Análisis de posibles compañeras en estrellas químicamente peculiares a partir de variaciones en la velocidad radial

Existe un conjunto de estrellas denominadas químicamente peculiares, cuyo enriquecimiento en elementos como nitrógeno, silicio y sodio ha despertado un gran interés en la comunidad científica. Una de las hipótesis más sólidas acerca de estos objetos sugiere que podrían tener una compañera binaria re...

Full description

Autores:
González Troncoso, Alexander
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/45848
Acceso en línea:
https://hdl.handle.net/10495/45848
https://github.com/AlexGTroncoso/Tesis_Astronomia_FACom/tree/main
https://github.com/AlexGTroncoso/Tesis_Astronomia_FACom/tree/main/Scientific%20production
https://alexgtroncoso.github.io/
Palabra clave:
Estrellas peculiares
Peculiar stars
Estrellas - Evolución
Stars - Evolution
Estrellas dobles - Espectros
Double stars - Spectra
Estrellas - Movimiento radial
Stars - Motion in line of sight
Método de Monte Carlo
Monte Carlo method
Astronomía - Procesamiento de datos
Astronomy - Data processing
Astrofísica
Astrophysics
http://id.loc.gov/authorities/subjects/sh87005497
http://id.loc.gov/authorities/subjects/sh85127430
http://id.loc.gov/authorities/subjects/sh92002196
http://id.loc.gov/authorities/subjects/sh85087032
http://id.loc.gov/authorities/subjects/sh88006526
http://id.loc.gov/authorities/subjects/sh85009032
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_f499cde106b2dd5da45df453c0b1354c
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/45848
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Análisis de posibles compañeras en estrellas químicamente peculiares a partir de variaciones en la velocidad radial
dc.title.alternative.none.fl_str_mv Analizando los espectros de LSOM y SDSS para entender las poblaciones estelares de la galaxia
title Análisis de posibles compañeras en estrellas químicamente peculiares a partir de variaciones en la velocidad radial
spellingShingle Análisis de posibles compañeras en estrellas químicamente peculiares a partir de variaciones en la velocidad radial
Estrellas peculiares
Peculiar stars
Estrellas - Evolución
Stars - Evolution
Estrellas dobles - Espectros
Double stars - Spectra
Estrellas - Movimiento radial
Stars - Motion in line of sight
Método de Monte Carlo
Monte Carlo method
Astronomía - Procesamiento de datos
Astronomy - Data processing
Astrofísica
Astrophysics
http://id.loc.gov/authorities/subjects/sh87005497
http://id.loc.gov/authorities/subjects/sh85127430
http://id.loc.gov/authorities/subjects/sh92002196
http://id.loc.gov/authorities/subjects/sh85087032
http://id.loc.gov/authorities/subjects/sh88006526
http://id.loc.gov/authorities/subjects/sh85009032
title_short Análisis de posibles compañeras en estrellas químicamente peculiares a partir de variaciones en la velocidad radial
title_full Análisis de posibles compañeras en estrellas químicamente peculiares a partir de variaciones en la velocidad radial
title_fullStr Análisis de posibles compañeras en estrellas químicamente peculiares a partir de variaciones en la velocidad radial
title_full_unstemmed Análisis de posibles compañeras en estrellas químicamente peculiares a partir de variaciones en la velocidad radial
title_sort Análisis de posibles compañeras en estrellas químicamente peculiares a partir de variaciones en la velocidad radial
dc.creator.fl_str_mv González Troncoso, Alexander
dc.contributor.advisor.none.fl_str_mv Flor Torres, Lauren Melisa
González Díaz, Danilo
Muñoz Cuartas, Juan Carlos
dc.contributor.author.none.fl_str_mv González Troncoso, Alexander
dc.contributor.researchgroup.none.fl_str_mv Grupo de Física y Astrofísica Computacional (FACOM)
dc.contributor.jury.none.fl_str_mv Cuartas Restrepo, Pablo Andrés
Chaparro Molano, Germán
dc.subject.lcsh.none.fl_str_mv Estrellas peculiares
Peculiar stars
Estrellas - Evolución
Stars - Evolution
Estrellas dobles - Espectros
Double stars - Spectra
Estrellas - Movimiento radial
Stars - Motion in line of sight
Método de Monte Carlo
Monte Carlo method
Astronomía - Procesamiento de datos
Astronomy - Data processing
Astrofísica
Astrophysics
topic Estrellas peculiares
Peculiar stars
Estrellas - Evolución
Stars - Evolution
Estrellas dobles - Espectros
Double stars - Spectra
Estrellas - Movimiento radial
Stars - Motion in line of sight
Método de Monte Carlo
Monte Carlo method
Astronomía - Procesamiento de datos
Astronomy - Data processing
Astrofísica
Astrophysics
http://id.loc.gov/authorities/subjects/sh87005497
http://id.loc.gov/authorities/subjects/sh85127430
http://id.loc.gov/authorities/subjects/sh92002196
http://id.loc.gov/authorities/subjects/sh85087032
http://id.loc.gov/authorities/subjects/sh88006526
http://id.loc.gov/authorities/subjects/sh85009032
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh87005497
http://id.loc.gov/authorities/subjects/sh85127430
http://id.loc.gov/authorities/subjects/sh92002196
http://id.loc.gov/authorities/subjects/sh85087032
http://id.loc.gov/authorities/subjects/sh88006526
http://id.loc.gov/authorities/subjects/sh85009032
description Existe un conjunto de estrellas denominadas químicamente peculiares, cuyo enriquecimiento en elementos como nitrógeno, silicio y sodio ha despertado un gran interés en la comunidad científica. Una de las hipótesis más sólidas acerca de estos objetos sugiere que podrían tener una compañera binaria responsable, al menos en parte, de dicho enriquecimiento. La caracterización de sistemas binarios con compañeras estelares o subestelares es fundamental para comprender mejor la formación y evolución estelar, siendo objetos esenciales en muchos campos de la astrofísica y en las estadísticas de multiplicidad estelar. Incluso las compañeras de masa planetaria son un observable de importancia fundamental. Para la física estelar, las binarias permiten la determinación precisa de las masas estelares, con una precisión inferior al porcentaje. Sin embargo, la identificación y clasificación precisa de estos objetos sigue siendo un desafío debido a la falta de datos informativos y a las mediciones limitadas de velocidad radial. Por esta razón, el objetivo de este trabajo es utilizar los datos del espectrógrafo FIDEOS del telescopio de 1m de La Silla, ubicado en Chile y tomados durante el año 2022, para proporcionar curvas de velocidad radial calculadas mediante el pipeline de CERES. De esta manera, se puede encontrar una posible órbita para estos objetos, utilizando el muestreador The Joker, que está especializado en el método de Monte Carlo personalizado para el problema de dos cuerpos. Este muestreador genera estimaciones en parámetros orbitales keplerianos a partir de observaciones de velocidad radial, incluso cuando los datos son escasos o muy ruidosos. Con estos parámetros, se realiza una estimación de la masa del posible compañero binario, identificando y clasificando el