jpcb.5b10483 Da Silva, J. B., Jr, Espinal, M., & Ramón-Pardo, P. (2020). Antimicrobial resistance: time for action. Revista Panamericana de Salud Pública, 44, 1. https://doi.org/10.26633/rpsp.2020.131 Da Silva, G. H. O., Santos, K. F. D., Barcellos, A. F., De Sousa, R. M. F., Tempone, A. G., Lago, J. H. G., & Caseli, L. (2024). Exploring the selective incorporation of 15β-senecioyloxi-ent-kaurenoic acid methyl ester in Langmuir monolayers mimicking cell membranes. Bioorganic Chemistry, 153, 107941. https://doi.org/10.1016/j.bioorg.2024.107941 El-Tarabily, K. A., El-Saadony, M. T., Alagawany, M., Arif, M., Batiha, G. E., Khafaga, A. F., Elwan, H. A., & Elnesr, S. S. (2021). Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. Al-Mi’galaẗ Al-sa’udiyaẗ Lī-ulum Al-ḥayaẗ, 28(9), 5145-5156. https://doi.org/10.1016/j.sjbs.2021.05.033 Elderdfi, M., & Sikorski, A. F. (2018). Langmuir-monolayer methodologies for characterizing protein lipid interactions. Chemistry And Physics Of Lipids, 212, 61-72. https://doi.org/10.1016/j.chemphyslip.2018.01.008 Epand, R. F., Savage, P. B., & Epand, R. M. (2007). Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochimica Et Biophysica Acta (BBA) - Biomembranes, 1768(10), 2500-2509. https://doi.org/10.1016/j.bbamem.2007.05.023 Estrada-Gomez, S., Muñoz, L. J. V., & Castillo, J. C. Q. (2013). Extraction and partial characterization of venom from the Colombian spider Pamphobeteus aff. nigricolor (Aranae:Theraphosidae). Toxicon, 76, 301-309. https://doi.org/10.1016/j.toxicon.2013.10.014 Estrada-Gómez, S., Vargas-Muñoz, L. J., Saldarriaga-Córdoba, M., Cifuentes, Y., & Perafan, C. (2017). Identifying different transcribed proteins in the newly described Theraphosidae Pamphobeteus verdolaga. Toxicon, 129, 81-88. https://doi.org/10.1016/j.toxicon.2017.02.004 Estrada-Gomez, S., Cardoso, F. C., Vargas-Muñoz, L. J., Quintana-Castillo, J. C., Gómez, C. M. A., Pineda, S. S., & Saldarriaga-Cordoba, M. M. (2019). Venomic, Transcriptomic, and Bioactivity Analyses of Pamphobeteus verdolaga Venom Reveal Complex Disulfide-Rich Peptides That Modulate Calcium Channels. Toxins, 11(9), 496. https://doi.org/10.3390/toxins11090496 Gnanasambandam, R., Ghatak, C., Yasmann, A., Nishizawa, K., Sachs, F., Ladokhin, A. S., Sukharev, S. I., & Suchyna, T. M. (2017). GsMTx4: Mechanism of Inhibiting Mechanosensitive Ion Channels. Biophysical Journal, 112(1), 31-45. https://doi.org/10.1016/j.bpj.2016.11.013 Huang, X., & Li, G. (2023). Antimicrobial Peptides and Cell-Penetrating Peptides: Non-Antibiotic Membrane-Targeting Strategies Against Bacterial Infections. Infection And Drug Resistance, Volume 16, 1203-1219. https://doi.org/10.2147/idr.s396566 Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Frontiers In Microbiology, 11. https://doi.org/10.3389/fmicb.2020.582779 Hollmann, A., Martinez, M., Maturana, P., Semorile, L. C., & Maffia, P. C. (2018). Antimicrobial Peptides: Interaction With Model and Biological Membranes and Synergism With Chemical Antibiotics. Frontiers In Chemistry, 6. https://doi.org/10.3389/fchem.2018.00204 Instituto Nacional de Salud. (s.f.). Policy Brief: Resistencia antimicrobiana, un problema invisible [PDF]. Taken from https://www.ins.gov.co/Direcciones/ONS/publicaciones%20alternas/Policy%20Brief%20Resiste ncia%20antimicrobiana%20un%20problema%20invisible.pdf Juhaniewicz-Dębińska, J., Lasek, R., Tymecka, D., Burdach, K., Bartosik, D., & Sęk, S. (2020). Physicochemical and Biological Characterization of Novel Membrane-Active Cationic Lipopeptides with Antimicrobial Properties. Langmuir, 36(43), 12900-12910. https://doi.org/10.1021/acs.langmuir.0c02135 