Catalizadores heterogéneos bifuncionales a base de metales de transición para la hidrodesoxigenación parcial de guaiacol

En este trabajo se sintetizaron una serie de catalizadores bimetálicos que contienen NiFe soportado en una sílica mesoporosa SBA-15 y ZrO2/SBA-15. Los catalizadores fueron evaluados en la reacción de hidrodesoxigenación (HDO) de guaiacol, un compuesto modelo del bioaceite derivado de la biomasa lign...

Full description

Autores:
Giraldo Soto, Juan José
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/48061
Acceso en línea:
https://hdl.handle.net/10495/48061
Palabra clave:
Ciclohexanoles
Cyclohexanols
Guayacol
Guaiacol
Catalizadores
Catalysts
Metales de transición
Transition metals
Catecol
catechols
Fenol
phenols
Hidrodesoxigenación catalítica
Ciclohexanol
Guaiacol
Sílice mesoporosa
http://aims.fao.org/aos/agrovoc/c_9668
http://aims.fao.org/aos/agrovoc/c_13300
https://id.nlm.nih.gov/mesh/D003511
https://id.nlm.nih.gov/mesh/D006139
ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_f4d28a99ed155ebd3f282b892e7faa61
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/48061
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Catalizadores heterogéneos bifuncionales a base de metales de transición para la hidrodesoxigenación parcial de guaiacol
title Catalizadores heterogéneos bifuncionales a base de metales de transición para la hidrodesoxigenación parcial de guaiacol
spellingShingle Catalizadores heterogéneos bifuncionales a base de metales de transición para la hidrodesoxigenación parcial de guaiacol
Ciclohexanoles
Cyclohexanols
Guayacol
Guaiacol
Catalizadores
Catalysts
Metales de transición
Transition metals
Catecol
catechols
Fenol
phenols
Hidrodesoxigenación catalítica
Ciclohexanol
Guaiacol
Sílice mesoporosa
http://aims.fao.org/aos/agrovoc/c_9668
http://aims.fao.org/aos/agrovoc/c_13300
https://id.nlm.nih.gov/mesh/D003511
https://id.nlm.nih.gov/mesh/D006139
ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles
title_short Catalizadores heterogéneos bifuncionales a base de metales de transición para la hidrodesoxigenación parcial de guaiacol
title_full Catalizadores heterogéneos bifuncionales a base de metales de transición para la hidrodesoxigenación parcial de guaiacol
title_fullStr Catalizadores heterogéneos bifuncionales a base de metales de transición para la hidrodesoxigenación parcial de guaiacol
title_full_unstemmed Catalizadores heterogéneos bifuncionales a base de metales de transición para la hidrodesoxigenación parcial de guaiacol
title_sort Catalizadores heterogéneos bifuncionales a base de metales de transición para la hidrodesoxigenación parcial de guaiacol
dc.creator.fl_str_mv Giraldo Soto, Juan José
dc.contributor.advisor.none.fl_str_mv Palacio Olarte, Rubén Alberto
dc.contributor.author.none.fl_str_mv Giraldo Soto, Juan José
dc.contributor.researchgroup.none.fl_str_mv Química de Recursos Energéticos y Medio Ambiente
dc.contributor.jury.none.fl_str_mv Manrique Hernández, Alba Cecilia
González, Lina María
dc.subject.decs.none.fl_str_mv Ciclohexanoles
Cyclohexanols
Guayacol
Guaiacol
topic Ciclohexanoles
Cyclohexanols
Guayacol
Guaiacol
Catalizadores
Catalysts
Metales de transición
Transition metals
Catecol
catechols
Fenol
phenols
Hidrodesoxigenación catalítica
Ciclohexanol
Guaiacol
Sílice mesoporosa
http://aims.fao.org/aos/agrovoc/c_9668
http://aims.fao.org/aos/agrovoc/c_13300
https://id.nlm.nih.gov/mesh/D003511
https://id.nlm.nih.gov/mesh/D006139
ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles
dc.subject.lemb.none.fl_str_mv Catalizadores
Catalysts
Metales de transición
Transition metals
dc.subject.agrovoc.none.fl_str_mv Catecol
catechols
Fenol
phenols
dc.subject.proposal.spa.fl_str_mv Hidrodesoxigenación catalítica
Ciclohexanol
Guaiacol
Sílice mesoporosa
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_9668
http://aims.fao.org/aos/agrovoc/c_13300
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D003511
https://id.nlm.nih.gov/mesh/D006139
dc.subject.ods.none.fl_str_mv ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles
description En este trabajo se sintetizaron una serie de catalizadores bimetálicos que contienen NiFe soportado en una sílica mesoporosa SBA-15 y ZrO2/SBA-15. Los catalizadores fueron evaluados en la reacción de hidrodesoxigenación (HDO) de guaiacol, un compuesto modelo del bioaceite derivado de la biomasa lignocelulósica, ampliamente seleccionado ya que contiene tres de los grupos funcionales representativos en los compuestos de este tipo de bioaceite: -OH, -OCH3, C=C aromático. Los resultados catalíticos utilizando hexadecano como solvente mostraron que la composición de los catalizadores afecta la conversión y la selectividad. Los catalizadores que contienen ZrO2, como Ni8.2Fe1.6-ZrO2/SBA-15 y Ni8.3Fe0.7-ZrO2/SBA-15, alcanzaron una elevada conversión de guaiacol del 99.0 ± 0.5 % tras 5 horas de reacción y fueron selectivos hacia ciclohexano con un bajo balance carbono. Para los catalizadores sin ZrO2 como Ni13.3Fe1.3/SBA-15 y Ni4.7Fe0.5/SBA-15 se obtiene una menor conversión de guaiacol alcanzando 85.9 ± 0.7 % luego de 5 horas de reacción y se presenta una elevada selectividad hacia ciclohexanol 80.3 ± 11.1 %. También se evidenció que la presencia de hierro conduce a un aumento en la conversión y selectividad de las especies de níquel, ya que los catalizadores monometálicos que contenían Ni mostraron una actividad catalítica menor que los catalizadores bimetálicos NiFe. La disminución de la carga de metales, Ni+Fe en Ni4.7Fe0.5/SBA-15 conduce a un aumento en la selectividad hacia ciclohexanol, alcanzando una selectividad del 77% y un balance carbono del 96.3% que indica una menor producción de subproductos o coque. Los resultados de caracterización demuestran que este material presenta la mayor concentración superficial de Ni presente como Ni0, además se tiene una densidad de sitios ácidos de fuerza media y fuerte similar. El uso de agua como solvente de reacción conduce a una conversión más baja que en hexadecano, pero con selectividad hacia productos aromáticos como catecol y fenol. Estos resultados demuestran el alto potencial de los catalizadores bimetálicos NiFe con bajas cargas de metal dispersos en soportes mesopororos como la SBA-15 en la reacción HDO.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-10-31T17:55:44Z