sistema. A través de este método, se lograron identificar ocho objetos variables, teniendo en cuenta la posible variación intrínseca que brinda el instrumento FIDEOS durante estas observaciones. De los objetos variables, se determinó que uno podría tener una posible compañera enana blanca con una masa de 0,5174+0,0021 −0,0024 M⊙, cinco podrían tener compañeras subestelares con masas en el rango de las enanas rojas y marrones, con masas entre 0,016+0,005 −0,003 y 0,12+0,12 −0,03M⊙, y dos muestran características de compañeros planetarios, específicamente con masas jovianas de 0,0078+0,0034 −0,0009 M⊙ y 0,00197+0,00014 −0,00005 M⊙. Estos hallazgos proporcionan nuevas perspectivas sobre la formación de sistemas binarios y subestelares, avanzando en el estudio de estos objetos químicamente peculiares. Además, sugieren la posibilidad de que el enriquecimiento químico específico de estos objetos esté relacionado con una gama de diferentes compañeros binarios, desde objetos estelares y subestelares hasta planetarios, destacando la necesidad de observaciones adicionales para confirmar y reforzar estos resultados.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-05-09T12:44:55Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_7a1f
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/45848
dc.identifier.url.none.fl_str_mv https://github.com/AlexGTroncoso/Tesis_Astronomia_FACom/tree/main
https://github.com/AlexGTroncoso/Tesis_Astronomia_FACom/tree/main/Scientific%20production
https://alexgtroncoso.github.io/
url https://hdl.handle.net/10495/45848
https://github.com/AlexGTroncoso/Tesis_Astronomia_FACom/tree/main
https://github.com/AlexGTroncoso/Tesis_Astronomia_FACom/tree/main/Scientific%20production
https://alexgtroncoso.github.io/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Adamów, M., Niedzielski, A., Villaver, E., Nowak, G., & Wolszczan, A. (2012). BD+48 740—Li overabundant giant star with a planet: A case of recent engulfment? The Astrophysical Journal Letters, 754(1), L15. https://doi.org/10.1088/2041-8205/754/1/L15
Adamów, M., Niedzielski, A., Villaver, E., Nowak, G., & Wolszczan, A. (2012). BD+48 740—Li overabundant giant star with a planet: A case of recent engulfment? The Astrophysical Journal Letters, 754(1), L15. https://doi.org/10.1088/2041-8205/754/1/L15
Allende Prieto, C. (2007). Velocities from cross-correlation: A guide for self-improvement. The Astronomical Journal, 134(5), 1843–1848. https://doi.org/10.1086/522051
Allende Prieto, C., Beers, T. C., Wilhelm, R., Newberg, H. J., Rockosi, C. M., Yanny, B., & Lee, Y. S. (2006). A spectroscopic study of the ancient Milky Way: F- and G-type stars in the third data release of the Sloan Digital Sky Survey. The Astrophysical Journal, 636(2), 804–820. https://doi.org/10.1086/498131
Anders, F., Chiappini, C., Santiago, B. X., Matijevič, G., Queiroz, A. B., Steinmetz, M., & Guiglion, G. (2018). Dissecting stellar chemical abundance space with t-SNE. Astronomy & Astrophysics, 619, A125. https://doi.org/10.1051/0004-6361/201833099
Baluev, R. V. (2008). Assessing the statistical significance of periodogram peaks. Monthly Notices of the Royal Astronomical Society, 385(3), 1279–1285. https://doi.org/10.1111/j.1365-2966.2008.12689.x
Beaton, R. L., et al. (2021). Final targeting strategy for the Sloan Digital Sky Survey IV Apache Point Observatory Galactic Evolution Experiment 2 North Survey. The Astronomical Journal, 162(6), 302. https://doi.org/10.3847/1538-3881/ac260c
Blanco-Cuaresma, S., Soubiran, C., Heiter, U., & Jofré, P. (2014). Determining stellar atmospheric parameters and chemical abundances of FGK stars with iSpec. Astronomy & Astrophysics, 569, A111. https://doi.org/10.1051/0004-6361/201423945
Blanton, M. R., et al. (2017). Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies, and the distant universe. The Astronomical Journal, 154(1), 28. https://doi.org/10.3847/1538-3881/aa7567
Bowen, I. S., & Vaughan, A. H. Jr. (1973). The optical design of the 40-in. telescope and of the Irénée DuPont telescope at Las Campanas Observatory, Chile. Applied Optics, 12, 1430–1434. https://doi.org/10.1364/AO.12.001430
Brahm, R., Jordán, A., & Espinoza, N. (2017). CERES: A set of automated routines for echelle spectra. Publications of the Astronomical Society of the Pacific, 129(973), 034002. https://doi.org/10.1088/1538-3873/aa5455
Brahm, R., Jordán, A., McCormac, J., & Espinoza, N. (n.d.). CERES: A set of pipelines and routines for echelle spectrographs [Repositorio GitHub]. https://github.com/rabrahm/ceres
Brahm, R., et al. (2019). HD 1397b: A transiting warm giant planet orbiting a V = 7.8 mag subgiant star discovered by TESS. The Astronomical Journal, 158(1), 45. https://doi.org/10.3847/1538-3881/ab279a
Bretthorst, G. L. (1988). Bayesian Spectrum Analysis and Parameter Estimation. Lecture Notes in Statistics.
Buder, S., et al. (2021). The GALAH+ survey: Third data release. Monthly Notices of the Royal Astronomical Society, 506(1), 150–201. https://doi.org/10.1093/mnras/stab1242
Carretta, E., Bragaglia, A., Gratton, R. G., Recio-Blanco, A., Lucatello, S., D’Orazi, V., & Cassisi, S. (2010). Properties of stellar generations in globular clusters and relations with global parameters. Astronomy & Astrophysics, 516, A55. https://doi.org/10.1051/0004-6361/200913451
Carrillo, A., Hawkins, K., Jofré, P., de Brito Silva, D., Das, P., & Lucey, M. (2022). The detailed chemical abundance patterns of accreted halo stars from the optical to infrared. Monthly Notices of the Royal Astronomical Society, 513(2), 1557–1580. https://doi.org/10.1093/mnras/stac518
Carroll, B. W., & Ostlie, D. A. (2017). An Introduction to Modern Astrophysics (2nd ed.). Cambridge University Press.
Casey, A. R., Hogg, D. W., Ness, M., Rix, H.-W., Ho, A. Q. Y., & Gilmore, G. (2016). The Cannon 2: A data-driven model of stellar spectra for detailed chemical abundance analyses. arXiv preprint arXiv:1603.03040. https://doi.org/10.48550/arXiv.1603.03040
Cheetham, A., et al. (2018). Discovery of a brown dwarf companion to the star HIP 64892. Astronomy & Astrophysics, 615, A160. https://doi.org/10.1051/0004-6361/201832650
Ciddor, P. E. (1996). Refractive index of air: New equations for the visible and near infrared. Applied Optics, 35(9), 1566–1573. https://doi.org/10.1364/AO.35.001566
Cseh, B., et al. (2018). The s process in AGB stars as constrained by a large sample of barium stars. Astronomy & Astrophysics, 620, A146. https://doi.org/10.1051/0004-6361/201834079
Dekker, H., D’Odorico, S., Kaufer, A., Delabre, B., & Kotzlowski, H. (2000). Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory. In M. Iye & A. F. Moorwood (Eds.), Optical and IR Telescope Instrumentation and Detectors (Vol. 4008, pp. 534–545). SPIE. https://doi.org/10.1117/12.395512
Devore, J. L. (2011). Probability and Statistics for Engineering and the Sciences (8th ed.). Cengage Learning.