Marsh, D. (2006). Comment on Interpretation of Mechanochemical Properties of Lipid Bilayer Vesicles from the Equation of State or Pressure−Area Measurement of the Monolayer at the Air−Water or Oil−Water Interface. Langmuir, 22(6), 2916-2919. https://doi.org/10.1021/la051216n Mach, M., Kowalska, M., Olechowska, K., Płachta, Ł., & Wydro, P. (2021). The studies on the membrane activity of triester of phosphatidylcholine in artificial membrane systems. Biochimica Et Biophysica Acta (BBA) - Biomembranes, 1863(11), 183711. https://doi.org/10.1016/j.bbamem.2021.183711 Mohaideen, N.S.M.H., Vaani, S. & Hemalatha, S. Antimicrobial Peptides. Curr. Pharmacol. Rep. 9, 433–454 (2023). https://doi.org/10.1007/s40495-023-00342-y Moretta, A., Scieuzo, C., Petrone, A. M., Salvia, R., Manniello, M. D., Franco, A., Lucchetti, D., Vassallo, A., Vogel, H., Sgambato, A., & Falabella, P. (2021). Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Frontiers In Cellular And Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.668632 Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Hamadani, B. H. K., Kumaran, E. A. P., McManigal, B., Mturi, N. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 399(10325), 629-655. https://doi.org/10.1016/s0140-6736(21)02724-0 Nowotarska, S., Nowotarski, K., Friedman, M., & Situ, C. (2014). Effect of Structure on the Interactions between Five Natural Antimicrobial Compounds and Phospholipids of Bacterial Cell Membrane on Model Monolayers. Molecules, 19(6), 7497-7515. https://doi.org/10.3390/molecules19067497 Riahifard, N., Mozaffari, S., Aldakhil, T., Nunez, F., Alshammari, Q., Alshammari, S., Yamaki, J., Parang, K., & Tiwari, R. K. (2018). Design, Synthesis, and Evaluation of Amphiphilic Cyclic and Linear Peptides Composed of Hydrophobic and Positively-Charged Amino Acids as Antibacterial Agents. Molecules/Molecules Online/Molecules Annual, 23(10), 2722. https://doi.org/10.3390/molecules23102722 Rojewska, M., Smułek, W., Kaczorek, E., & Prochaska, K. (2021). Langmuir Monolayer Techniques for the Investigation of Model Bacterial Membranes and Antibiotic Biodegradation Mechanisms. Membranes, 11(9), 707. https://doi.org/10.3390/membranes11090707 Saez, N. J., Senff, S., Jensen, J. E., Er, S. Y., Herzig, V., Rash, L. D., & King, G. F. (2010). Spider Venom Peptides as Therapeutics. Toxins, 2(12), 2851-2871. https://doi.org/10.3390/toxins2122851 Salay, L. C., Ferreira, M., Oliveira, O. N., Nakaie, C. R., & Schreier, S. (2012). Headgroup specificity for the interaction of the antimicrobial peptide tritrpticin with phospholipid Langmuir monolayers. Colloids And Surfaces B Biointerfaces, 100, 95-102. https://doi.org/10.1016/j.colsurfb.2012.05.002 Salinas-Restrepo, C., Misas, E., Estrada-Gómez, S., Quintana-Castillo, J. C., Guzman, F., Calderón, J. C., Giraldo, M. A., & Segura, C. (2022). Improving the Annotation of the Venom Gland Transcriptome of Pamphobeteus verdolaga, Prospecting Novel Bioactive Peptides. Toxins, 14(6), 408. https://doi.org/10.3390/toxins14060408 Salinas-Restrepo, C., Naranjo-Duran, A. M., Quintana, J., Bueno, J., Guzman, F., Palacio, L. M. H., & Segura, C. (2023). Short Antimicrobial Peptide Derived from the Venom Gland Transcriptome of Pamphobeteus verdolaga Increases Gentamicin Susceptibility of Multidrug-Resistant Klebsiella pneumoniae. Antibiotics, 13(1), 6. https://doi.org/10.3390/antibiotics13010006 Saupe, A. (1965). Interfacial Phenomena. Von J. T. Davies und E. K. Rideal. Academic Press, New York‐London 1963. 2. Aufl., VIII, 480 S., zahlr. Abb. u. Tab., geb. 15.