dc.date.issued.none.fl_str_mv 2025
dc.date.available.none.fl_str_mv 2027
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_7a1f
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/48061
url https://hdl.handle.net/10495/48061
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv [1] C. Wang, X. Zhang, Q. Liu, Q. Zhang, L. Chen, and L. Ma, “A review of conversion of lignocellulose biomass to liquid transport fuels by integrated refining strategies,” Fuel Process. Technol., vol. 208, p. 106485, Nov. 2020, doi: 10.1016/j.fuproc.2020.106485
[2] T. Cordero-Lanzac, J. Rodríguez-Mirasol, T. Cordero, and J. Bilbao, “Advances and Challenges in the Valorization of Bio-Oil: Hydrodeoxygenation Using Carbon-Supported Catalysts,” Energy & Fuels, vol. 35, no. 21, pp. 17008–17031, Nov. 2021, doi: 10.1021/acs.energyfuels.1c01700
[3] D. Mohan, C. U. Pittman, and P. H. Steele, “Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review,” Energy & Fuels, vol. 20, no. 3, pp. 848–889, May 2006, doi: 10.1021/ef0502397
[4] M. M. Ambursa, J. C. Juan, Y. Yahaya, Y. H. Taufiq-Yap, Y.-C. Lin, and H. V. Lee, “A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts,” Renew. Sustain. Energy Rev., vol. 138, p. 110667, Mar. 2021, doi: 10.1016/j.rser.2020.110667
[5] S. Oh, H. S. Choi, U.-J. Kim, I.-G. Choi, and J. W. Choi, “Storage performance of bio-oil after hydrodeoxygenative upgrading with noble metal catalysts,” Fuel, vol. 182, pp. 154–160, Oct. 2016, doi: 10.1016/j.fuel.2016.05.044
[6] S. S. Wong, R. Shu, J. Zhang, H. Liu, and N. Yan, “Downstream processing of lignin derived feedstock into end products,” Chem. Soc. Rev., vol. 49, no. 15, pp. 5510–5560, Aug. 2020, doi: 10.1039/D0CS00134A
[7] A. Kumar, M. Jindal, S. Maharana, and B. Thallada, “Lignin Biorefinery: New Horizons in Catalytic Hydrodeoxygenation for the Production of Chemicals,” Energy & Fuels, vol. 35, no. 21, pp. 16965–16994, Nov. 2021, doi: 10.1021/acs.energyfuels.1c01651
[8] F. Brienza, D. Cannella, D. Montesdeoca, I. Cybulska, and D. P. Debecker, “A guide to lignin valorization in biorefineries: traditional, recent, and forthcoming approaches to convert raw lignocellulose into valuable materials and chemicals,” RSC Sustain., vol. 2, no. 1, pp. 37–90, Jan. 2024, doi: 10.1039/D3SU00140G
[9] W. Jin, L. Pastor‐Pérez, D. Shen, A. Sepúlveda‐Escribano, S. Gu, and T. Ramirez Reina, “Catalytic Upgrading of Biomass Model Compounds: Novel Approaches and Lessons Learnt from Traditional Hydrodeoxygenation – a Review,” ChemCatChem, vol. 11, no. 3, pp. 924–960, Feb. 2019, doi: 10.1002/cctc.201801722
[10] M. Patel and A. Kumar, “Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review,” Renew. Sustain. Energy Rev., vol. 58, pp. 1293–1307, May 2016, doi: 10.1016/j.rser.2015.12.146
[11] “U.S. Environmental Protection Agency | US EPA.” Accessed: May 27, 2025. [Online]. Available: https://www.epa.gov/
[12] C. Li, X. Zhao, A. Wang, G. W. Huber, and T. Zhang, “Catalytic Transformation of Lignin for the Production of Chemicals and Fuels,” Chem. Rev., vol. 115, no. 21, pp. 11559–11624, Nov. 2015, doi: 10.1021/acs.chemrev.5b00155
[13] M. P. Shah and P. Kaur, Biomass Energy for Sustainable Development. Boca Raton: CRC Press, 2024. doi: 10.1201/9781003406501
[14] “Sistema de Información Minero Energético Colombiano - UPME.” Accessed: May 27, 2025. [Online]. Available: https://www.upme.gov.co/simec/
[15] F. Ren, F. Wu, X. Wu, T. Bao, Y. Jie, and L. Gao, “Fungal systems for lignocellulose deconstruction: From enzymatic mechanisms to hydrolysis optimization,” GCB Bioenergy, vol. 16, no. 5, p. e13130, May 2024, doi: 10.1111/gcbb.13130
[16] N. Toscano Miranda, I. Lopes Motta, R. Maciel Filho, and M. R. Wolf Maciel, “Sugarcane bagasse pyrolysis: A review of operating conditions and products properties,” Renew. Sustain. Energy Rev., vol. 149, p. 111394, Oct. 2021, doi: 10.1016/j.rser.2021.111394
[17] H. V. Lee, S. B. A. Hamid, and S. K. Zain, “Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process,” Sci. World J., vol. 2014, no. 1, pp. 1–20, Jan. 2014, doi: 10.1155/2014/631013
[18] M. Mujtaba et al., “Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics,” J. Clean. Prod., vol. 402, p. 136815, May 2023, doi: 10.1016/j.jclepro.2023.136815
[19] M. D. Smith, “An Abbreviated Historical and Structural Introduction to Lignocellulose,” in ACS Symposium Series, vol. 1338, American Chemical Society, 2019, pp. 1–15. doi: 10.1021/bk-2019-1338.ch001
[20] P. Alvira, E. Tomás-Pejó, M. Ballesteros, and M. J. Negro, “Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review,” Bioresour. Technol., vol. 101, no. 13, pp. 4851–4861, Jul. 2010, doi: 10.1016/j.biortech.2009.11.093
[21] S. Swami, S. Suthar, R. Singh, A. K. Thakur, L. R. Gupta, and V. S. Sikarwar, “Potential of ionic liquids as emerging green solvent for the pretreatment of lignocellulosic biomass,” Environ. Sci. Pollut. Res., vol. 31, no. 9, pp. 12871–12891, Jan. 2024, doi: 10.1007/s11356-024-32100-y
[22] A. A. Shah, T. H. Seehar, K. Sharma, and S. S. Toor, “Biomass pretreatment technologies,” in Hydrocarbon Biorefinery, Elsevier, 2022, pp. 203–228. doi: 10.1016/B978-0-12-823306-1.00014-5
[23] S. Kim et al., “Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts,” Green Chem., vol. 21, no. 14, pp. 3715–3743, Jul. 2019, doi: 10.1039/C9GC01210A
[24] R. K. Mishra, D. Jaya Prasanna Kumar, R. Sankannavar, P. Binnal, and K. Mohanty, “Hydro-deoxygenation of pyrolytic oil derived from pyrolysis of lignocellulosic biomass: A review,” Fuel, vol. 360, p. 130473, Mar. 2024, doi: 10.1016/j.fuel.2023.130473
[25] X. Li, G. Chen, C. Liu, W. Ma, B. Yan, and J. Zhang, “Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review,” Renew. Sustain. Energy Rev., vol. 71, pp. 296–308, May 2017, doi: 10.1016/j.rser.2016.12.057
[26] W. Song, Y. Liu, E. Baráth, C. Zhao, and J. A. Lercher, “Synergistic effects of Ni and acid sites for hydrogenation and C–O bond cleavage of substituted phenols,” Green Chem., vol. 17, no. 2, pp. 1204–1218, Feb. 2015, doi: 10.1039/C4GC01798F
[27] X. Wang, Z. Zhang, Z. Yan, Q. Li, and Y. Zhang, “Catalysts with metal-acid dual sites for selective hydrodeoxygenation of lignin derivatives: Progress in regulation strategies and applications,” Appl. Catal. A Gen., vol. 662, p. 119266, Jul. 2023, doi: 10.1016/j.apcata.2023.119266