Dietz, S. E., Yoon, J., Beers, T. C., & Placco, V. M. (2020). The metallicity gradient and complex formation history of the outermost halo of the Milky Way. The Astrophysical Journal, 894(1), 34. https://doi.org/10.3847/1538-4357/ab7fa4
Dworetsky, M. M. (1983). A period-finding method for sparse randomly spaced observations or “How long is a piece of string?”. Monthly Notices of the Royal Astronomical Society, 203, 917–924. https://doi.org/10.1093/mnras/203.4.917
European Space Agency (ESA). (1997). The HIPPARCOS and TYCHO catalogues: Astrometric and photometric star catalogues derived from the ESA HIPPARCOS Space Astrometry Mission (Vol. 1200). ESA Special Publication.
Edelson, R. A., & Krolik, J. H. (1988). The discrete correlation function: A new method for analyzing unevenly sampled variability data. The Astrophysical Journal, 333, 646. https://doi.org/10.1086/166773
Edlén, B. (1953). The dispersion of standard air. Journal of the Optical Society of America, 43(5), 339–344.
Fernández-Trincado, J. G., et al. (2016). Discovery of a metal-poor field giant with a globular cluster second-generation abundance pattern. The Astrophysical Journal, 833(2), 132. https://doi.org/10.3847/1538-4357/833/2/132
Fernández-Trincado, J. G., et al. (2017). Atypical Mg-poor Milky Way field stars with globular cluster second-generation-like chemical patterns. The Astrophysical Journal Letters, 846(1), L2. https://doi.org/10.3847/2041-8213/aa8032
Fernández-Trincado, J. G., Beers, T. C., & Minniti, D. (2020). Jurassic: A chemically anomalous structure in the Galactic halo. Astronomy & Astrophysics, 644, A83. https://doi.org/10.1051/0004-6361/202039434
Fernández-Trincado, J. G., et al. (2019a). Discovery of a new stellar subpopulation residing in the (inner) stellar halo of the Milky Way. The Astrophysical Journal Letters, 886(1), L8. https://doi.org/10.3847/2041-8213/ab5286
Fernández-Trincado, J. G., et al. (2019b). Discovery of a nitrogen-enhanced mildly metal-poor binary system: Possible evidence for pollution from an extinct AGB star. Astronomy & Astrophysics, 631, A97. https://doi.org/10.1051/0004-6361/201935369
Fernández-Trincado, J. G., et al. (2022a). CAPOS: The bulge Cluster APOgee Survey. III. Spectroscopic tomography of Tonantzintla 2. Astronomy & Astrophysics, 658, A116. https://doi.org/10.1051/0004-6361/202141742
Fernández-Trincado, J. G., et al. (2022b). Galactic ArchaeoLogIcaL ExcavatiOns (GALILEO). I. An updated census of APOGEE N-rich giants across the Milky Way. Astronomy & Astrophysics, 663, A126. https://doi.org/10.1051/0004-6361/202243195
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. (2013). emcee: The MCMC hammer. Publications of the Astronomical Society of the Pacific, 125(925), 306. https://doi.org/10.1086/670067
Gaia Collaboration. (2018). VizieR Online Data Catalog: Gaia DR2 (I/345). Astronomy & Astrophysics, 616, A1. https://doi.org/10.26093/cds/vizier.1345
Gaia Collaboration. (2020). VizieR Online Data Catalog: Gaia EDR3 (I/350). Astronomy & Astrophysics, 649, A1. https://doi.org/10.26093/cds/vizier.1350
Giguere, M. J., et al. (2015). Newly discovered planets orbiting HD 5319, HD 11506, HD 75784 and HD 10442 from the N2K Consortium. The Astrophysical Journal, 799(1), 89. https://doi.org/10.1088/0004-637X/799/1/89
Gregory, P. C., & Loredo, T. J. (1992). A new method for the detection of a periodic signal of unknown shape and period. The Astrophysical Journal, 398, 146. https://doi.org/10.1086/171844
Gunn, J. E., et al. (2006). The 2.5 m Telescope of the Sloan Digital Sky Survey. The Astronomical Journal, 131(4), 2332–2359. https://doi.org/10.1086/500975
Hanke, M., Koch, A., Prudil, Z., Grebel, E. K., & Bastian, U. (2020). Purveyors of fine halos. II. Chemodynamical association of halo stars with Milky Way globular clusters. Astronomy & Astrophysics, 637, A98. https://doi.org/10.1051/0004-6361/202037853
Heath, M. J., Doyle, L. R., Joshi, M. M., & Haberle, R. M. (1999). Habitability of planets around red dwarf stars. Origins of Life and Evolution of the Biosphere, 29(4), 405–424. https://doi.org/10.1023/A:1006596718708
Hon, M., et al. (2021). A “Quick Look” at all-sky galactic archaeology with TESS: 158,000 oscillating red giants from the MIT quick-look pipeline. The Astrophysical Journal, 919(2), 131. https://doi.org/10.3847/1538-4357/ac14b1
Hubeny, I., & Lanz, T. (2011). Synspec: General Spectrum Synthesis Program. Astrophysics Source Code Library, record ascl:1109.022.
Jönsson, H., et al. (2020). APOGEE data and spectral analysis from SDSS data release 16: Seven years of observations including first results from APOGEE-South. The Astronomical Journal, 160(3), 120. https://doi.org/10.3847/1538-3881/aba592
Jorissen, A., Začs, L., Udry, S., Lindgren, H., & Musaev, F. A. (2005). On metal-deficient barium stars and their link with yellow symbiotic stars. Astronomy & Astrophysics, 441(3), 1135–1148. https://doi.org/10.1051/0004-6361:20053298
Karjalainen, M., et al. (2022). Companions to Kepler giant stars: A long-period eccentric sub-stellar companion to KIC 3526061 and a stellar companion to HD 187878. Astronomy & Astrophysics, 668, A26. https://doi.org/10.1051/0004-6361/202244501
Kawaler, S. D., Novikov, I. D., Srinivasan, G., Meynet, G., & Schaerer, D. (1997). Stellar remnants. Springer. https://doi.org/10.1007/978-3-642-59111-4
Kelly, B. C., Becker, A. C., Sobolewska, M., Siemiginowska, A., & Uttley, P. (2014). Flexible and scalable methods for quantifying stochastic variability in the era of massive time-domain astronomical data sets. The Astrophysical Journal, 788(1), 33. https://doi.org/10.1088/0004-637X/788/1/33
Kemp, A. J., et al. (2018). On the discovery of K-enhanced and possibly Mg-depleted stars throughout the Milky Way. Monthly Notices of the Royal Astronomical Society, 480(1), 1384–1392. https://doi.org/10.1093/mnras/sty1915
Kervella, P., Arenou, F., & Thévenin, F. (2022). Stellar and substellar companions from Gaia EDR3. Proper-motion anomaly and resolved common proper-motion pairs. Astronomy & Astrophysics, 657, A7. https://doi.org/10.1051/0004-6361/202142146
Jae-Rim Koo et al. «Determination of Sodium Abundance Ratio from Low-resolution Stellar Spectra and Its Applications». ApJ 925.1, 35 (2022). doi: 10.3847/1538-4357/ac3423.