—. Angewandte Chemie, 77(6), 276. https://doi.org/10.1002/ange.19650770625 Ventola, C. L. (2015). The Antibiotic Resistance Crisis: Part 1: Causes and threats. PubMed, 40(4), 277-283. https://pubmed.ncbi.nlm.nih.gov/25859123 Wang, X., & Wang, G. (2016). Insights into Antimicrobial Peptides from Spiders and Scorpions. Protein & Peptide Letters/Protein And Peptide Letters, 23(8), 707-721. https://doi.org/10.2174/0929866523666160511151320 Węder, K., Mach, M., Hąc-Wydro, K., & Wydro, P. (2018). Studies on the interactions of anticancer drug - Minerval - with membrane lipids in binary and ternary Langmuir monolayers. Biochimica Et Biophysica Acta (BBA) - Biomembranes, 1860(11), 2329-2336. https://doi.org/10.1016/j.bbamem.2018.05.019 World Health Organization: WHO. (2023, 21 noviembre). Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance Yacoub, T., Rima, M., Karam, M., Sabatier, J., & Fajloun, Z. (2020). Antimicrobials from Venomous Animals: An Overview. Molecules/Molecules Online/Molecules Annual, 25(10), 2402. https://doi.org/10.3390/molecules25102402 |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.license.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.none.fl_str_mv |
26 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.program.none.fl_str_mv |
Biología |
| dc.publisher.place.none.fl_str_mv |
El Carmen de Viboral, Colombia |
| dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Exactas y Naturales |
| dc.publisher.branch.none.fl_str_mv |
Campus El Carmen de Viboral |
| publisher.none.fl_str_mv |
Universidad de Antioquia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/85f472b3-b055-4460-aaa7-d5dff9eaf524/download https://bibliotecadigital.udea.edu.co/bitstreams/fc717887-85b1-4684-939a-5323e453c01b/download https://bibliotecadigital.udea.edu.co/bitstreams/4ef0626a-3cb2-492d-b8d3-40e858da47fd/download https://bibliotecadigital.udea.edu.co/bitstreams/77e272fa-ec56-46cf-9b49-b2d951333b05/download https://bibliotecadigital.udea.edu.co/bitstreams/160825d6-6739-409d-bd76-6fadbd25fcca/download |
| bitstream.checksum.fl_str_mv |
8e5bfa2ac5d28395174775152caf20dd b76e7a76e24cf2f94b3ce0ae5ed275d0 5643bfd9bcf29d560eeec56d584edaa9 cd66d152810f73986482fa7674f47384 2144483a869f44ab40caf2c486c6630f |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052166442123264 |
| spelling |
Ceballos Robledo, Jorge AlbertoGiraldo Cadavid, Marco AntonioArbeláez Jiménez, Daniel FelipeCeballos Robledo, Jorge AlbertoGiraldo Cadavid, Marco AntonioGrupo de Biofísica - UdeA2025-10-31T12:45:06Z2027-082025https://hdl.handle.net/10495/48048La resistencia a los antimicrobianos representa un reto importante para el tratamiento de infecciones en todo el mundo. En la búsqueda de alternativas a los antibióticos convencionales, los péptidos antimicrobianos se han convertido en una opción terapéutica prometedora, ya que pueden actuar de forma selectiva e interactuar con las membranas microbianas. En este estudio, investigamos los mecanismos de acción de dos péptidos, vrdg66 y vrdg172, derivados de la araña Pamphobeteus verdolaga. Caracterizamos sus interacciones mecánicas y eléctricas con un modelo de membrana de Langmuir de la bacteria Staphylococcus aureus en el que se imitó la composición lipídica de la membrana bacteriana. Monitoreamos los cambios que se produjeron en las monocapas tras la incorporación de los péptidos midiendo la presión superficial, el potencial superficial y el módulo de compresión. Nuestros resultados demuestran que los péptidos afectaron al ordenamiento lipídico del modelo de membrana bacteriana de forma diferencial para vrdg66 y vrdg172. Ambos péptidos redujeron el potencial