[28] P. Mäki-Arvela and D. Murzin, “Hydrodeoxygenation of Lignin-Derived Phenols: From Fundamental Studies towards Industrial Applications,” Catalysts, vol. 7, no. 9, p. 265, Sep. 2017, doi: 10.3390/catal7090265
[29] C. Abreu Teles et al., “Optimization of catalyst activity and stability in the m-cresol hydrodeoxygenation through Ni particle size control,” Appl. Catal. B Environ., vol. 338, p. 123030, Dec. 2023, doi: 10.1016/j.apcatb.2023.123030
[30] Q. Sun et al., “Insights into the Major Reaction Pathways of Vapor‐Phase Hydrodeoxygenation of m ‐Cresol on a Pt/HBeta Catalyst,” ChemCatChem, vol. 8, no. 3, pp. 551–561, Feb. 2016, doi: 10.1002/cctc.201501232
[31] M. S. Zanuttini, C. D. Lago, C. A. Querini, and M. A. Peralta, “Deoxygenation of m-cresol on Pt/γ-Al2O3 catalysts,” Catal. Today, vol. 213, pp. 9–17, Sep. 2013, doi: 10.1016/j.cattod.2013.04.011
[32] R. N. Olcese, M. Bettahar, D. Petitjean, B. Malaman, F. Giovanella, and A. Dufour, “Gas-phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst,” Appl. Catal. B Environ., vol. 115–116, pp. 63–73, Apr. 2012, doi: 10.1016/j.apcatb.2011.12.005
[33] X. Zhang, W. Tang, Q. Zhang, T. Wang, and L. Ma, “Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts,” Appl. Energy, vol. 227, pp. 73–79, Oct. 2018, doi: 10.1016/j.apenergy.2017.08.078
[34] J.-X. Xie et al., “Highly efficient conversion of lignin bio-oil and derived phenols to cyclohexanols over low-loading Ni/C catalyst,” Fuel, vol. 371, p. 132030, Sep. 2024, doi: 10.1016/j.fuel.2024.132030
[35] M. M. Ambursa, T. H. Ali, H. V. Lee, P. Sudarsanam, S. K. Bhargava, and S. B. A. Hamid, “Hydrodeoxygenation of dibenzofuran to bicyclic hydrocarbons using bimetallic Cu–Ni catalysts supported on metal oxides,” Fuel, vol. 180, pp. 767–776, Sep. 2016, doi: 10.1016/j.fuel.2016.04.045
[36] V. O. O. Gonçalves et al., “Hydrodeoxygenation of m-cresol as a depolymerized lignin probe molecule: Synergistic effect of NiCo supported alloys,” Catal. Today, vol. 377, pp. 135–144, Oct. 2021, doi: 10.1016/j.cattod.2020.10.042
[37] C. Cheng, F. Bian, C. Lu, Q. Wang, D. Shen, and X. Jiang, “DFT investigation of hydrodeoxygenation of guaiacol on Fe-decorated Ni (111),” J. Energy Inst., vol. 112, p. 101460, Feb. 2024, doi: 10.1016/J.JOEI.2023.101460
[38] A. Gutierrez, E. M. Turpeinen, T. R. Viljava, and O. Krause, “Hydrodeoxygenation of model compounds on sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts; Role of sulfur-containing groups in reaction networks,” Catal. Today, vol. 285, pp. 125–134, May 2017, doi: 10.1016/J.CATTOD.2017.02.003
[39] D. Raikwar, S. Majumdar, and D. Shee, “Synergistic effect of Ni-Co alloying on hydrodeoxygenation of guaiacol over Ni-Co/Al2O3 catalysts,” Mol. Catal., vol. 499, p. 111290, Jan. 2021, doi: 10.1016/J.MCAT.2020.111290
[40] Z. Tian et al., “Hydrodeoxygenation of guaiacol as a model compound of pyrolysis lignin-oil over NiCo bimetallic catalyst: Reactivity and kinetic study,” Fuel, vol. 308, p. 122034, Jan. 2022, doi: 10.1016/J.FUEL.2021.122034
[41] M. M. Ambursa, P. Sudarsanam, L. H. Voon, S. B. A. Hamid, and S. K. Bhargava, “Bimetallic Cu-Ni catalysts supported on MCM-41 and Ti-MCM-41 porous materials for hydrodeoxygenation of lignin model compound into transportation fuels,” Fuel Process. Technol., vol. 162, pp. 87–97, Jul. 2017, doi: 10.1016/J.FUPROC.2017.03.008
[42] R. Insyani et al., “Selective hydrodeoxygenation of biomass pyrolysis oil and lignin-derived oxygenates to cyclic alcohols using the bimetallic NiFe core-shell supported on TiO2,” Chem. Eng. J., vol. 446, p. 136578, Oct. 2022, doi: 10.1016/J.CEJ.2022.136578
[43] P. M. de Souza et al., “Hydrodeoxygenation of phenol using nickel phosphide catalysts. Study of the effect of the support,” Catal. Today, vol. 356, pp. 366–375, Oct. 2020, doi: 10.1016/J.CATTOD.2019.08.028
[44] A. C. Díaz, L. Abdelouahed, N. Brodu, V. Montes-Jiménez, and B. Taouk, “Upgrading of Pyrolysis Bio-Oil by Catalytic Hydrodeoxygenation, a Review Focused on Catalysts, Model Molecules, Deactivation, and Reaction Routes,” Mol. 2024, Vol. 29, Page 4325, vol. 29, no. 18, p. 4325, Sep. 2024, doi: 10.3390/MOLECULES29184325
[45] A. N. Kay Lup, F. Abnisa, W. M. A. Wan Daud, and M. K. Aroua, “A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds,” J. Ind. Eng. Chem., vol. 56, pp. 1–34, Dec. 2017, doi: 10.1016/J.JIEC.2017.06.049
[46] M. López, R. Palacio, A. S. Mamede, J. J. Fernández, and S. Royer, “Hydrodeoxygenation of guaiacol into cyclohexane over mesoporous silica supported Ni–ZrO2 catalyst,” Microporous Mesoporous Mater., vol. 309, p. 110452, Dec. 2020, doi: 10.1016/J.MICROMESO.2020.110452
[47] C. Zerva et al., “Hydrodeoxygenation of phenol and biomass fast pyrolysis oil (bio-oil) over Ni/WO3-ZrO2 catalyst,” Catal. Today, vol. 366, pp. 57–67, Apr. 2021, doi: 10.1016/j.cattod.2020.08.029
[48] M. Lu et al., “Hydrodeoxygenation of Guaiacol Catalyzed by ZrO 2 –CeO 2 -Supported Nickel Catalysts with High Loading,” Energy & Fuels, vol. 34, no. 4, pp. 4685–4692, Apr. 2020, doi: 10.1021/acs.energyfuels.0c00445
[49] M. López, R. Palacio, S. Royer, A. S. Mamede, and J. J. Fernández, “Mesostructured CMK-3 carbon supported Ni–ZrO2 as catalysts for the hydrodeoxygenation of guaiacol,” Microporous Mesoporous Mater., vol. 292, p. 109694, Jan. 2020, doi: 10.1016/J.MICROMESO.2019.109694
[50] P. M. de Souza et al., “Effect of Zirconia Morphology on Hydrodeoxygenation of Phenol over Pd/ZrO 2,” ACS Catal., vol. 5, no. 12, pp. 7385–7398, Dec. 2015, doi: 10.1021/acscatal.5b01501
[51] J. Grams and A. M. Ruppert, “Catalyst Stability—Bottleneck of Efficient Catalytic Pyrolysis,” Catal. 2021, Vol. 11, Page 265, vol. 11, no. 2, p. 265, Feb. 2021, doi: 10.3390/CATAL11020265
[52] P. M. Mortensen, J. D. Grunwaldt, P. A. Jensen, and A. D. Jensen, “Influence on nickel particle size on the hydrodeoxygenation of phenol over Ni/SiO2,” Catal. Today, vol. 259, pp. 277–284, Jan. 2016, doi: 10.1016/J.CATTOD.2015.08.022
[53] X. Lan, E. J. M. Hensen, and T. Weber, “Hydrodeoxygenation of guaiacol over Ni2P/SiO2–reaction mechanism and catalyst deactivation,” Appl. Catal. A Gen., vol. 550, pp. 57–66, Jan. 2018, doi: 10.1016/j.apcata.2017.10.018
