Quantile Estimation Using the Log-Skew-Normal Linear Regression Model with Application to Children’s Weight Data
In this article, we establish properties that relate quantiles of the log-skew-normal distribution to its parameters, allowing us to investigate the relationship between quantiles of a positive skewed response variable and a set of explanatory variables via the log-skew-normal linear regression mode...
- Autores:
-
Morán Vázquez, Raúl Alejandro
Giraldo Melo, Anlly Daniela
Mazo Lopera, Mauricio Alejandro
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/46080
- Acceso en línea:
- https://hdl.handle.net/10495/46080
- Palabra clave:
- Análisis de Regresión
Regression Analysis
Modelo matemático
Mathematical models
Distribución normal
Normal distribution
Skew-normal distribution
http://aims.fao.org/aos/agrovoc/c_24199
http://aims.fao.org/aos/agrovoc/c_4ed623ba
https://id.nlm.nih.gov/mesh/D012044
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by/4.0/
| Summary: | In this article, we establish properties that relate quantiles of the log-skew-normal distribution to its parameters, allowing us to investigate the relationship between quantiles of a positive skewed response variable and a set of explanatory variables via the log-skew-normal linear regression model. We compute the maximum likelihood estimates of the parameters through a correspondence between the log-skew-normal and skew-normal linear regression models. Monte Carlo simulations show the satisfactory performance of the quantile estimators. An application to children’s data is presented and discussed. |
|---|