superficial y fluidizaron la monocapa de S. aureus. Estos hallazgos sugieren que vrdg66 y vrdg172 son agentes terapéuticos potenciales para el tratamiento de infecciones en el contexto de la resistencia a los antimicrobianos.Antimicrobial resistance represents a significant challenge to the treatment of infections worldwide. In the search for alternatives to conventional antibiotics, antimicrobial peptides have emerged as a promising therapeutic option for they can selectively target and interact with microbial membranes. In this study, we investigated the mechanisms of action of two peptides, vrdg66 and vrdg172, derived from the spider Pamphobeteus verdolaga. We characterized their mechanical and electrical interactions with a Langmuir membrane model of the bacterium Staphylococcus aureus in which the lipid composition of the bacterial membrane was simulated. We monitored the changes that occurred in the monolayers after the incorporation of the peptides by measuring surface pressure, surface potential, and compression modulus. Our results demonstrate that the peptides affected the lipid ordering of the bacterial membrane model differently for vrdg66 and vrdg172, although both peptides reduced surface potential and fluidized the S. aureus monolayer. These findings suggest that vrdg66 and vrdg172 are potential therapeutic agents for the treatment of infections in the context of antimicrobial resistance.BiomembranasCOL0076414PregradoBiólogo26 páginasapplication/pdfengUniversidad de AntioquiaBiologíaEl Carmen de Viboral, ColombiaFacultad de Ciencias Exactas y NaturalesCampus El Carmen de Viboralhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Effect of Two Peptides Derived from the Venom of the Tarantula Pamphobeteus verdolaga on a Langmuir Membrane Model Representative of S. aureusTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/draftAguilar, G. R., Swetschinski, L. R., Weaver, N. D., Ikuta, K. S., Mestrovic, T., Gray, A. P., Chung, E., Wool, E. E., Han, C., Hayoon, A. G., Araki, D. T., Abdollahi, A., Abu-Zaid, A., Adnan, M., Agarwal, R., Dehkordi, J. A., Aravkin, A. Y., Areda, D., Azzam, A. Y., Stergachis, A. (2023). The burden of antimicrobial resistance in the Americas in 2019: a cross-country systematic analysis. The Lancet Regional Health. Americas, 25, 100561. https://doi.org/10.1016/j.lana.2023.100561Alvares, D. S., Fanani, M. L., Neto, J. R., & Wilke, N. (2015). The interfacial properties of the peptide Polybia-MP1 and its interaction with DPPC are modulated by lateral electrostatic attractions. Biochimica Et Biophysica Acta (BBA) - Biomembranes, 1858(2), 393-402. https://doi.org/10.1016/j.bbamem.2015.12.010Aslam, B., Wang, W., Arshad, M. I., Khurshid, M., Muzammil, S., Rasool, M. H., Nisar, M. A., Alvi, R. F., Aslam, M. A., Qamar, M. U., Salamat, M. K. F., & Baloch, Z. (2018). Antibiotic resistance: a rundown of a global crisis. Infection And Drug Resistance, Volume 11, 1645-1658. https://doi.org/10.2147/idr.s173867Barbosa, S. C., Nobre, T. M., Volpati, D., Cilli, E. M., Correa, D. S., & Oliveira, O. N. (2019). The cyclic peptide labaditin does not alter the outer membrane integrity of Salmonella enterica serovar Typhimurium. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-38551-5Barbosa, S. C., Nobre, T. M., Volpati, D., Ciancaglini, P., Cilli, E. M., Lorenzón, E. N., & Oliveira, O. N. (2016). The importance of cyclic structure for Labaditin on its antimicrobial activity against Staphylococcus aureus. Colloids And Surfaces B Biointerfaces, 148, 453-459. https://doi.org/10.1016/j.colsurfb.2016.09.017Barnes, G., & Gentle, I. (2011). Interfacial science: an introduction. Oxford university press.Bertrand, B., & Munoz-Garay, C. (2025). Unlocking the power of membrane biophysics: enhancing the study of antimicrobial peptides activity and selectivity. Biophysical Reviews. https://doi.org/10.1007/s12551-025-01312-yBrogden, K. A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3(3), 238-250. https://doi.org/10.1038/nrmicro1098Cifuentes, Y., Estrada-Gomez, S., Vargas-Muñoz, L. J., & Perafán, C. (2016). Description and molecular characterization of a new species of tarantula, Pamphobeteus verdolaga, from Colombia (Araneae: Mygalomorphae: Theraphosidae). Zoologia, 33(6). https://doi.org/10.1590/s1984-4689zool-20160113Casper, C. B., Verreault, D., Adams, E. M., Hua, W., & Allen, H. C. (2016). Surface Potential of DPPC Monolayers on Concentrated Aqueous Salt Solutions. The Journal Of Physical Chemistry B, 120(8), 2043-2052. https://doi.org/10.1021/acs.jpcb.5b10483Da Silva, J. B., Jr, Espinal, M., & Ramón-Pardo, P. (2020). Antimicrobial resistance: time for action. Revista Panamericana de Salud Pública, 44, 1. https://doi.org/10.26633/rpsp.2020.131Da Silva, G. H. O., Santos, K. F. D., Barcellos, A. F., De Sousa, R. M. F., Tempone, A. G., Lago, J. H. G., & Caseli, L. (2024). Exploring the selective incorporation of 15β-senecioyloxi-ent-kaurenoic acid methyl ester in Langmuir monolayers mimicking cell membranes. Bioorganic Chemistry, 153, 107941. https://doi.org/10.1016/j.bioorg.2024.107941El-Tarabily, K. A., El-Saadony, M. T., Alagawany, M., Arif, M., Batiha, G. E., Khafaga, A. F., Elwan, H. A., & Elnesr, S. S. (2021). Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. Al-Mi’galaẗ Al-sa’udiyaẗ Lī-ulum Al-ḥayaẗ, 28(9), 5145-5156. https://doi.org/10.1016/j.sjbs.2021.05.033Elderdfi, M., & Sikorski, A. F. (2018). Langmuir-monolayer methodologies for characterizing protein lipid interactions. Chemistry And Physics Of Lipids, 212, 61-72. https://doi.org/10.1016/j.chemphyslip.2018.01.008Epand, R. F., Savage, P. B., & Epand, R. M. (2007). Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochimica Et Biophysica Acta (BBA) - Biomembranes, 1768(10), 2500-2509. https://doi.org/10.1016/j.bbamem.2007.05.023Estrada-Gomez, S., Muñoz, L. J. V., & Castillo, J. C. Q. (2013). Extraction and partial characterization of venom from the Colombian spider Pamphobeteus aff. nigricolor (Aranae:Theraphosidae). Toxicon, 76, 301-309. https://doi.org/10.1016/j.toxicon.2013.10.014Estrada-Gómez, S., Vargas-Muñoz, L. J., Saldarriaga-Córdoba, M., Cifuentes, Y., & Perafan, C. (2017). Identifying different transcribed proteins in the newly described Theraphosidae Pamphobeteus verdolaga. Toxicon, 129, 81-88. https://doi.org/10.1016/j.toxicon.2017.02.004Estrada-Gomez, S., Cardoso, F. C., Vargas-Muñoz, L. J., Quintana-Castillo, J. C., Gómez, C. M. A., Pineda, S. S., & Saldarriaga-Cordoba, M. M. (2019). Venomic, Transcriptomic, and Bioactivity Analyses of Pamphobeteus verdolaga Venom Reveal Complex Disulfide-Rich Peptides That Modulate Calcium Channels. Toxins, 11(9), 496. https://doi.org/10.3390/toxins11090496Gnanasambandam, R., Ghatak, C., Yasmann, A., Nishizawa, K., Sachs, F., Ladokhin, A. S., Sukharev, S. I., & Suchyna, T. M. (2017). GsMTx4: Mechanism of Inhibiting Mechanosensitive Ion Channels. Biophysical Journal, 112(1), 31-45. https://doi.org/10.1016/j.bpj.2016.11.013Huang, X., & Li, G. (2023). Antimicrobial Peptides and Cell-Penetrating Peptides: Non-Antibiotic Membrane-Targeting Strategies Against Bacterial Infections. Infection And Drug Resistance, Volume 16, 1203-1219. https://doi.org/10.2147/idr.s396566Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Frontiers