[54] P. M. Mortensen, J. D. Grunwaldt, P. A. Jensen, and A. D. Jensen, “Influence on nickel particle size on the hydrodeoxygenation of phenol over Ni/SiO2,” Catal. Today, vol. 259, pp. 277–284, Jan. 2016, doi: 10.1016/J.CATTOD.2015.08.022
[55] T. He et al., “Gas phase hydrodeoxygenation of anisole and guaiacol to aromatics with a high selectivity over Ni-Mo/SiO2,” Catal. Commun., vol. 102, pp. 127–130, Dec. 2017, doi: 10.1016/J.CATCOM.2017.09.011
[56] C. Zhao, Y. Yu, A. Jentys, and J. A. Lercher, “Understanding the impact of aluminum oxide binder on Ni/HZSM-5 for phenol hydrodeoxygenation,” Appl. Catal. B Environ., vol. 132–133, pp. 282–292, Mar. 2013, doi: 10.1016/J.APCATB.2012.11.042
[57] P. M. Mortensen et al., “Stability and resistance of nickel catalysts for hydrodeoxygenation: carbon deposition and effects of sulfur, potassium, and chlorine in the feed,” Catal. Sci. Technol., vol. 4, no. 10, pp. 3672–3686, Sep. 2014, doi: 10.1039/C4CY00522H
[58] D. Zhao et al., “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores,” Science (80-. )., vol. 279, no. 5350, pp. 548–552, Jan. 1998, doi: 10.1126/science.279.5350.548
[59] J. van der Meer, I. Bardez, F. Bart, P.-A. Albouy, G. Wallez, and A. Davidson, “Dispersion of Co3O4 nanoparticles within SBA-15 using alkane solvents,” Microporous Mesoporous Mater., vol. 118, no. 1–3, pp. 183–188, Feb. 2009, doi: 10.1016/j.micromeso.2008.08.053
[60] M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure Appl. Chem., vol. 87, no. 9–10, pp. 1051–1069, Oct. 2015, doi: 10.1515/pac-2014-1117
[61] V. O. O. Gonçalves, P. M. de Souza, T. Cabioc’h, V. T. da Silva, F. B. Noronha, and F. Richard, “Hydrodeoxygenation of m-cresol over nickel and nickel phosphide based catalysts. Influence of the nature of the active phase and the support,” Appl. Catal. B Environ., vol. 219, pp. 619–628, Dec. 2017, doi: 10.1016/J.APCATB.2017.07.042
[62] X. Zhang, Q. Zhang, T. Wang, L. Ma, Y. Yu, and L. Chen, “Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2–ZrO2 catalysts,” Bioresour. Technol., vol. 134, pp. 73–80, Apr. 2013, doi: 10.1016/J.BIORTECH.2013.02.039
[63] S. Tsunekawa, K. Asami, S. Ito, M. Yashima, and T. Sugimoto, “XPS study of the phase transition in pure zirconium oxide nanocrystallites,” Appl. Surf. Sci., vol. 252, no. 5, pp. 1651–1656, Dec. 2005, doi: 10.1016/J.APSUSC.2005.03.183
[64] S. N. Basahel, T. T. Ali, M. Mokhtar, and K. Narasimharao, “Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange,” Nanoscale Res. Lett., vol. 10, no. 1, p. 73, Dec. 2015, doi: 10.1186/s11671-015-0780-z
[65] M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, and R. S. C. Smart, “X‐ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems,” Surf. Interface Anal., vol. 41, no. 4, pp. 324–332, Apr. 2009, doi: 10.1002/sia.3026
[66] M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, “The role of the Auger parameter in XPS studies of nickel metal, halides and oxides,” Phys. Chem. Chem. Phys., vol. 14, no. 7, pp. 2434–2442, Jan. 2012, doi: 10.1039/C2CP22419D
[67] M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni,” Appl. Surf. Sci., vol. 257, no. 7, pp. 2717–2730, Jan. 2011, doi: 10.1016/J.APSUSC.2010.10.051
[68] A. P. Grosvenor, M. C. Biesinger, R. S. C. Smart, and N. S. McIntyre, “New interpretations of XPS spectra of nickel metal and oxides,” Surf. Sci., vol. 600, no. 9, pp. 1771–1779, May 2006, doi: 10.1016/J.SUSC.2006.01.041
[69] P. S. Riseborough, “A comment on satellites in nickel,” J. Phys. Chem. Solids, vol. 52, no. 11–12, pp. 1397–1399, Jan. 1991, doi: 10.1016/0022-3697(91)90118-J
[70] Q. Li et al., “Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy,” Nat. Commun. 2022 131, vol. 13, no. 1, pp. 1–13, Mar. 2022, doi: 10.1038/s41467-022-28793-9
[71] T. M. Sankaranarayanan et al., “Hydrodeoxygenation of anisole as bio-oil model compound over supported Ni and Co catalysts: Effect of metal and support properties,” Catal. Today, vol. 243, no. C, pp. 163–172, Apr. 2015, doi: 10.1016/J.CATTOD.2014.09.004
[72] H. Shafaghat, P. S. Rezaei, and W. M. Ashri Wan Daud, “Effective parameters on selective catalytic hydrodeoxygenation of phenolic compounds of pyrolysis bio-oil to high-value hydrocarbons,” RSC Adv., vol. 5, no. 126, pp. 103999–104042, Dec. 2015, doi: 10.1039/C5RA22137D
[73] M. V. Bykova et al., “Ni-based sol–gel catalysts as promising systems for crude bio-oil upgrading: Guaiacol hydrodeoxygenation study,” Appl. Catal. B Environ., vol. 113–114, pp. 296–307, Feb. 2012, doi: 10.1016/J.APCATB.2011.11.051
[74] J. Wang, Y. Yuan, A. Shuaib, J. Xu, and J. Shen, “Effect of ZrO2 in Ni2P/ZrO2 –Al2O3 catalysts on hydrotreating reactions,” RSC Adv., vol. 5, no. 91, pp. 74312–74319, Sep. 2015, doi: 10.1039/C5RA14498A
[75] Y. Berro et al., “Atomistic description of phenol, CO and H2O adsorption over crystalline and amorphous silica surfaces for hydrodeoxygenation applications,” Appl. Surf. Sci., vol. 494, pp. 721–730, Nov. 2019, doi: 10.1016/J.APSUSC.2019.07.216
[76] Y. Li, C. Zhang, Y. Liu, X. Hou, R. Zhang, and X. Tang, “Coke Deposition on Ni/HZSM-5 in Bio-oil Hydrodeoxygenation Processing,” Energy & Fuels, vol. 29, no. 3, pp. 1722–1728, Mar. 2015, doi: 10.1021/ef5024669
[77] Y. Li et al., “Coke formation on the surface of Ni/HZSM-5 and Ni-Cu/HZSM-5 catalysts during bio-oil hydrodeoxygenation,” Fuel, vol. 189, pp. 23–31, Feb. 2017, doi: 10.1016/J.FUEL.2016.10.047
[78] Q. Chen et al., “Amorphous FeNi–ZrO 2 -Catalyzed Hydrodeoxygenation of Lignin-Derived Phenolic Compounds to Naphthenic Fuel,” ACS Sustain. Chem. Eng., vol. 8, no. 25, pp. 9335–9345, Jun. 2020, doi: 10.1021/acssuschemeng.0c01457
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 73 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Química
dc.publisher.department.none.fl_str_mv Departamento de Ciencias Básicas
dc.publisher.place.none.fl_str_mv Medellín, Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Exactas y Naturales
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudad Universitaria
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/8afdc755-9251-4c1e-a9a6-2f67b8037b3d/download
https://bibliotecadigital.udea.edu.co/bitstreams/094e6d97-a327-4031-8775-46b1354be0aa/download
https://bibliotecadigital.udea.edu.co/bitstreams/ac30259d-e701-4b53-94be-372243c5b208/download
https://bibliotecadigital.udea.edu.co/bitstreams/24b70c6d-12f4-403b-9917-120546d3cc6b/download
