S3N - Smart Solution for Substation Networks, an architecture for the management of communication networks in power substations
ABSTRACT: Today, the communications network has become an essential element to the operation of any type of organization or infrastructure, such is the case of the electrical power substations. Such networks in particular, demand high levels of availability and reliability, as the substation is a ke...
- Autores:
-
Leal Piedrahita, Alexánder
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2018
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- spa
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/13298
- Acceso en línea:
- http://hdl.handle.net/10495/13298
- Palabra clave:
- Management of communication
Power substations
Smart Solution
Substation Networks
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
UDEA2_f68da9e737a11c6620b2dc27209634c3 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/13298 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
S3N - Smart Solution for Substation Networks, an architecture for the management of communication networks in power substations |
| title |
S3N - Smart Solution for Substation Networks, an architecture for the management of communication networks in power substations |
| spellingShingle |
S3N - Smart Solution for Substation Networks, an architecture for the management of communication networks in power substations Management of communication Power substations Smart Solution Substation Networks |
| title_short |
S3N - Smart Solution for Substation Networks, an architecture for the management of communication networks in power substations |
| title_full |
S3N - Smart Solution for Substation Networks, an architecture for the management of communication networks in power substations |
| title_fullStr |
S3N - Smart Solution for Substation Networks, an architecture for the management of communication networks in power substations |
| title_full_unstemmed |
S3N - Smart Solution for Substation Networks, an architecture for the management of communication networks in power substations |
| title_sort |
S3N - Smart Solution for Substation Networks, an architecture for the management of communication networks in power substations |
| dc.creator.fl_str_mv |
Leal Piedrahita, Alexánder |
| dc.contributor.advisor.none.fl_str_mv |
Botero Vega, Juan Felipe |
| dc.contributor.author.none.fl_str_mv |
Leal Piedrahita, Alexánder |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Telecomunicaciones Aplicadas (GITA) |
| dc.subject.proposal.spa.fl_str_mv |
Management of communication Power substations Smart Solution Substation Networks |
| topic |
Management of communication Power substations Smart Solution Substation Networks |
| description |
ABSTRACT: Today, the communications network has become an essential element to the operation of any type of organization or infrastructure, such is the case of the electrical power substations. Such networks in particular, demand high levels of availability and reliability, as the substation is a key element in the chain of energy generation and distribution. However, although recent network modernization introduced new features that allow optimizing the operation of the substation, the variety of devices present in such environment (Intelligent Electronic Devices (IEDs), Merging Units (MUs), Network Switches, IEEE 1588 Master Clock) and the huge set of application-level protocols (Sampled Measured Values (SV), Generic Object Oriented Substation Event (GOOSE), Manufacturing Message Specification protocol (MMS), Precision Time Protocol (PTP), among others), increase the management complexity. Nevertheless, in recent years, data networks have been permeated by two major trends aiming to facilitate the administration of complex networks: Software Defined Networking (SDN) and virtualizationtechnologies, which make the network management more flexible and enable the rapid development and deployment of network services. This thesis proposes a set of contributions to solve the research challenges around of the current operation of a power substation communication network that have not been tackled by the research community. To do that, it performs a comprehensive review of the appropriation of SDN as an enabler in the management and operation of the power substations communication networks. The first research challenge we identified in this work is that, to the best of our knowledge, there are not research works proposing a complete architecture for the management of the communications networks of the power substation; also existing works do not introduce the virtualization technologies as an enabler in this environment. They only present how the application of SDN concepts may improve the performance of different communication tasks in power substations. This thesis introduces a novel architecture called Smart Solution for Substation Networks (S3N), which presents a different way to represent