G. Kordopatis et al. «The Radial Velocity Experiment (RAVE): Fourth Data Release». AJ 146.5, 134 (2013). doi: 10.1088/0004-6256/146/5/134.
J. M. Diederik Kruijssen et al. «Kraken reveals itself – the merger history of the Milky Way reconstructed with the E-MOSAICS simulations». MNRAS 498.2 (2020), 2472–2491. doi: 10.1093/mnras/staa2452.
Andrea Kunder et al. «The Radial Velocity Experiment (RAVE): Fifth Data Release». AJ 153.2, 75 (2017). doi: 10.3847/1538-3881/153/2/75.
D. J. Lennon, P. L. Dufton y C. Crowley. «More nitrogen rich B-type stars in the SMC cluster, NGC 330». A&A 398 (2003), 455–466. doi: 10.1051/0004-6361:20021194.
N. R. Lomb. «Least-Squares Frequency Analysis of Unequally Spaced Data». Ap&SS 39.2 (1976), 447–462. doi: 10.1007/BF00648343.
R. E. Luck y H. E. Bond. «Subgiant CH Stars. II. Chemical Compositions and the Evolutionary Connection with Barium Stars». ApJS 77 (1991), 515. doi: 10.1086/191615.
D. J. MacConnell, R. L. Frye y A. R. Upgren. «The absolute magnitude of the barium stars». AJ 77 (1972), 384–391. doi: 10.1086/111298.
T. Masseron et al. «Heavy-element Abundances in P-rich Stars: A New Site for the s-process?» ApJL 904.1, L1 (2020). doi: 10.3847/2041-8213/abc6ac.
M. Mayor y D. Queloz. «A Jupiter-mass companion to a solar-type star». Nature 378.6555 (1995), 355–359. doi: 10.1038/378355a0.
D. Minniti et al. «Discovery of Tidal RR Lyrae Stars in the Bulge Globular Cluster M62». ApJL 869.1, L10 (2018). doi: 10.3847/2041-8213/aaf1cd.
U. Munari et al. «APASS Landolt-Sloan BVgri Photometry of RAVE Stars. I. Data, Effective Temperatures, and Reddenings». AJ 148.5, 81 (2014). doi: 10.1088/0004-6256/148/5/81.
C. D. Murray y A. C. M. Correia. «Keplerian orbits and dynamics of exoplanets». En: Exoplanets 1 (2010), 15–23.
M. Ness et al. «The Cannon: A data-driven approach to Stellar Label Determination». ApJ 808.1, 16 (2015). doi: 10.1088/0004-637X/808/1/16.
Kunio Noguchi et al. «High Dispersion Spectrograph (HDS) for the Subaru Telescope». PASJ 54.6 (2002), 855–864. doi: 10.1093/pasj/54.6.855.
NumPy documentation. numpy.histogram_bin_edges. Version: 2.1 (2024). url: https://numpy.org/doc/stable/index.html.
Martin Paegert et al. «TESS Input Catalog versions 8.1 and 8.2». arXiv e-prints (2021). doi: 10.48550/arXiv.2108.04778.
F. Pepe et al. «The CORALIE survey for southern extra-solar planets VII». A&A 388 (2002), 632–638. doi: 10.1051/0004-6361:20020433.
C. B. Pereira et al. «The s-process enriched star HD 55496». MNRAS 488.1 (2019), 482–494. doi: 10.1093/mnras/stz1411.
C. B. Pereira et al. «Search for Sodium-rich Stars among Metal-poor Stars». AJ 157.2, 70 (2019). doi: 10.3847/1538-3881/aaf71e.
C. B. Pereira et al. «Chemical abundances and kinematics of TYC 5619-109-1». MNRAS 469.1 (2017), 774–786. doi: 10.1093/mnras/stx786.
Adrian M. Price-Whelan et al. «The Joker: A Custom Monte Carlo Sampler for Binary-star and Exoplanet Radial Velocity Data». ApJ 837.1, 20 (2017). doi: 10.3847/1538-4357/aa5e50.
Adrian Price-Whelan. thejoker: Code for Radial Velocity Analysis. GitHub repository (2020). url: https://github.com/adrn/thejoker.
C. Allende Prieto. «Conversion from vacuum to standard air wavelengths». (2011).
Meenakshi Purandardas et al. «Chemical analysis of CH stars - III». MNRAS 486.3 (2019), 3266–3289. doi: 10.1093/mnras/stz759.
A. B. A. Queiroz et al. «VizieR Online Data Catalog: StarHorse data for 8 spectroscopic surveys». A&A 673, A155 (2023). doi: 10.1051/0004-6361/202244373.
James Dennis Reimann. «Frequency Estimation Using Unequally-Spaced Astronomical Data». Tesis doctoral, Univ. of California, Berkeley (1994).
John L. Russell. «Kepler’s laws of planetary motion: 1609–1666». BJHS 2.1 (1964), 1–24.
Bahaa Saleh y Malvin Teich. Fundamentals of Photonics, 3rd ed. Wiley (2019). ISBN: 9781119506874.
Felipe A. Santana et al. «Final Targeting Strategy for the SDSS-IV APOGEE-2S Survey». AJ 162.6, 303 (2021). doi: 10.3847/1538-3881/ac2cbc.
J. D. Scargle. «Studies in astronomical time series analysis. II». ApJ 263 (1982), 835–853. doi: 10.1086/160554.
Arthur Schuster. «On the investigation of hidden periodicities». Terrestrial Magnetism 3.1 (1898), 13. doi: 10.1029/TM003i001p00013.
A. Schwarzenberg-Czerny. «On the advantage of using analysis of variance for period search». MNRAS 241 (1989), 153–165. doi: 10.1093/mnras/241.2.153.
Lionel Siess y Mario Livio. «The accretion of brown dwarfs and planets by giant stars - I». MNRAS 304.4 (1999), 925–937. doi: 10.1046/j.1365-8711.1999.02376.x.
Jeffrey D. Simpson y Sarah L. Martell. «A nitrogen-enhanced metal-poor star in ESO280-SC06». MNRAS 490.1 (2019), 741–751. doi: 10.1093/mnras/stz2611.
Tawny Sit y M. K. Ness. «The Age Distribution of Stars in the Milky Way Bulge». ApJ 900.1, 4 (2020). doi: 10.3847/1538-4357/ab9ff6.