https://bibliotecadigital.udea.edu.co/bitstreams/b9f34e03-5401-4dad-ad61-a6f6e26d95a2/download
bitstream.checksum.fl_str_mv b76e7a76e24cf2f94b3ce0ae5ed275d0
5643bfd9bcf29d560eeec56d584edaa9
7bb25cea58fcc55558d973910166a2a5
e8d52d4fd14a8000b47e3e5558b4213b
c1c8d91e7f9cd856693b66a040087e18
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052625403838464
spelling Palacio Olarte, Rubén AlbertoGiraldo Soto, Juan JoséQuímica de Recursos Energéticos y Medio AmbienteManrique Hernández, Alba CeciliaGonzález, Lina María2025-10-31T17:55:44Z20272025https://hdl.handle.net/10495/48061En este trabajo se sintetizaron una serie de catalizadores bimetálicos que contienen NiFe soportado en una sílica mesoporosa SBA-15 y ZrO2/SBA-15. Los catalizadores fueron evaluados en la reacción de hidrodesoxigenación (HDO) de guaiacol, un compuesto modelo del bioaceite derivado de la biomasa lignocelulósica, ampliamente seleccionado ya que contiene tres de los grupos funcionales representativos en los compuestos de este tipo de bioaceite: -OH, -OCH3, C=C aromático. Los resultados catalíticos utilizando hexadecano como solvente mostraron que la composición de los catalizadores afecta la conversión y la selectividad. Los catalizadores que contienen ZrO2, como Ni8.2Fe1.6-ZrO2/SBA-15 y Ni8.3Fe0.7-ZrO2/SBA-15, alcanzaron una elevada conversión de guaiacol del 99.0 ± 0.5 % tras 5 horas de reacción y fueron selectivos hacia ciclohexano con un bajo balance carbono. Para los catalizadores sin ZrO2 como Ni13.3Fe1.3/SBA-15 y Ni4.7Fe0.5/SBA-15 se obtiene una menor conversión de guaiacol alcanzando 85.9 ± 0.7 % luego de 5 horas de reacción y se presenta una elevada selectividad hacia ciclohexanol 80.3 ± 11.1 %. También se evidenció que la presencia de hierro conduce a un aumento en la conversión y selectividad de las especies de níquel, ya que los catalizadores monometálicos que contenían Ni mostraron una actividad catalítica menor que los catalizadores bimetálicos NiFe. La disminución de la carga de metales, Ni+Fe en Ni4.7Fe0.5/SBA-15 conduce a un aumento en la selectividad hacia ciclohexanol, alcanzando una selectividad del 77% y un balance carbono del 96.3% que indica una menor producción de subproductos o coque. Los resultados de caracterización demuestran que este material presenta la mayor concentración superficial de Ni presente como Ni0, además se tiene una densidad de sitios ácidos de fuerza media y fuerte similar. El uso de agua como solvente de reacción conduce a una conversión más baja que en hexadecano, pero con selectividad hacia productos aromáticos como catecol y fenol. Estos resultados demuestran el alto potencial de los catalizadores bimetálicos NiFe con bajas cargas de metal dispersos en soportes mesopororos como la SBA-15 en la reacción HDO.In this work, a series of bimetallic catalysts containing NiFe supported on mesoporous SBA-15 silica and ZrO2/SBA-15 were synthesized. The catalysts were evaluated in the hydrodeoxygenation (HDO) reaction of guaiacol, a model compound of bio-oil derived from lignocellulosic biomass, widely selected because it contains three of the representative functional groups found in this type of bio-oil: -OH, -OCH3, an aromatic C=C. Catalytic results using hexadecane as solvent showed that the catalyst composition affects both conversion and selectivity. Catalysts containing ZrO2, such as Ni8.2Fe1.6-ZrO2/SBA-15 and Ni8.3Fe0.7-ZrO2/SBA-15, achieved a high guaiacol conversion of 99.0 ± 0.5% after 5 hours of reaction and were selective toward cyclohexane, with a low carbon balance. For catalysts without ZrO2, such as Ni13.3Fe1.3/SBA-15 and Ni4.7Fe0.5/SBA-15, lower guaiacol conversions were obtained, reaching 85.9 ± 0.7% after 5 hours of reaction, along with high selectivity toward cyclohexanol (80.3 ± 11.1%). It was also found that the presence of iron leads to an increase in both conversion and selectivity of nickel species, as monometallic catalysts containing Ni showed lower catalytic activity than bimetallic NiFe catalysts. The reduction of the total metal loading (Ni+Fe) in Ni4.7Fe0.5/SBA-15 resulted in an increase in selectivity toward cyclohexanol, reaching 77% selectivity and a 96.3% carbon balance, indicating lower production of byproducts or coke. Characterization results demonstrated that this material exhibited the highest surface concentration of Ni present as Ni0, along with a similar density of medium and strong acid sites. The use of water as a reaction solvent led to lower conversion compared to hexadecane, but with selectivity toward aromatic products such as catechol and phenol. These results highlight the high potential of low-metal-loading NiFe bimetallic catalysts dispersed on mesoporous supports such as SBA-15 for the HDO reaction.Catálisis heterogéneaCOL0015393TRABAJO DE GRADO CON DISTINCIÓN: Mención EspecialPregradoQuímico73 páginasapplication/pdfspaUniversidad de AntioquiaQuímicaDepartamento de Ciencias BásicasMedellín, ColombiaFacultad de Ciencias Exactas y NaturalesCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Catalizadores heterogéneos bifuncionales a base de metales de transición para la hidrodesoxigenación parcial de guaiacolTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/draft[1] C. Wang, X. Zhang, Q. Liu, Q. Zhang, L. Chen, and L. Ma, “A review of conversion of lignocellulose biomass to liquid transport fuels by integrated refining strategies,” Fuel Process. Technol., vol. 208, p. 106485, Nov. 2020, doi: 10.1016/j.fuproc.2020.106485[2] T. Cordero-Lanzac, J. Rodríguez-Mirasol, T. Cordero, and J. Bilbao, “Advances and Challenges in the Valorization of Bio-Oil: Hydrodeoxygenation Using Carbon-Supported Catalysts,” Energy & Fuels, vol. 35, no. 21, pp. 17008–17031, Nov. 2021, doi: 10.1021/acs.energyfuels.1c01700[3] D. Mohan, C. U. Pittman, and P. H. Steele, “Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review,” Energy & Fuels, vol. 20, no. 3, pp. 848–889, May 2006, doi: 10.1021/ef0502397[4] M. M. Ambursa, J. C. Juan, Y. Yahaya, Y. H. Taufiq-Yap, Y.-C. Lin, and H. V. Lee, “A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts,” Renew. Sustain. Energy Rev., vol. 138, p. 110667, Mar. 2021, doi: 10.1016/j.rser.2020.110667[5] S. Oh, H. S. Choi, U.-J. Kim, I.