the interaction among all elements involved in the operation of the power substation, taking the communications network as the central point and the SDN paradigm as a key element of its formulation. The second challenge found in this work is that there is no unique criterion to define the structure of the network topology since, in every power substation, the end user implements their own topologies or the topology suggested by a vendor. In this context, this thesis presents a methodology to specify and characterize a reliable topology that vii guarantees fault-tolerance, according to the guidelines described in the architecture S3N. In addition, this thesis presents alternative SDN solutions for loops-based topologies in the proposed network topology which would be technically unfeasible using common network protocols. These solutions include algorithms to solve problems related to the broadcast and multicast traffic management. Also, we discovered that, although the communication networks of modern electrical substations provide major benefits, various research articles have evidenced several vulnerabilities related to the operation protocols in this critical infrastructure. This thesis, in order to improve the security, presents two strategies to detect intrusions and one SDN approach to mitigate attacks in the reconnaissance phase. Finally, all these contributions would not be enough to guarantee a reliable operation without mechanisms to bring traffic differentiation and provisioning. This thesis makes the best out of the architecture proposed to deploy Quality of Service (QoS) inside power substation communication networks, under the SDN paradigm. |
| publishDate |
2018 |
| dc.date.issued.none.fl_str_mv |
2018 |
| dc.date.accessioned.none.fl_str_mv |
2020-01-16T15:36:41Z |
| dc.date.available.none.fl_str_mv |
2020-01-16T15:36:41Z |
| dc.type.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Doctorado |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_db06 |
| status_str |
draft |
| dc.identifier.citation.spa.fl_str_mv |
Leal Piedrahita, E. A. (2018). S3N - Smart Solution for Substation Networks, an architecture for the management of communication networks in power substations (Tesis de doctoral). Universidad de Antioquia, Medellín, Colombia. |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/13298 |
| identifier_str_mv |
Leal Piedrahita, E. A. (2018). S3N - Smart Solution for Substation Networks, an architecture for the management of communication networks in power substations (Tesis de doctoral). Universidad de Antioquia, Medellín, Colombia. |
| url |
http://hdl.handle.net/10495/13298 |
| dc.language.iso.spa.fl_str_mv |
spa |
| language |
spa |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO) |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO) http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
178 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería. Doctorado en Ingeniería Electrónica |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/594914f5-c7ba-4801-8d0e-1e19c6cb92f3/download https://bibliotecadigital.udea.edu.co/bitstreams/c8ffe7b1-35e9-4e66-b599-8d0f90a0943a/download https://bibliotecadigital.udea.edu.co/bitstreams/8581dcaa-003b-4950-a570-7aca74ee8372/download https://bibliotecadigital.udea.edu.co/bitstreams/b888595b-ac3e-4d51-a0ea-d0a045d50aa4/download https://bibliotecadigital.udea.edu.co/bitstreams/8546a7ed-70ae-48e1-8590-35792116c6b5/download https://bibliotecadigital.udea.edu.co/bitstreams/8bb3c30d-b277-41d8-998f-4e9f7967be30/download https://bibliotecadigital.udea.edu.co/bitstreams/fed8eda7-4a17-4cda-b4a6-9cd4141e5aa9/download |
| bitstream.checksum.fl_str_mv |
4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 8a4605be74aa9ea9d79846c1fba20a33 2662c448cc358971f6ea54d8353a17f8 56bcaee71964ad20980989afb8589968 030c138d8f1d89dcba956bfe9a3e1171 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052559406465024 |
| spelling |
Botero Vega, Juan FelipeLeal Piedrahita, AlexánderGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)2020-01-16T15:36:41Z2020-01-16T15:36:41Z2018Leal Piedrahita, E. A. (2018). S3N - Smart Solution for Substation Networks, an architecture for the management of communication networks in power substations (Tesis de doctoral). Universidad de Antioquia, Medellín, Colombia.http://hdl.handle.net/10495/13298ABSTRACT: Today, the communications network has become an essential element to the operation of any type of organization or infrastructure, such is the case of the electrical power substations. Such networks in particular, demand high levels of availability and reliability, as the substation is a key element in the chain of energy generation and distribution. However, although recent network modernization introduced new features that allow optimizing the operation of the substation, the variety of devices present in such environment (Intelligent Electronic Devices (IEDs), Merging Units (MUs), Network Switches, IEEE 