Yu, J., Huber, D., Bedding, T. R., Stello, D., Hon, M., Murphy, S. J., & Khanna, S. (2018). Asteroseismology of 16,000 Kepler red giants: Global oscillation parameters, masses, and radii. The Astrophysical Journal Supplement Series, 236(2), 42. https://doi.org/10.3847/1538-4365/aaaf74
Yuan, H., Du, C., Liu, J., Zhang, Y., Wang, W., Zhang, J., ... & Yuan, H. B. (2022). Discovery of one neutron star candidate from radial-velocity monitoring. The Astrophysical Journal, 940(2), 165. https://doi.org/10.3847/1538-4357/ac9c62
Zasowski, G., Johnson, J. A., Frinchaboy, P. M., Majewski, S. R., Nidever, D. L., Rocha-Pinto, H. J., ... & Schiavon, R. P. (2013). Target selection for the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The Astronomical Journal, 146(4), 81. https://doi.org/10.1088/0004-6256/146/4/81
Zeleke, D. B., Negu, S. H., & Malkov, O. Y. (2022). Evolution of close binary system parameter distributions. Research in Astronomy and Astrophysics, 22(10), 105013. https://doi.org/10.1088/1674-4527/ac8f8b
de Castro, D. B., Pereira, C. B., Roig, F., Jilinski, E., Drake, N. A., Chavero, C., & Sales Silva, J. V. (2016). Chemical abundances and kinematics of barium stars. Monthly Notices of the Royal Astronomical Society, 459(4), 4299–4324. https://doi.org/10.1093/mnras/stw815
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 132 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Astronomía
dc.publisher.department.none.fl_str_mv Instituto de Física
dc.publisher.place.none.fl_str_mv Medellín, Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Exactas y Naturales
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudad Universitaria
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/2f15e66f-2d0a-4686-a002-9e9139fc9ef8/download
https://bibliotecadigital.udea.edu.co/bitstreams/85347a41-9415-4c85-879d-b99afb51f2f6/download
https://bibliotecadigital.udea.edu.co/bitstreams/bdb10e86-cfb3-4802-bce6-a8f7674fd928/download
https://bibliotecadigital.udea.edu.co/bitstreams/6c389e6d-64c9-4663-a50a-d9c0bdc61208/download
https://bibliotecadigital.udea.edu.co/bitstreams/aa0989f0-a4b6-4a0c-a4d1-449af2bbd70e/download
bitstream.checksum.fl_str_mv cf45cbace046c7d306f4f2d6bf7bb02e
b76e7a76e24cf2f94b3ce0ae5ed275d0
5643bfd9bcf29d560eeec56d584edaa9
0530df4f099e5b3a32b1dfcb64ae5a9a
297aaaffc3e0cb987b1500e3a434a652
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052425930080256
spelling Flor Torres, Lauren MelisaGonzález Díaz, DaniloMuñoz Cuartas, Juan CarlosGonzález Troncoso, AlexanderGrupo de Física y Astrofísica Computacional (FACOM)Cuartas Restrepo, Pablo AndrésChaparro Molano, Germán2025-05-09T12:44:55Z2025https://hdl.handle.net/10495/45848https://github.com/AlexGTroncoso/Tesis_Astronomia_FACom/tree/mainhttps://github.com/AlexGTroncoso/Tesis_Astronomia_FACom/tree/main/Scientific%20productionhttps://alexgtroncoso.github.io/Existe un conjunto de estrellas denominadas químicamente peculiares, cuyo enriquecimiento en elementos como nitrógeno, silicio y sodio ha despertado un gran interés en la comunidad científica. Una de las hipótesis más sólidas acerca de estos objetos sugiere que podrían tener una compañera binaria responsable, al menos en parte, de dicho enriquecimiento. La caracterización de sistemas binarios con compañeras estelares o subestelares es fundamental para comprender mejor la formación y evolución estelar, siendo objetos esenciales en muchos campos de la astrofísica y en las estadísticas de multiplicidad estelar. Incluso las compañeras de masa planetaria son un observable de importancia fundamental. Para la física estelar, las binarias permiten la determinación precisa de las masas estelares, con una precisión inferior al porcentaje. Sin embargo, la identificación y clasificación precisa de estos objetos sigue siendo un desafío debido a la falta de datos informativos y a las mediciones limitadas de velocidad radial. Por esta razón, el objetivo de este trabajo es utilizar los datos del espectrógrafo FIDEOS del telescopio de 1m de La Silla, ubicado en Chile y tomados durante el año 2022, para proporcionar curvas de velocidad radial calculadas mediante el pipeline de CERES. De esta manera, se puede encontrar una posible órbita para estos objetos, utilizando el muestreador The Joker, que está especializado en el método de Monte Carlo personalizado para el problema de dos cuerpos. Este muestreador genera estimaciones en parámetros orbitales keplerianos a partir de observaciones de velocidad radial, incluso cuando los datos son escasos o muy ruidosos. Con estos parámetros, se realiza una estimación de la masa del posible compañero binario, identificando y clasificando el sistema. A través de este método, se lograron identificar ocho objetos variables, teniendo en cuenta la posible variación intrínseca que brinda el instrumento FIDEOS durante estas observaciones. De los objetos variables, se determinó que uno podría tener una posible compañera enana blanca con una masa de 0,5174+0,0021 −0,0024 M⊙, cinco podrían tener compañeras subestelares con masas en el rango de las enanas rojas y marrones, con masas entre 0,016+0,005 −0,003 y 0,12+0,12 −0,03M⊙, y dos muestran características de compañeros planetarios, específicamente con masas jovianas de 0,0078+0,0034 −0,0009 M⊙ y 0,00197+0,00014 −0,00005 M⊙. Estos hallazgos proporcionan nuevas perspectivas sobre la formación de sistemas binarios y subestelares, avanzando en el estudio de estos objetos químicamente peculiares. Además, sugieren la posibilidad de que el enriquecimiento químico específico de estos objetos esté relacionado con una gama de diferentes compañeros binarios, desde objetos estelares y subestelares hasta planetarios, destacando la necesidad de observaciones adicionales para confirmar y reforzar estos resultados.Astrofísica EstelarCOL0038262Trabajo de grado con distinción: Mención Especial.PregradoAstrónomo132 páginasapplication/pdfspaUniversidad de AntioquiaAstronomíaInstituto de FísicaMedellín, ColombiaFacultad de Ciencias Exactas y NaturalesCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Estrellas peculiaresPeculiar starsEstrellas - EvoluciónStars - EvolutionEstrellas dobles - EspectrosDouble stars - SpectraEstrellas - Movimiento radialStars - Motion in line of sightMétodo de Monte CarloMonte Carlo methodAstronomía - Procesamiento de datosAstronomy - Data