-G. Choi, and J. W. Choi, “Storage performance of bio-oil after hydrodeoxygenative upgrading with noble metal catalysts,” Fuel, vol. 182, pp. 154–160, Oct. 2016, doi: 10.1016/j.fuel.2016.05.044[6] S. S. Wong, R. Shu, J. Zhang, H. Liu, and N. Yan, “Downstream processing of lignin derived feedstock into end products,” Chem. Soc. Rev., vol. 49, no. 15, pp. 5510–5560, Aug. 2020, doi: 10.1039/D0CS00134A[7] A. Kumar, M. Jindal, S. Maharana, and B. Thallada, “Lignin Biorefinery: New Horizons in Catalytic Hydrodeoxygenation for the Production of Chemicals,” Energy & Fuels, vol. 35, no. 21, pp. 16965–16994, Nov. 2021, doi: 10.1021/acs.energyfuels.1c01651[8] F. Brienza, D. Cannella, D. Montesdeoca, I. Cybulska, and D. P. Debecker, “A guide to lignin valorization in biorefineries: traditional, recent, and forthcoming approaches to convert raw lignocellulose into valuable materials and chemicals,” RSC Sustain., vol. 2, no. 1, pp. 37–90, Jan. 2024, doi: 10.1039/D3SU00140G[9] W. Jin, L. Pastor‐Pérez, D. Shen, A. Sepúlveda‐Escribano, S. Gu, and T. Ramirez Reina, “Catalytic Upgrading of Biomass Model Compounds: Novel Approaches and Lessons Learnt from Traditional Hydrodeoxygenation – a Review,” ChemCatChem, vol. 11, no. 3, pp. 924–960, Feb. 2019, doi: 10.1002/cctc.201801722[10] M. Patel and A. Kumar, “Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review,” Renew. Sustain. Energy Rev., vol. 58, pp. 1293–1307, May 2016, doi: 10.1016/j.rser.2015.12.146[11] “U.S. Environmental Protection Agency | US EPA.” Accessed: May 27, 2025. [Online]. Available: https://www.epa.gov/[12] C. Li, X. Zhao, A. Wang, G. W. Huber, and T. Zhang, “Catalytic Transformation of Lignin for the Production of Chemicals and Fuels,” Chem. Rev., vol. 115, no. 21, pp. 11559–11624, Nov. 2015, doi: 10.1021/acs.chemrev.5b00155[13] M. P. Shah and P. Kaur, Biomass Energy for Sustainable Development. Boca Raton: CRC Press, 2024. doi: 10.1201/9781003406501[14] “Sistema de Información Minero Energético Colombiano - UPME.” Accessed: May 27, 2025. [Online]. Available: https://www.upme.gov.co/simec/[15] F. Ren, F. Wu, X. Wu, T. Bao, Y. Jie, and L. Gao, “Fungal systems for lignocellulose deconstruction: From enzymatic mechanisms to hydrolysis optimization,” GCB Bioenergy, vol. 16, no. 5, p. e13130, May 2024, doi: 10.1111/gcbb.13130[16] N. Toscano Miranda, I. Lopes Motta, R. Maciel Filho, and M. R. Wolf Maciel, “Sugarcane bagasse pyrolysis: A review of operating conditions and products properties,” Renew. Sustain. Energy Rev., vol. 149, p. 111394, Oct. 2021, doi: 10.1016/j.rser.2021.111394[17] H. V. Lee, S. B. A. Hamid, and S. K. Zain, “Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process,” Sci. World J., vol. 2014, no. 1, pp. 1–20, Jan. 2014, doi: 10.1155/2014/631013[18] M. Mujtaba et al., “Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics,” J. Clean. Prod., vol. 402, p. 136815, May 2023, doi: 10.1016/j.jclepro.2023.136815[19] M. D. Smith, “An Abbreviated Historical and Structural Introduction to Lignocellulose,” in ACS Symposium Series, vol. 1338, American Chemical Society, 2019, pp. 1–15. doi: 10.1021/bk-2019-1338.ch001[20] P. Alvira, E. Tomás-Pejó, M. Ballesteros, and M. J. Negro, “Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review,” Bioresour. Technol., vol. 101, no. 13, pp. 4851–4861, Jul. 2010, doi: 10.1016/j.biortech.2009.11.093[21] S. Swami, S. Suthar, R. Singh, A. K. Thakur, L. R. Gupta, and V. S. Sikarwar, “Potential of ionic liquids as emerging green solvent for the pretreatment of lignocellulosic biomass,” Environ. Sci. Pollut. Res., vol. 31, no. 9, pp. 12871–12891, Jan. 2024, doi: 10.1007/s11356-024-32100-y[22] A. A. Shah, T. H. Seehar, K. Sharma, and S. S. Toor, “Biomass pretreatment technologies,” in Hydrocarbon Biorefinery, Elsevier, 2022, pp. 203–228. doi: 10.1016/B978-0-12-823306-1.00014-5[23] S. Kim et al., “Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts,” Green Chem., vol. 21, no. 14, pp. 3715–3743, Jul. 2019, doi: 10.1039/C9GC01210A[24] R. K. Mishra, D. Jaya Prasanna Kumar, R. Sankannavar, P. Binnal, and K. Mohanty, “Hydro-deoxygenation of pyrolytic oil derived from pyrolysis of lignocellulosic biomass: A review,” Fuel, vol. 360, p. 130473, Mar. 2024, doi: 10.1016/j.fuel.2023.130473[25] X. Li, G. Chen, C. Liu, W. Ma, B. Yan, and J. Zhang, “Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review,” Renew. Sustain. Energy Rev., vol. 71, pp. 296–308, May 2017, doi: 10.1016/j.rser.2016.12.057[26] W. Song, Y. Liu, E. Baráth, C. Zhao, and J. A. Lercher, “Synergistic effects of Ni and acid sites for hydrogenation and C–O bond cleavage of substituted phenols,” Green Chem., vol. 17, no. 2, pp. 1204–1218, Feb. 2015, doi: 10.1039/C4GC01798F[27] X. Wang, Z. Zhang, Z. Yan, Q. Li, and Y. Zhang, “Catalysts with metal-acid dual sites for selective hydrodeoxygenation of lignin derivatives: Progress in regulation strategies and applications,” Appl. Catal. A Gen., vol. 662, p. 119266, Jul. 2023, doi: 10.1016/j.apcata.2023.119266[28] P. Mäki-Arvela and D. Murzin, “Hydrodeoxygenation of Lignin-Derived Phenols: From Fundamental Studies towards Industrial Applications,” Catalysts, vol. 7, no. 9, p. 265, Sep. 2017, doi: 10.3390/catal7090265[29] C. Abreu Teles et al., “Optimization of catalyst activity and stability in the m-cresol hydrodeoxygenation through Ni particle size control,” Appl. Catal. B Environ., vol. 338, p. 123030, Dec. 2023, doi: 10.1016/j.apcatb.2023.123030[30] Q. Sun et al., “Insights into the Major Reaction Pathways of Vapor‐Phase Hydrodeoxygenation of m ‐Cresol on a Pt/HBeta Catalyst,” ChemCatChem, vol. 8, no. 3, pp. 551–561, Feb. 2016, doi: 10.1002/cctc.201501232[31] M. S. Zanuttini, C. D. Lago, C. A. Querini, and M. A. Peralta, “Deoxygenation of m-cresol on Pt/γ-Al2O3 catalysts,” Catal. Today, vol. 213, pp. 9–17, Sep. 2013, doi: 10.1016/j.cattod.2013.04.011[32] R. N. Olcese, M. Bettahar, D. Petitjean, B. Malaman, F. Giovanella, and A. Dufour, “Gas-phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst,” Appl. Catal. B Environ., vol. 115–116, pp. 63–73, Apr. 2012, doi: 10.1016/j.apcatb.2011.12.005[33] X. Zhang, W. Tang, Q. Zhang, T. Wang, and L. Ma, “Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts,” Appl. Energy, vol. 227, pp. 73–79, Oct. 2018, doi: 10.1016/j.apenergy.2017.08.078[34] J.