In Microbiology, 11. https://doi.org/10.3389/fmicb.2020.582779Hollmann, A., Martinez, M., Maturana, P., Semorile, L. C., & Maffia, P. C. (2018). Antimicrobial Peptides: Interaction With Model and Biological Membranes and Synergism With Chemical Antibiotics. Frontiers In Chemistry, 6. https://doi.org/10.3389/fchem.2018.00204Instituto Nacional de Salud. (s.f.). Policy Brief: Resistencia antimicrobiana, un problema invisible [PDF]. Taken from https://www.ins.gov.co/Direcciones/ONS/publicaciones%20alternas/Policy%20Brief%20Resiste ncia%20antimicrobiana%20un%20problema%20invisible.pdfJuhaniewicz-Dębińska, J., Lasek, R., Tymecka, D., Burdach, K., Bartosik, D., & Sęk, S. (2020). Physicochemical and Biological Characterization of Novel Membrane-Active Cationic Lipopeptides with Antimicrobial Properties. Langmuir, 36(43), 12900-12910. https://doi.org/10.1021/acs.langmuir.0c02135Marsh, D. (2006). Comment on Interpretation of Mechanochemical Properties of Lipid Bilayer Vesicles from the Equation of State or Pressure−Area Measurement of the Monolayer at the Air−Water or Oil−Water Interface. Langmuir, 22(6), 2916-2919. https://doi.org/10.1021/la051216nMach, M., Kowalska, M., Olechowska, K., Płachta, Ł., & Wydro, P. (2021). The studies on the membrane activity of triester of phosphatidylcholine in artificial membrane systems. Biochimica Et Biophysica Acta (BBA) - Biomembranes, 1863(11), 183711. https://doi.org/10.1016/j.bbamem.2021.183711Mohaideen, N.S.M.H., Vaani, S. & Hemalatha, S. Antimicrobial Peptides. Curr. Pharmacol. Rep. 9, 433–454 (2023). https://doi.org/10.1007/s40495-023-00342-yMoretta, A., Scieuzo, C., Petrone, A. M., Salvia, R., Manniello, M. D., Franco, A., Lucchetti, D., Vassallo, A., Vogel, H., Sgambato, A., & Falabella, P. (2021). Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Frontiers In Cellular And Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.668632Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Hamadani, B. H. K., Kumaran, E. A. P., McManigal, B., Mturi, N. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 399(10325), 629-655. https://doi.org/10.1016/s0140-6736(21)02724-0Nowotarska, S., Nowotarski, K., Friedman, M., & Situ, C. (2014). Effect of Structure on the Interactions between Five Natural Antimicrobial Compounds and Phospholipids of Bacterial Cell Membrane on Model Monolayers. Molecules, 19(6), 7497-7515. https://doi.org/10.3390/molecules19067497Riahifard, N., Mozaffari, S., Aldakhil, T., Nunez, F., Alshammari, Q., Alshammari, S., Yamaki, J., Parang, K., & Tiwari, R. K. (2018). Design, Synthesis, and Evaluation of Amphiphilic Cyclic and Linear Peptides Composed of Hydrophobic and Positively-Charged Amino Acids as Antibacterial Agents. Molecules/Molecules Online/Molecules Annual, 23(10), 2722. https://doi.org/10.3390/molecules23102722Rojewska, M., Smułek, W., Kaczorek, E., & Prochaska, K. (2021). Langmuir Monolayer Techniques for the Investigation of Model Bacterial Membranes and Antibiotic Biodegradation Mechanisms. Membranes, 11(9), 707. https://doi.org/10.3390/membranes11090707Saez, N. J., Senff, S., Jensen, J. E., Er, S. Y., Herzig, V., Rash, L. D., & King, G. F. (2010). Spider Venom Peptides as Therapeutics. Toxins, 2(12), 2851-2871. https://doi.org/10.3390/toxins2122851Salay, L. C., Ferreira, M., Oliveira, O. N., Nakaie, C. R., & Schreier, S. (2012). Headgroup specificity for the interaction of the antimicrobial peptide tritrpticin with phospholipid Langmuir monolayers. Colloids And Surfaces B Biointerfaces, 100, 