processingAstrofísicaAstrophysicshttp://id.loc.gov/authorities/subjects/sh87005497http://id.loc.gov/authorities/subjects/sh85127430http://id.loc.gov/authorities/subjects/sh92002196http://id.loc.gov/authorities/subjects/sh85087032http://id.loc.gov/authorities/subjects/sh88006526http://id.loc.gov/authorities/subjects/sh85009032Análisis de posibles compañeras en estrellas químicamente peculiares a partir de variaciones en la velocidad radialAnalizando los espectros de LSOM y SDSS para entender las poblaciones estelares de la galaxiaTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/draftAdamów, M., Niedzielski, A., Villaver, E., Nowak, G., & Wolszczan, A. (2012). BD+48 740—Li overabundant giant star with a planet: A case of recent engulfment? The Astrophysical Journal Letters, 754(1), L15. https://doi.org/10.1088/2041-8205/754/1/L15Adamów, M., Niedzielski, A., Villaver, E., Nowak, G., & Wolszczan, A. (2012). BD+48 740—Li overabundant giant star with a planet: A case of recent engulfment? The Astrophysical Journal Letters, 754(1), L15. https://doi.org/10.1088/2041-8205/754/1/L15Allende Prieto, C. (2007). Velocities from cross-correlation: A guide for self-improvement. The Astronomical Journal, 134(5), 1843–1848. https://doi.org/10.1086/522051Allende Prieto, C., Beers, T. C., Wilhelm, R., Newberg, H. J., Rockosi, C. M., Yanny, B., & Lee, Y. S. (2006). A spectroscopic study of the ancient Milky Way: F- and G-type stars in the third data release of the Sloan Digital Sky Survey. The Astrophysical Journal, 636(2), 804–820. https://doi.org/10.1086/498131Anders, F., Chiappini, C., Santiago, B. X., Matijevič, G., Queiroz, A. B., Steinmetz, M., & Guiglion, G. (2018). Dissecting stellar chemical abundance space with t-SNE. Astronomy & Astrophysics, 619, A125. https://doi.org/10.1051/0004-6361/201833099Baluev, R. V. (2008). Assessing the statistical significance of periodogram peaks. Monthly Notices of the Royal Astronomical Society, 385(3), 1279–1285. https://doi.org/10.1111/j.1365-2966.2008.12689.xBeaton, R. L., et al. (2021). Final targeting strategy for the Sloan Digital Sky Survey IV Apache Point Observatory Galactic Evolution Experiment 2 North Survey. The Astronomical Journal, 162(6), 302. https://doi.org/10.3847/1538-3881/ac260cBlanco-Cuaresma, S., Soubiran, C., Heiter, U., & Jofré, P. (2014). Determining stellar atmospheric parameters and chemical abundances of FGK stars with iSpec. Astronomy & Astrophysics, 569, A111. https://doi.org/10.1051/0004-6361/201423945Blanton, M. R., et al. (2017). Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies, and the distant universe. The Astronomical Journal, 154(1), 28. https://doi.org/10.3847/1538-3881/aa7567Bowen, I. S., & Vaughan, A. H. Jr. (1973). The optical design of the 40-in. telescope and of the Irénée DuPont telescope at Las Campanas Observatory, Chile. Applied Optics, 12, 1430–1434. https://doi.org/10.1364/AO.12.001430Brahm, R., Jordán, A., & Espinoza, N. (2017). CERES: A set of automated routines for echelle spectra. Publications of the Astronomical Society of the Pacific, 129(973), 034002. https://doi.org/10.1088/1538-3873/aa5455Brahm, R., Jordán, A., McCormac, J., & Espinoza, N. (n.d.). CERES: A set of pipelines and routines for echelle spectrographs [Repositorio GitHub]. https://github.com/rabrahm/ceresBrahm, R., et al. (2019). HD 1397b: A transiting warm giant planet orbiting a V = 7.8 mag subgiant star discovered by TESS. The Astronomical Journal, 158(1), 45. https://doi.org/10.3847/1538-3881/ab279aBretthorst, G. L. (1988). Bayesian Spectrum Analysis and Parameter Estimation. Lecture Notes in Statistics.Buder, S., et al. (2021). The GALAH+ survey: Third data release. Monthly Notices of the Royal Astronomical Society, 506(1), 150–201. https://doi.org/10.1093/mnras/stab1242Carretta, E., Bragaglia, A., Gratton, R. G., Recio-Blanco, A., Lucatello, S., D’Orazi, V., & Cassisi, S. (2010). Properties of stellar generations in globular clusters and relations with global parameters. Astronomy & Astrophysics, 516, A55. https://doi.org/10.1051/0004-6361/200913451Carrillo, A., Hawkins, K., Jofré, P., de Brito Silva, D., Das, P., & Lucey, M. (2022). The detailed chemical abundance patterns of accreted halo stars from the optical to infrared. Monthly Notices of the Royal Astronomical Society, 513(2), 1557–1580. https://doi.org/10.1093/mnras/stac518Carroll, B. W., & Ostlie, D. A. (2017). An Introduction to Modern Astrophysics (2nd ed.). Cambridge University Press.Casey, A. R., Hogg, D. W., Ness, M., Rix, H.-W., Ho, A. Q. Y., & Gilmore, G. (2016). The Cannon 2: A data-driven model of stellar spectra for detailed chemical abundance analyses. arXiv preprint arXiv:1603.03040. https://doi.org/10.48550/arXiv.1603.03040Cheetham, A., et al. (2018). Discovery of a brown dwarf companion to the star HIP 64892. Astronomy & Astrophysics, 615, A160. https://doi.org/10.1051/0004-6361/201832650Ciddor, P. E. (1996). Refractive index of air: New equations for the visible and near infrared. Applied Optics, 35(9), 1566–1573. https://doi.org/10.1364/AO.35.001566Cseh, B., et al. (2018). The s process in AGB stars as constrained by a large sample of barium stars. Astronomy & Astrophysics, 620, A146. https://doi.org/10.1051/0004-6361/201834079Dekker, H., D’Odorico, S., Kaufer, A., Delabre, B., & Kotzlowski, H. (2000). Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory. In M. Iye & A. F. Moorwood (Eds.), Optical and IR Telescope Instrumentation and Detectors (Vol. 4008, pp. 534–545). SPIE. https://doi.org/10.1117/12.395512Devore, J. L. (2011). Probability and Statistics for Engineering and the Sciences (8th ed.). Cengage Learning.Dietz, S. E., Yoon, J., Beers, T. C., & Placco, V. M. (2020). The metallicity gradient and complex formation history of the outermost halo of the Milky Way. The Astrophysical Journal, 894(1), 34. https://doi.org/10.3847/1538-4357/ab7fa4Dworetsky, M. M. (1983). A period-finding method for sparse randomly spaced observations or “How long is a piece of string?”