-X. Xie et al., “Highly efficient conversion of lignin bio-oil and derived phenols to cyclohexanols over low-loading Ni/C catalyst,” Fuel, vol. 371, p. 132030, Sep. 2024, doi: 10.1016/j.fuel.2024.132030[35] M. M. Ambursa, T. H. Ali, H. V. Lee, P. Sudarsanam, S. K. Bhargava, and S. B. A. Hamid, “Hydrodeoxygenation of dibenzofuran to bicyclic hydrocarbons using bimetallic Cu–Ni catalysts supported on metal oxides,” Fuel, vol. 180, pp. 767–776, Sep. 2016, doi: 10.1016/j.fuel.2016.04.045[36] V. O. O. Gonçalves et al., “Hydrodeoxygenation of m-cresol as a depolymerized lignin probe molecule: Synergistic effect of NiCo supported alloys,” Catal. Today, vol. 377, pp. 135–144, Oct. 2021, doi: 10.1016/j.cattod.2020.10.042[37] C. Cheng, F. Bian, C. Lu, Q. Wang, D. Shen, and X. Jiang, “DFT investigation of hydrodeoxygenation of guaiacol on Fe-decorated Ni (111),” J. Energy Inst., vol. 112, p. 101460, Feb. 2024, doi: 10.1016/J.JOEI.2023.101460[38] A. Gutierrez, E. M. Turpeinen, T. R. Viljava, and O. Krause, “Hydrodeoxygenation of model compounds on sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts; Role of sulfur-containing groups in reaction networks,” Catal. Today, vol. 285, pp. 125–134, May 2017, doi: 10.1016/J.CATTOD.2017.02.003[39] D. Raikwar, S. Majumdar, and D. Shee, “Synergistic effect of Ni-Co alloying on hydrodeoxygenation of guaiacol over Ni-Co/Al2O3 catalysts,” Mol. Catal., vol. 499, p. 111290, Jan. 2021, doi: 10.1016/J.MCAT.2020.111290[40] Z. Tian et al., “Hydrodeoxygenation of guaiacol as a model compound of pyrolysis lignin-oil over NiCo bimetallic catalyst: Reactivity and kinetic study,” Fuel, vol. 308, p. 122034, Jan. 2022, doi: 10.1016/J.FUEL.2021.122034[41] M. M. Ambursa, P. Sudarsanam, L. H. Voon, S. B. A. Hamid, and S. K. Bhargava, “Bimetallic Cu-Ni catalysts supported on MCM-41 and Ti-MCM-41 porous materials for hydrodeoxygenation of lignin model compound into transportation fuels,” Fuel Process. Technol., vol. 162, pp. 87–97, Jul. 2017, doi: 10.1016/J.FUPROC.2017.03.008[42] R. Insyani et al., “Selective hydrodeoxygenation of biomass pyrolysis oil and lignin-derived oxygenates to cyclic alcohols using the bimetallic NiFe core-shell supported on TiO2,” Chem. Eng. J., vol. 446, p. 136578, Oct. 2022, doi: 10.1016/J.CEJ.2022.136578[43] P. M. de Souza et al., “Hydrodeoxygenation of phenol using nickel phosphide catalysts. Study of the effect of the support,” Catal. Today, vol. 356, pp. 366–375, Oct. 2020, doi: 10.1016/J.CATTOD.2019.08.028[44] A. C. Díaz, L. Abdelouahed, N. Brodu, V. Montes-Jiménez, and B. Taouk, “Upgrading of Pyrolysis Bio-Oil by Catalytic Hydrodeoxygenation, a Review Focused on Catalysts, Model Molecules, Deactivation, and Reaction Routes,” Mol. 2024, Vol. 29, Page 4325, vol. 29, no. 18, p. 4325, Sep. 2024, doi: 10.3390/MOLECULES29184325[45] A. N. Kay Lup, F. Abnisa, W. M. A. Wan Daud, and M. K. Aroua, “A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds,” J. Ind. Eng. Chem., vol. 56, pp. 1–34, Dec. 2017, doi: 10.1016/J.JIEC.2017.06.049[46] M. López, R. Palacio, A. S. Mamede, J. J. Fernández, and S. Royer, “Hydrodeoxygenation of guaiacol into cyclohexane over mesoporous silica supported Ni–ZrO2 catalyst,” Microporous Mesoporous Mater., vol. 309, p. 110452, Dec. 2020, doi: 10.1016/J.MICROMESO.2020.110452[47] C. Zerva et al., “Hydrodeoxygenation of phenol and biomass fast pyrolysis oil (bio-oil) over Ni/WO3-ZrO2 catalyst,” Catal. Today, vol. 366, pp. 57–67, Apr. 2021, doi: 10.1016/j.cattod.2020.08.029[48] M. Lu et al., “Hydrodeoxygenation of Guaiacol Catalyzed by ZrO 2 –CeO 2 -Supported Nickel Catalysts with High Loading,” Energy & Fuels, vol. 34, no. 4, pp. 4685–4692, Apr. 2020, doi: 10.1021/acs.energyfuels.0c00445[49] M. López, R. Palacio, S. Royer, A. S. Mamede, and J. J. Fernández, “Mesostructured CMK-3 carbon supported Ni–ZrO2 as catalysts for the hydrodeoxygenation of guaiacol,” Microporous Mesoporous Mater., vol. 292, p. 109694, Jan. 2020, doi: 10.1016/J.MICROMESO.2019.109694[50] P. M. de Souza et al., “Effect of Zirconia Morphology on Hydrodeoxygenation of Phenol over Pd/ZrO 2,” ACS Catal., vol. 5, no. 12, pp. 7385–7398, Dec. 2015, doi: 10.1021/acscatal.5b01501[51] J. Grams and A. M. Ruppert, “Catalyst Stability—Bottleneck of Efficient Catalytic Pyrolysis,” Catal. 2021, Vol. 11, Page 265, vol. 11, no. 2, p. 265, Feb. 2021, doi: 10.3390/CATAL11020265[52] P. M. Mortensen, J. D. Grunwaldt, P. A. Jensen, and A. D. Jensen, “Influence on nickel particle size on the hydrodeoxygenation of phenol over Ni/SiO2,” Catal. Today, vol. 259, pp. 277–284, Jan. 2016, doi: 10.1016/J.CATTOD.2015.08.022[53] X. Lan, E. J. M. Hensen, and T. Weber, “Hydrodeoxygenation of guaiacol over Ni2P/SiO2–reaction mechanism and catalyst deactivation,” Appl. Catal. A Gen., vol. 550, pp. 57–66, Jan. 2018, doi: 10.1016/j.apcata.2017.10.018[54] P. M. Mortensen, J. D. Grunwaldt, P. A. Jensen, and A. D. Jensen, “Influence on nickel particle size on the hydrodeoxygenation of phenol over Ni/SiO2,” Catal. Today, vol. 259, pp. 277–284, Jan. 2016, doi: 10.1016/J.CATTOD.2015.08.022[55] T. He et al., “Gas phase hydrodeoxygenation of anisole and guaiacol to aromatics with a high selectivity over Ni-Mo/SiO2,” Catal. Commun., vol. 102, pp. 127–130, Dec. 2017, doi: 10.1016/J.CATCOM.2017.09.011[56] C. Zhao, Y. Yu, A. Jentys, and J. A. Lercher, “Understanding the impact of aluminum oxide binder on Ni/HZSM-5 for phenol hydrodeoxygenation,” Appl. Catal. B Environ., vol. 132–133, pp. 282–292, Mar. 2013, doi: 10.1016/J.APCATB.2012.11.042[57] P. M. Mortensen et al., “Stability and resistance of nickel catalysts for hydrodeoxygenation: carbon deposition and effects of sulfur, potassium, and chlorine in the feed,” Catal. Sci. Technol., vol. 4, no. 10, pp. 3672–3686, Sep. 2014, doi: 10.1039/C4CY00522H[58] D. Zhao et al., “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores,” Science (80-. )., vol. 279, no. 5350, pp. 548–552, Jan. 1998, doi: 10.1126/science.279.5350.548[59] J. van der Meer, I. Bardez, F. Bart, P.