Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection

ABSTRACT: Background Leishmaniasis is a virulent parasitic infection that causes a worldwide disease burden. Most treatments have toxic side-effects and efficacy has decreased due to the emergence of resistant strains. The outlook is worsened by the absence of promising drug targets for this disease...

Full description

Autores:
Flórez Amaya, Andrés Felipe
Park, Daeui
Bhak, Jong
Kim, Byoung-Chul
Kuchinsky, Allan
Morris, John H
Espinosa, Jairo
Muskus López, Carlos Enrique
Tipo de recurso:
Article of investigation
Fecha de publicación:
2010
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/25750
Acceso en línea:
http://hdl.handle.net/10495/25750
Palabra clave:
Leishmania
Leishmaniasis
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_f7b9a61686f8a1f4e073153543ab67e7
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/25750
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection
title Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection
spellingShingle Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection
Leishmania
Leishmaniasis
title_short Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection
title_full Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection
title_fullStr Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection
title_full_unstemmed Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection
title_sort Protein network prediction and topological analysis in Leishmania major as a tool for drug target selection
dc.creator.fl_str_mv Flórez Amaya, Andrés Felipe
Park, Daeui
Bhak, Jong
Kim, Byoung-Chul
Kuchinsky, Allan
Morris, John H
Espinosa, Jairo
Muskus López, Carlos Enrique
dc.contributor.author.none.fl_str_mv Flórez Amaya, Andrés Felipe
Park, Daeui
Bhak, Jong
Kim, Byoung-Chul
Kuchinsky, Allan
Morris, John H
Espinosa, Jairo
Muskus López, Carlos Enrique
dc.contributor.researchgroup.spa.fl_str_mv Programa de Estudio y Control de Enfermedades Tropicales (PECET)
dc.subject.decs.none.fl_str_mv Leishmania
Leishmaniasis
topic Leishmania
Leishmaniasis
description ABSTRACT: Background Leishmaniasis is a virulent parasitic infection that causes a worldwide disease burden. Most treatments have toxic side-effects and efficacy has decreased due to the emergence of resistant strains. The outlook is worsened by the absence of promising drug targets for this disease. We have taken a computational approach to the detection of new drug targets, which may become an effective strategy for the discovery of new drugs for this tropical disease. Results We have predicted the protein interaction network of Leishmania major by using three validated methods: PSIMAP, PEIMAP, and iPfam. Combining the results from these methods, we calculated a high confidence network (confidence score > 0.70) with 1,366 nodes and 33,861 interactions. We were able to predict the biological process for 263 interacting proteins by doing enrichment analysis of the clusters detected. Analyzing the topology of the network with metrics such as connectivity and betweenness centrality, we detected 142 potential drug targets after homology filtering with the human proteome. Further experiments can be done to validate these targets. Conclusion We have constructed the first protein interaction network of the Leishmania major parasite by using a computational approach. The topological analysis of the protein network enabled us to identify a set of candidate proteins that may be both (1) essential for parasite survival and (2) without human orthologs. These potential targets are promising for further experimental validation. This strategy, if validated, may augment established drug discovery methodologies, for this and possibly other tropical diseases, with a relatively low additional investment of time and resources.
publishDate 2010
dc.date.issued.none.fl_str_mv 2010
dc.date.accessioned.none.fl_str_mv 2022-02-02T17:21:31Z
dc.date.available.none.fl_str_mv 2022-02-02T17:21:31Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/25750
dc.identifier.eissn.none.fl_str_mv 1471-2105
url http://hdl.handle.net/10495/25750
identifier_str_mv 1471-2105
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv BMC Bioinformatics.
dc.relation.citationendpage.spa.fl_str_mv 9
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 11
dc.relation.ispartofjournal.spa.fl_str_mv BMC Bioinformatics
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 9