. Monthly Notices of the Royal Astronomical Society, 203, 917–924. https://doi.org/10.1093/mnras/203.4.917European Space Agency (ESA). (1997). The HIPPARCOS and TYCHO catalogues: Astrometric and photometric star catalogues derived from the ESA HIPPARCOS Space Astrometry Mission (Vol. 1200). ESA Special Publication.Edelson, R. A., & Krolik, J. H. (1988). The discrete correlation function: A new method for analyzing unevenly sampled variability data. The Astrophysical Journal, 333, 646. https://doi.org/10.1086/166773Edlén, B. (1953). The dispersion of standard air. Journal of the Optical Society of America, 43(5), 339–344.Fernández-Trincado, J. G., et al. (2016). Discovery of a metal-poor field giant with a globular cluster second-generation abundance pattern. The Astrophysical Journal, 833(2), 132. https://doi.org/10.3847/1538-4357/833/2/132Fernández-Trincado, J. G., et al. (2017). Atypical Mg-poor Milky Way field stars with globular cluster second-generation-like chemical patterns. The Astrophysical Journal Letters, 846(1), L2. https://doi.org/10.3847/2041-8213/aa8032Fernández-Trincado, J. G., Beers, T. C., & Minniti, D. (2020). Jurassic: A chemically anomalous structure in the Galactic halo. Astronomy & Astrophysics, 644, A83. https://doi.org/10.1051/0004-6361/202039434Fernández-Trincado, J. G., et al. (2019a). Discovery of a new stellar subpopulation residing in the (inner) stellar halo of the Milky Way. The Astrophysical Journal Letters, 886(1), L8. https://doi.org/10.3847/2041-8213/ab5286Fernández-Trincado, J. G., et al. (2019b). Discovery of a nitrogen-enhanced mildly metal-poor binary system: Possible evidence for pollution from an extinct AGB star. Astronomy & Astrophysics, 631, A97. https://doi.org/10.1051/0004-6361/201935369Fernández-Trincado, J. G., et al. (2022a). CAPOS: The bulge Cluster APOgee Survey. III. Spectroscopic tomography of Tonantzintla 2. Astronomy & Astrophysics, 658, A116. https://doi.org/10.1051/0004-6361/202141742Fernández-Trincado, J. G., et al. (2022b). Galactic ArchaeoLogIcaL ExcavatiOns (GALILEO). I. An updated census of APOGEE N-rich giants across the Milky Way. Astronomy & Astrophysics, 663, A126. https://doi.org/10.1051/0004-6361/202243195Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. (2013). emcee: The MCMC hammer. Publications of the Astronomical Society of the Pacific, 125(925), 306. https://doi.org/10.1086/670067Gaia Collaboration. (2018). VizieR Online Data Catalog: Gaia DR2 (I/345). Astronomy & Astrophysics, 616, A1. https://doi.org/10.26093/cds/vizier.1345Gaia Collaboration. (2020). VizieR Online Data Catalog: Gaia EDR3 (I/350). Astronomy & Astrophysics, 649, A1. https://doi.org/10.26093/cds/vizier.1350Giguere, M. J., et al. (2015). Newly discovered planets orbiting HD 5319, HD 11506, HD 75784 and HD 10442 from the N2K Consortium. The Astrophysical Journal, 799(1), 89. https://doi.org/10.1088/0004-637X/799/1/89Gregory, P. C., & Loredo, T. J. (1992). A new method for the detection of a periodic signal of unknown shape and period. The Astrophysical Journal, 398, 146. https://doi.org/10.1086/171844Gunn, J. E., et al. (2006). The 2.5 m Telescope of the Sloan Digital Sky Survey. The Astronomical Journal, 131(4), 2332–2359. https://doi.org/10.1086/500975Hanke, M., Koch, A., Prudil, Z., Grebel, E. K., & Bastian, U. (2020). Purveyors of fine halos. II. Chemodynamical association of halo stars with Milky Way globular clusters. Astronomy & Astrophysics, 637, A98. https://doi.org/10.1051/0004-6361/202037853Heath, M. J., Doyle, L. R., Joshi, M. M., & Haberle, R. M. (1999). Habitability of planets around red dwarf stars. Origins of Life and Evolution of the Biosphere, 29(4), 405–424. https://doi.org/10.1023/A:1006596718708Hon, M., et al. (2021). A “Quick Look” at all-sky galactic archaeology with TESS: 158,000 oscillating red giants from the MIT quick-look pipeline. The Astrophysical Journal, 919(2), 131. https://doi.org/10.3847/1538-4357/ac14b1Hubeny, I., & Lanz, T. (2011). Synspec: General Spectrum Synthesis Program. Astrophysics Source Code Library, record ascl:1109.022.Jönsson, H., et al. (2020). APOGEE data and spectral analysis from SDSS data release 16: Seven years of observations including first results from APOGEE-South. The Astronomical Journal, 160(3), 120. https://doi.org/10.3847/1538-3881/aba592Jorissen, A., Začs, L., Udry, S., Lindgren, H., & Musaev, F. A. (2005). On metal-deficient barium stars and their link with yellow symbiotic stars. Astronomy & Astrophysics, 441(3), 1135–1148. https://doi.org/10.1051/0004-6361:20053298Karjalainen, M., et al. (2022). Companions to Kepler giant stars: A long-period eccentric sub-stellar companion to KIC 3526061 and a stellar companion to HD 187878. Astronomy & Astrophysics, 668, A26. https://doi.org/10.1051/0004-6361/202244501Kawaler, S. D., Novikov, I. D., Srinivasan, G., Meynet, G., & Schaerer, D. (1997). Stellar remnants. Springer. https://doi.org/10.1007/978-3-642-59111-4Kelly, B. C., Becker, A. C., Sobolewska, M., Siemiginowska, A., & Uttley, P. (2014). Flexible and scalable methods for quantifying stochastic variability in the era of massive time-domain astronomical data sets. The Astrophysical Journal, 788(1), 33. https://doi.org/10.1088/0004-637X/788/1/33Kemp, A. J., et al. (2018). On the discovery of K-enhanced and possibly Mg-depleted stars throughout the Milky Way. Monthly Notices of the Royal Astronomical Society, 480(1), 1384–1392. https://doi.org/10.1093/mnras/sty1915Kervella, P., Arenou, F., & Thévenin, F. (2022). Stellar and substellar companions from Gaia EDR3. Proper-motion anomaly and resolved common proper-motion pairs. Astronomy & Astrophysics, 657, A7. https://doi.org/10.1051/0004-6361/202142146Jae-Rim Koo et al. «Determination of Sodium Abundance Ratio from Low-resolution Stellar Spectra and Its Applications». ApJ 925.1, 35 (2022). doi: 10.3847/1538-4357/ac3423.G. Kordopatis et al. «The Radial Velocity Experiment (RAVE): Fourth Data Release». AJ 146.5, 134 (2013). doi: 10.1088/0004-6256/146/5/134.J. M. Diederik Kruijssen et al. «Kraken reveals itself – the merger history of the Milky Way reconstructed with the E-MOSAICS simulations». MNRAS 498.2 (2020), 2472–2491. doi: 10.1093/mnras/staa2452.Andrea Kunder et al. «The Radial Velocity Experiment (RAVE): Fifth Data Release». AJ 153.2, 75 (2017). doi: 10.3847/1538-3881/153/2/75.D. J. Lennon, P. L. Dufton y C. Crowley. «More nitrogen rich B-type stars in the SMC cluster, NGC 330». A&A 398 (2003), 455–466. doi: 10.1051/0004-6361:20021194.N. R. Lomb. «Least-Squares Frequency Analysis of Unequally Spaced Data». Ap&SS 39.2 (1976), 447–462. doi: 10.1007/BF00648343.R. E. Luck y H. E. Bond. «Subgiant CH Stars. II. Chemical Compositions and the Evolutionary Connection with Barium Stars». ApJS 77 (1991), 515. doi: 10.1086/191615.D. J. MacConnell, R. L. Frye y