-A. Albouy, G. Wallez, and A. Davidson, “Dispersion of Co3O4 nanoparticles within SBA-15 using alkane solvents,” Microporous Mesoporous Mater., vol. 118, no. 1–3, pp. 183–188, Feb. 2009, doi: 10.1016/j.micromeso.2008.08.053[60] M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure Appl. Chem., vol. 87, no. 9–10, pp. 1051–1069, Oct. 2015, doi: 10.1515/pac-2014-1117[61] V. O. O. Gonçalves, P. M. de Souza, T. Cabioc’h, V. T. da Silva, F. B. Noronha, and F. Richard, “Hydrodeoxygenation of m-cresol over nickel and nickel phosphide based catalysts. Influence of the nature of the active phase and the support,” Appl. Catal. B Environ., vol. 219, pp. 619–628, Dec. 2017, doi: 10.1016/J.APCATB.2017.07.042[62] X. Zhang, Q. Zhang, T. Wang, L. Ma, Y. Yu, and L. Chen, “Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2–ZrO2 catalysts,” Bioresour. Technol., vol. 134, pp. 73–80, Apr. 2013, doi: 10.1016/J.BIORTECH.2013.02.039[63] S. Tsunekawa, K. Asami, S. Ito, M. Yashima, and T. Sugimoto, “XPS study of the phase transition in pure zirconium oxide nanocrystallites,” Appl. Surf. Sci., vol. 252, no. 5, pp. 1651–1656, Dec. 2005, doi: 10.1016/J.APSUSC.2005.03.183[64] S. N. Basahel, T. T. Ali, M. Mokhtar, and K. Narasimharao, “Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange,” Nanoscale Res. Lett., vol. 10, no. 1, p. 73, Dec. 2015, doi: 10.1186/s11671-015-0780-z[65] M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, and R. S. C. Smart, “X‐ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems,” Surf. Interface Anal., vol. 41, no. 4, pp. 324–332, Apr. 2009, doi: 10.1002/sia.3026[66] M. C. Biesinger, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, “The role of the Auger parameter in XPS studies of nickel metal, halides and oxides,” Phys. Chem. Chem. Phys., vol. 14, no. 7, pp. 2434–2442, Jan. 2012, doi: 10.1039/C2CP22419D[67] M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, “Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni,” Appl. Surf. Sci., vol. 257, no. 7, pp. 2717–2730, Jan. 2011, doi: 10.1016/J.APSUSC.2010.10.051[68] A. P. Grosvenor, M. C. Biesinger, R. S. C. Smart, and N. S. McIntyre, “New interpretations of XPS spectra of nickel metal and oxides,” Surf. Sci., vol. 600, no. 9, pp. 1771–1779, May 2006, doi: 10.1016/J.SUSC.2006.01.041[69] P. S. Riseborough, “A comment on satellites in nickel,” J. Phys. Chem. Solids, vol. 52, no. 11–12, pp. 1397–1399, Jan. 1991, doi: 10.1016/0022-3697(91)90118-J[70] Q. Li et al., “Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy,” Nat. Commun. 2022 131, vol. 13, no. 1, pp. 1–13, Mar. 2022, doi: 10.1038/s41467-022-28793-9[71] T. M. Sankaranarayanan et al., “Hydrodeoxygenation of anisole as bio-oil model compound over supported Ni and Co catalysts: Effect of metal and support properties,” Catal. Today, vol. 243, no. C, pp. 163–172, Apr. 2015, doi: 10.1016/J.CATTOD.2014.09.004[72] H. Shafaghat, P. S. Rezaei, and W. M. Ashri Wan Daud, “Effective parameters on selective catalytic hydrodeoxygenation of phenolic compounds of pyrolysis bio-oil to high-value hydrocarbons,” RSC Adv., vol. 5, no. 126, pp. 103999–104042, Dec. 2015, doi: 10.1039/C5RA22137D[73] M. V. Bykova et al., “Ni-based sol–gel catalysts as promising systems for crude bio-oil upgrading: Guaiacol hydrodeoxygenation study,” Appl. Catal. B Environ., vol. 113–114, pp. 296–307, Feb. 2012, doi: 10.1016/J.APCATB.2011.11.051[74] J. Wang, Y. Yuan, A. Shuaib, J. Xu, and J. Shen, “Effect of ZrO2 in Ni2P/ZrO2 –Al2O3 catalysts on hydrotreating reactions,” RSC Adv., vol. 5, no. 91, pp. 74312–74319, Sep. 2015, doi: 10.1039/C5RA14498A[75] Y. Berro et al., “Atomistic description of phenol, CO and H2O adsorption over crystalline and amorphous silica surfaces for hydrodeoxygenation applications,” Appl. Surf. Sci., vol. 494, pp. 721–730, Nov. 2019, doi: 10.1016/J.APSUSC.2019.07.216[76] Y. Li, C. Zhang, Y. Liu, X. Hou, R. Zhang, and X. Tang, “Coke Deposition on Ni/HZSM-5 in Bio-oil Hydrodeoxygenation Processing,” Energy & Fuels, vol. 29, no. 3, pp. 1722–1728, Mar. 2015, doi: 10.1021/ef5024669[77] Y. Li et al., “Coke formation on the surface of Ni/HZSM-5 and Ni-Cu/HZSM-5 catalysts during bio-oil hydrodeoxygenation,” Fuel, vol. 189, pp. 23–31, Feb. 2017, doi: 10.1016/J.FUEL.2016.10.047[78] Q. Chen et al., “Amorphous FeNi–ZrO 2 -Catalyzed Hydrodeoxygenation of Lignin-Derived Phenolic Compounds to Naphthenic Fuel,” ACS Sustain. Chem. Eng., vol. 8, no. 25, pp. 9335–9345, Jun. 2020, doi: 10.1021/acssuschemeng.0c01457CiclohexanolesCyclohexanolsGuayacolGuaiacolCatalizadoresCatalystsMetales de transiciónTransition metalsCatecolcatecholsFenolphenolsHidrodesoxigenación catalíticaCiclohexanolGuaiacolSílice mesoporosahttp://aims.fao.org/aos/agrovoc/c_9668http://aims.fao.org/aos/agrovoc/c_13300https://id.nlm.nih.gov/mesh/D003511https://id.nlm.nih.gov/mesh/D006139ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todosODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sosteniblesValorización de derivados de la biomasa a través de reacciones de hidrodesoxigenación catalítica2023-603362020-3813003bp5hc83PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/8afdc755-9251-4c1e-a9a6-2f67b8037b3d/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD53falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/094e6d97-a327-4031-8775-46b1354be0aa/download5643bfd9bcf29d560eeec56d584edaa9MD54falseAnonymousREADORIGINALGiraldoJuan_2025_Catalizadores_Bifuncionales_Hidrodesoxigenacion.pdfGiraldoJuan_2025_Catalizadores_Bifuncionales_Hidrodesoxigenacion.pdfTrabajo de grado de pregradoapplication/pdf3376857https://bibliotecadigital.udea.edu.co/bitstreams/ac30259d-e701-4b53-94be-372243c5b208/download7bb25cea58fcc55558d973910166a2a5MD55trueAnonymousREAD2026-12-31TEXTGiraldoJuan_2025_Catalizadores_Bifuncionales_Hidrodesoxigenacion.pdf.txtGiraldoJuan_2025_Catalizadores_Bifuncionales_Hidrodesoxigenacion.pdf.txtExtracted texttext/plain102275https://bibliotecadigital.udea.edu.co/bitstreams/24b70c6d-12f4-403b-9917-120546d3cc6b/downloade8d52d4fd14a8000b47e3e5558b4213bMD56falseAnonymousREAD2026-12-31THUMBNAILGiraldoJuan_2025_Catalizadores_Bifuncionales_Hidrodesoxigenacion.pdf.jpgGiraldoJuan_2025_Catalizadores_Bifuncionales_Hidrodesoxigenacion.pdf.jpgGenerated Thumbnailimage/jpeg6763https://bibliotecadigital.udea.edu.co/bitstreams/b9f34e03-5401-4dad-ad61-a6f6e26d95a2/downloadc1c8d91e7f9cd856693b66a040087e18MD57falseAnonymousREAD2026-12-3110495/48061oai:bibliotecadigital.udea.edu.co:10495/480612025-11-01 04:10:02.054http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalembargo2026-12-31https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=