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv BMC
dc.publisher.place.spa.fl_str_mv Londres, Inglaterra
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/45bb4375-91e7-4838-a9c6-9d2858306d57/download
https://bibliotecadigital.udea.edu.co/bitstreams/6948d247-2f4b-41ee-927a-0d697df89f2e/download
https://bibliotecadigital.udea.edu.co/bitstreams/23a450ce-77fa-49c4-8075-00b4baa6c776/download
https://bibliotecadigital.udea.edu.co/bitstreams/a8e206e2-2221-40b0-ad6e-575fa784475c/download
https://bibliotecadigital.udea.edu.co/bitstreams/1c0a3e29-40d9-4d48-8639-b44fbc368b0a/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
3ca72e8658ea6563f20e51fc975b6e1c
1646d1f6b96dbbbc38035efc9239ac9c
cadb2f530844653d4ab39590c1a28892
bf664256bbc3557bf36d719424e9064a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052563866058752
spelling Flórez Amaya, Andrés FelipePark, DaeuiBhak, JongKim, Byoung-ChulKuchinsky, AllanMorris, John HEspinosa, JairoMuskus López, Carlos EnriquePrograma de Estudio y Control de Enfermedades Tropicales (PECET)2022-02-02T17:21:31Z2022-02-02T17:21:31Z2010http://hdl.handle.net/10495/257501471-2105ABSTRACT: Background Leishmaniasis is a virulent parasitic infection that causes a worldwide disease burden. Most treatments have toxic side-effects and efficacy has decreased due to the emergence of resistant strains. The outlook is worsened by the absence of promising drug targets for this disease. We have taken a computational approach to the detection of new drug targets, which may become an effective strategy for the discovery of new drugs for this tropical disease. Results We have predicted the protein interaction network of Leishmania major by using three validated methods: PSIMAP, PEIMAP, and iPfam. Combining the results from these methods, we calculated a high confidence network (confidence score > 0.70) with 1,366 nodes and 33,861 interactions. We were able to predict the biological process for 263 interacting proteins by doing enrichment analysis of the clusters detected. Analyzing the topology of the network with metrics such as connectivity and betweenness centrality, we detected 142 potential drug targets after homology filtering with the human proteome. Further experiments can be done to validate these targets. Conclusion We have constructed the first protein interaction network of the Leishmania major parasite by using a computational approach. The topological analysis of the protein network enabled us to identify a set of candidate proteins that may be both (1) essential for parasite survival and (2) without human orthologs. These potential targets are promising for further experimental validation. This strategy, if validated, may augment established drug discovery methodologies, for this and possibly other tropical diseases, with a relatively low additional investment of time and resources.COL00150999application/pdfengBMCLondres, Inglaterrahttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Protein network prediction and topological analysis in Leishmania major as a tool for drug target selectionArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleLeishmaniaLeishmaniasisBMC Bioinformatics.9111BMC BioinformaticsPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/45bb4375-91e7-4838-a9c6-9d2858306d57/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALFlorezAndres_2010_ProteinNetworkPrediction.pdfFlorezAndres_2010_ProteinNetworkPrediction.pdfArtículo de investigaciónapplication/pdf1300707https://bibliotecadigital.udea.edu.co/bitstreams/6948d247-2f4b-41ee-927a-0d697df89f2e/download3ca72e8658ea6563f20e51fc975b6e1cMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/23a450ce-77fa-49c4-8075-00b4baa6c776/download1646d1f6b96dbbbc38035efc9239ac9cMD52falseAnonymousREADTEXTFlorezAndres_2010_ProteinNetworkPrediction.pdf.txtFlorezAndres_2010_ProteinNetworkPrediction.pdf.txtExtracted texttext/plain46737https://bibliotecadigital.udea.edu.co/bitstreams/a8e206e2-2221-40b0-ad6e-575fa784475c/downloadcadb2f530844653d4ab39590c1a28892MD54falseAnonymousREADTHUMBNAILFlorezAndres_2010_ProteinNetworkPrediction.pdf.jpgFlorezAndres_2010_ProteinNetworkPrediction.pdf.jpgGenerated Thumbnailimage/jpeg15787https://bibliotecadigital.udea.edu.co/bitstreams/1c0a3e29-40d9-4d48-8639-b44fbc368b0a/downloadbf664256bbc3557bf36d719424e9064aMD55falseAnonymousREAD10495/25750oai:bibliotecadigital.udea.edu.co:10495/257502025-03-27 00:22:46.701http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=