A. R. Upgren. «The absolute magnitude of the barium stars». AJ 77 (1972), 384–391. doi: 10.1086/111298.T. Masseron et al. «Heavy-element Abundances in P-rich Stars: A New Site for the s-process?» ApJL 904.1, L1 (2020). doi: 10.3847/2041-8213/abc6ac.M. Mayor y D. Queloz. «A Jupiter-mass companion to a solar-type star». Nature 378.6555 (1995), 355–359. doi: 10.1038/378355a0.D. Minniti et al. «Discovery of Tidal RR Lyrae Stars in the Bulge Globular Cluster M62». ApJL 869.1, L10 (2018). doi: 10.3847/2041-8213/aaf1cd.U. Munari et al. «APASS Landolt-Sloan BVgri Photometry of RAVE Stars. I. Data, Effective Temperatures, and Reddenings». AJ 148.5, 81 (2014). doi: 10.1088/0004-6256/148/5/81.C. D. Murray y A. C. M. Correia. «Keplerian orbits and dynamics of exoplanets». En: Exoplanets 1 (2010), 15–23.M. Ness et al. «The Cannon: A data-driven approach to Stellar Label Determination». ApJ 808.1, 16 (2015). doi: 10.1088/0004-637X/808/1/16.Kunio Noguchi et al. «High Dispersion Spectrograph (HDS) for the Subaru Telescope». PASJ 54.6 (2002), 855–864. doi: 10.1093/pasj/54.6.855.NumPy documentation. numpy.histogram_bin_edges. Version: 2.1 (2024). url: https://numpy.org/doc/stable/index.html.Martin Paegert et al. «TESS Input Catalog versions 8.1 and 8.2». arXiv e-prints (2021). doi: 10.48550/arXiv.2108.04778.F. Pepe et al. «The CORALIE survey for southern extra-solar planets VII». A&A 388 (2002), 632–638. doi: 10.1051/0004-6361:20020433.C. B. Pereira et al. «The s-process enriched star HD 55496». MNRAS 488.1 (2019), 482–494. doi: 10.1093/mnras/stz1411.C. B. Pereira et al. «Search for Sodium-rich Stars among Metal-poor Stars». AJ 157.2, 70 (2019). doi: 10.3847/1538-3881/aaf71e.C. B. Pereira et al. «Chemical abundances and kinematics of TYC 5619-109-1». MNRAS 469.1 (2017), 774–786. doi: 10.1093/mnras/stx786.Adrian M. Price-Whelan et al. «The Joker: A Custom Monte Carlo Sampler for Binary-star and Exoplanet Radial Velocity Data». ApJ 837.1, 20 (2017). doi: 10.3847/1538-4357/aa5e50.Adrian Price-Whelan. thejoker: Code for Radial Velocity Analysis. GitHub repository (2020). url: https://github.com/adrn/thejoker.C. Allende Prieto. «Conversion from vacuum to standard air wavelengths». (2011).Meenakshi Purandardas et al. «Chemical analysis of CH stars - III». MNRAS 486.3 (2019), 3266–3289. doi: 10.1093/mnras/stz759.A. B. A. Queiroz et al. «VizieR Online Data Catalog: StarHorse data for 8 spectroscopic surveys». A&A 673, A155 (2023). doi: 10.1051/0004-6361/202244373.James Dennis Reimann. «Frequency Estimation Using Unequally-Spaced Astronomical Data». Tesis doctoral, Univ. of California, Berkeley (1994).John L. Russell. «Kepler’s laws of planetary motion: 1609–1666». BJHS 2.1 (1964), 1–24.Bahaa Saleh y Malvin Teich. Fundamentals of Photonics, 3rd ed. Wiley (2019). ISBN: 9781119506874.Felipe A. Santana et al. «Final Targeting Strategy for the SDSS-IV APOGEE-2S Survey». AJ 162.6, 303 (2021). doi: 10.3847/1538-3881/ac2cbc.J. D. Scargle. «Studies in astronomical time series analysis. II». ApJ 263 (1982), 835–853. doi: 10.1086/160554.Arthur Schuster. «On the investigation of hidden periodicities». Terrestrial Magnetism 3.1 (1898), 13. doi: 10.1029/TM003i001p00013.A. Schwarzenberg-Czerny. «On the advantage of using analysis of variance for period search». MNRAS 241 (1989), 153–165. doi: 10.1093/mnras/241.2.153.Lionel Siess y Mario Livio. «The accretion of brown dwarfs and planets by giant stars - I». MNRAS 304.4 (1999), 925–937. doi: 10.1046/j.1365-8711.1999.02376.x.Jeffrey D. Simpson y Sarah L. Martell. «A nitrogen-enhanced metal-poor star in ESO280-SC06». MNRAS 490.1 (2019), 741–751. doi: 10.1093/mnras/stz2611.Tawny Sit y M. K. Ness. «The Age Distribution of Stars in the Milky Way Bulge». ApJ 900.1, 4 (2020). doi: 10.3847/1538-4357/ab9ff6.Yu, J., Huber, D., Bedding, T. R., Stello, D., Hon, M., Murphy, S. J., & Khanna, S. (2018). Asteroseismology of 16,000 Kepler red giants: Global oscillation parameters, masses, and radii. The Astrophysical Journal Supplement Series, 236(2), 42. https://doi.org/10.3847/1538-4365/aaaf74Yuan, H., Du, C., Liu, J., Zhang, Y., Wang, W., Zhang, J., ... & Yuan, H. B. (2022). Discovery of one neutron star candidate from radial-velocity monitoring. The Astrophysical Journal, 940(2), 165. https://doi.org/10.3847/1538-4357/ac9c62Zasowski, G., Johnson, J. A., Frinchaboy, P. M., Majewski, S. R., Nidever, D. L., Rocha-Pinto, H. J., ... & Schiavon, R. P. (2013). Target selection for the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The Astronomical Journal, 146(4), 81. https://doi.org/10.1088/0004-6256/146/4/81Zeleke, D. B., Negu, S. H., & Malkov, O. Y. (2022). Evolution of close binary system parameter distributions. Research in Astronomy and Astrophysics, 22(10), 105013. https://doi.org/10.1088/1674-4527/ac8f8bde Castro, D. B., Pereira, C. B., Roig, F., Jilinski, E., Drake, N. A., Chavero, C., & Sales Silva, J. V. (2016). Chemical abundances and kinematics of barium stars. Monthly Notices of the Royal Astronomical Society, 459(4), 4299–4324. https://doi.org/10.1093/mnras/stw815PublicationORIGINALGonzalezAlexander_2025_CompañerasEstrellasPeculiares.pdfGonzalezAlexander_2025_CompañerasEstrellasPeculiares.pdfapplication/pdf4855528https://bibliotecadigital.udea.edu.co/bitstreams/2f15e66f-2d0a-4686-a002-9e9139fc9ef8/downloadcf45cbace046c7d306f4f2d6bf7bb02eMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/85347a41-9415-4c85-879d-b99afb51f2f6/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD53falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/bdb10e86-cfb3-4802-bce6-a8f7674fd928/download5643bfd9bcf29d560eeec56d584edaa9MD54falseAnonymousREADTEXTGonzalezAlexander_2025_CompañerasEstrellasPeculiares.pdf.txtGonzalezAlexander_2025_CompañerasEstrellasPeculiares.pdf.txtExtracted texttext/plain102006https://bibliotecadigital.udea.edu.co/bitstreams/6c389e6d-64c9-4663-a50a-d9c0bdc61208/download0530df4f099e5b3a32b1dfcb64ae5a9aMD55falseAnonymousREADTHUMBNAILGonzalezAlexander_2025_CompañerasEstrellasPeculiares.pdf.jpgGonzalezAlexander_2025_CompañerasEstrellasPeculiares.pdf.jpgGenerated Thumbnailimage/jpeg4753https://bibliotecadigital.udea.edu.co/bitstreams/aa0989f0-a4b6-4a0c-a4d1-449af2bbd70e/download297aaaffc3e0cb987b1500e3a434a652MD56falseAnonymousREAD10495/45848oai:bibliotecadigital.udea.edu.co:10495/458482025-05-10 04:07:07.299http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=