1588 Master Clock) and the huge set of application-level protocols (Sampled Measured Values (SV), Generic Object Oriented Substation Event (GOOSE), Manufacturing Message Specification protocol (MMS), Precision Time Protocol (PTP), among others), increase the management complexity. Nevertheless, in recent years, data networks have been permeated by two major trends aiming to facilitate the administration of complex networks: Software Defined Networking (SDN) and virtualizationtechnologies, which make the network management more flexible and enable the rapid development and deployment of network services. This thesis proposes a set of contributions to solve the research challenges around of the current operation of a power substation communication network that have not been tackled by the research community. To do that, it performs a comprehensive review of the appropriation of SDN as an enabler in the management and operation of the power substations communication networks. The first research challenge we identified in this work is that, to the best of our knowledge, there are not research works proposing a complete architecture for the management of the communications networks of the power substation; also existing works do not introduce the virtualization technologies as an enabler in this environment. They only present how the application of SDN concepts may improve the performance of different communication tasks in power substations. This thesis introduces a novel architecture called Smart Solution for Substation Networks (S3N), which presents a different way to represent the interaction among all elements involved in the operation of the power substation, taking the communications network as the central point and the SDN paradigm as a key element of its formulation. The second challenge found in this work is that there is no unique criterion to define the structure of the network topology since, in every power substation, the end user implements their own topologies or the topology suggested by a vendor. In this context, this thesis presents a methodology to specify and characterize a reliable topology that vii guarantees fault-tolerance, according to the guidelines described in the architecture S3N. In addition, this thesis presents alternative SDN solutions for loops-based topologies in the proposed network topology which would be technically unfeasible using common network protocols. These solutions include algorithms to solve problems related to the broadcast and multicast traffic management. Also, we discovered that, although the communication networks of modern electrical substations provide major benefits, various research articles have evidenced several vulnerabilities related to the operation protocols in this critical infrastructure. This thesis, in order to improve the security, presents two strategies to detect intrusions and one SDN approach to mitigate attacks in the reconnaissance phase. Finally, all these contributions would not be enough to guarantee a reliable operation without mechanisms to bring traffic differentiation and provisioning. This thesis makes the best out of the architecture proposed to deploy Quality of Service (QoS) inside power substation communication networks, under the SDN paradigm.DoctoradoDoctor en Ingeniería Electrónica178application/pdfspaUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Doctorado en Ingeniería Electrónicahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2S3N - Smart Solution for Substation Networks, an architecture for the management of communication networks in power substationsTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftManagement of communicationPower substationsSmart SolutionSubstation NetworksPublicationCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstreams/594914f5-c7ba-4801-8d0e-1e19c6cb92f3/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/c8ffe7b1-35e9-4e66-b599-8d0f90a0943a/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/8581dcaa-003b-4950-a570-7aca74ee8372/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/b888595b-ac3e-4d51-a0ea-d0a045d50aa4/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADORIGINALDIE 12712.pdfDIE 12712.pdfTesis doctoralapplication/pdf16644491https://bibliotecadigital.udea.edu.co/bitstreams/8546a7ed-70ae-48e1-8590-35792116c6b5/download2662c448cc358971f6ea54d8353a17f8MD51trueAnonymousREADTEXTDIE 12712.pdf.txtDIE 12712.pdf.txtExtracted texttext/plain100308https://bibliotecadigital.udea.edu.co/bitstreams/8bb3c30d-b277-41d8-998f-4e9f7967be30/download56bcaee71964ad20980989afb8589968MD56falseAnonymousREADTHUMBNAILDIE 12712.pdf.jpgDIE 12712.pdf.jpgGenerated Thumbnailimage/jpeg8518https://bibliotecadigital.udea.edu.co/bitstreams/fed8eda7-4a17-4cda-b4a6-9cd4141e5aa9/download030c138d8f1d89dcba956bfe9a3e1171MD57falseAnonymousREAD10495/13298oai:bibliotecadigital.udea.edu.co:10495/132982025-03-27 00:18:53.555http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