95-102. https://doi.org/10.1016/j.colsurfb.2012.05.002Salinas-Restrepo, C., Misas, E., Estrada-Gómez, S., Quintana-Castillo, J. C., Guzman, F., Calderón, J. C., Giraldo, M. A., & Segura, C. (2022). Improving the Annotation of the Venom Gland Transcriptome of Pamphobeteus verdolaga, Prospecting Novel Bioactive Peptides. Toxins, 14(6), 408. https://doi.org/10.3390/toxins14060408Salinas-Restrepo, C., Naranjo-Duran, A. M., Quintana, J., Bueno, J., Guzman, F., Palacio, L. M. H., & Segura, C. (2023). Short Antimicrobial Peptide Derived from the Venom Gland Transcriptome of Pamphobeteus verdolaga Increases Gentamicin Susceptibility of Multidrug-Resistant Klebsiella pneumoniae. Antibiotics, 13(1), 6. https://doi.org/10.3390/antibiotics13010006Saupe, A. (1965). Interfacial Phenomena. Von J. T. Davies und E. K. Rideal. Academic Press, New York‐London 1963. 2. Aufl., VIII, 480 S., zahlr. Abb. u. Tab., geb. 15.—. Angewandte Chemie, 77(6), 276. https://doi.org/10.1002/ange.19650770625Ventola, C. L. (2015). The Antibiotic Resistance Crisis: Part 1: Causes and threats. PubMed, 40(4), 277-283. https://pubmed.ncbi.nlm.nih.gov/25859123Wang, X., & Wang, G. (2016). Insights into Antimicrobial Peptides from Spiders and Scorpions. Protein & Peptide Letters/Protein And Peptide Letters, 23(8), 707-721. https://doi.org/10.2174/0929866523666160511151320Węder, K., Mach, M., Hąc-Wydro, K., & Wydro, P. (2018). Studies on the interactions of anticancer drug - Minerval - with membrane lipids in binary and ternary Langmuir monolayers. Biochimica Et Biophysica Acta (BBA) - Biomembranes, 1860(11), 2329-2336. https://doi.org/10.1016/j.bbamem.2018.05.019World Health Organization: WHO. (2023, 21 noviembre). Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistanceYacoub, T., Rima, M., Karam, M., Sabatier, J., & Fajloun, Z. (2020). Antimicrobials from Venomous Animals: An Overview. Molecules/Molecules Online/Molecules Annual, 25(10), 2402. https://doi.org/10.3390/molecules25102402Péptidos AntimicrobianosAntimicrobial PeptidesVenenos animalesVenomMonolayersSurface potentialCompression modulusIsothermshttps://id.nlm.nih.gov/mesh/D000089882ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edadesPublication55633000ORIGINALArbelaezDaniel_2025_Peptides_Pamphobeteus_VerdolagaArbelaezDaniel_2025_Peptides_Pamphobeteus_VerdolagaTrabajo de grado de pregradoapplication/pdf493538https://bibliotecadigital.udea.edu.co/bitstreams/85f472b3-b055-4460-aaa7-d5dff9eaf524/download8e5bfa2ac5d28395174775152caf20ddMD53trueAnonymousREAD2027-07-31LICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/fc717887-85b1-4684-939a-5323e453c01b/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD55falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/4ef0626a-3cb2-492d-b8d3-40e858da47fd/download5643bfd9bcf29d560eeec56d584edaa9MD57falseAnonymousREADTEXTArbelaezDaniel_2025_Peptides_Pamphobeteus_Verdolaga.txtArbelaezDaniel_2025_Peptides_Pamphobeteus_Verdolaga.txtExtracted texttext/plain52149https://bibliotecadigital.udea.edu.co/bitstreams/77e272fa-ec56-46cf-9b49-b2d951333b05/downloadcd66d152810f73986482fa7674f47384MD58falseAnonymousREAD2027-07-31THUMBNAILArbelaezDaniel_2025_Peptides_Pamphobeteus_Verdolaga.jpgArbelaezDaniel_2025_Peptides_Pamphobeteus_Verdolaga.jpgGenerated Thumbnailimage/jpeg7002https://bibliotecadigital.udea.edu.co/bitstreams/160825d6-6739-409d-bd76-6fadbd25fcca/download2144483a869f44ab40caf2c486c6630fMD59falseAnonymousREAD2027-07-3110495/48048oai:bibliotecadigital.udea.edu.co:10495/480482025-11-01 04:01:53.73http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalembargo2027-07-31https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |
