Statistical properties of the quantile normalization method for density curve alignment

ABSTRACT: The article investigates the large sample properties of the quantile normalization method by Bolstad et al. (2003) [4] which has become one of the most popular methods to align density curves in microarray data analysis. We prove consistency of this method which is viewed as a particular c...

Full description

Autores:
Gallón Gómez, Santiago Alejandro
Loubes, Jean Michel
Maza, Elie
Tipo de recurso:
Article of investigation
Fecha de publicación:
2013
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/7347
Acceso en línea:
http://hdl.handle.net/10495/7347
Palabra clave:
Wasserstein distance
Curve registration
Manifold registration
Microarray data analysis
Normalization
Order statistics
Structural expectation
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_f1e4b330a86ea6eb7e6803daf4e2cbb6
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/7347
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Statistical properties of the quantile normalization method for density curve alignment
title Statistical properties of the quantile normalization method for density curve alignment
spellingShingle Statistical properties of the quantile normalization method for density curve alignment
Wasserstein distance
Curve registration
Manifold registration
Microarray data analysis
Normalization
Order statistics
Structural expectation
title_short Statistical properties of the quantile normalization method for density curve alignment
title_full Statistical properties of the quantile normalization method for density curve alignment
title_fullStr Statistical properties of the quantile normalization method for density curve alignment
title_full_unstemmed Statistical properties of the quantile normalization method for density curve alignment
title_sort Statistical properties of the quantile normalization method for density curve alignment
dc.creator.fl_str_mv Gallón Gómez, Santiago Alejandro
Loubes, Jean Michel
Maza, Elie
dc.contributor.author.none.fl_str_mv Gallón Gómez, Santiago Alejandro
Loubes, Jean Michel
Maza, Elie
dc.contributor.researchgroup.spa.fl_str_mv Microeconomía Aplicada
dc.subject.none.fl_str_mv Wasserstein distance
Curve registration
Manifold registration
Microarray data analysis
Normalization
Order statistics
Structural expectation
topic Wasserstein distance
Curve registration
Manifold registration
Microarray data analysis
Normalization
Order statistics
Structural expectation
description ABSTRACT: The article investigates the large sample properties of the quantile normalization method by Bolstad et al. (2003) [4] which has become one of the most popular methods to align density curves in microarray data analysis. We prove consistency of this method which is viewed as a particular case of the structural expectation procedure for curve alignment, which corresponds to a notion of barycenter of measures in the Wasserstein space. Moreover, we show that, this method fails in some case of mixtures, and we propose a new methodology to cope with this issue.
publishDate 2013
dc.date.issued.none.fl_str_mv 2013
dc.date.accessioned.none.fl_str_mv 2017-05-24T21:59:16Z
dc.date.available.none.fl_str_mv 2017-05-24T21:59:16Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Gallón Gómez, S. A., Loubes, J. M. & Maza, E. (2013). Statistical properties of the quantile normalization method for density curve alignment. Mathematical Biosciences, 242(2), 129-142.
dc.identifier.issn.none.fl_str_mv 0025-5564
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/7347
dc.identifier.doi.none.fl_str_mv 10.1016/j.mbs.2012.12.007
dc.identifier.eissn.none.fl_str_mv 1879-3134
identifier_str_mv Gallón Gómez, S. A., Loubes, J. M. & Maza, E. (2013). Statistical properties of the quantile normalization method for density curve alignment. Mathematical Biosciences, 242(2), 129-142.
0025-5564
10.1016/j.mbs.2012.12.007
1879-3134
url http://hdl.handle.net/10495/7347
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 142
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 129
dc.relation.citationvolume.spa.fl_str_mv 242
dc.relation.ispartofjournal.spa.fl_str_mv Mathematical Biosciences
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Nueva York, Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/06428757-a1b8-43a7-aab3-de6a4f266110/download
https://bibliotecadigital.udea.edu.co/bitstreams/6ac36f38-cd78-4642-82ed-c2e7a07f9bde/download
https://bibliotecadigital.udea.edu.co/bitstreams/9f7f2ac6-81f9-4921-9a7a-cedb289bc614/download
https://bibliotecadigital.udea.edu.co/bitstreams/48fcd20d-c3f2-4d3f-9765-8ba35ae69d67/download
https://bibliotecadigital.udea.edu.co/bitstreams/bdfacec7-9316-4b05-b15b-a2641ee39965/download
https://bibliotecadigital.udea.edu.co/bitstreams/d238eedf-49b8-42dc-abbf-6b7f90ce9e8b/download
https://bibliotecadigital.udea.edu.co/bitstreams/7dfa1f2e-d3a0-4a0b-bfa0-8d0a94389010/download
bitstream.checksum.fl_str_mv 32f30ede8187333f619b29e75f152b23
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
8a4605be74aa9ea9d79846c1fba20a33
b28fa4c201dec0d305b9ebc62704088d
eb0e892223c8a57ff02eb0e93cbb9234
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052124360671232
spelling Gallón Gómez, Santiago AlejandroLoubes, Jean MichelMaza, ElieMicroeconomía Aplicada2017-05-24T21:59:16Z2017-05-24T21:59:16Z2013Gallón Gómez, S. A., Loubes, J. M. & Maza, E. (2013). Statistical properties of the quantile normalization method for density curve alignment. Mathematical Biosciences, 242(2), 129-142.0025-5564http://hdl.handle.net/10495/734710.1016/j.mbs.2012.12.0071879-3134ABSTRACT: The article investigates the large sample properties of the quantile normalization method by Bolstad et al. (2003) [4] which has become one of the most popular methods to align density curves in microarray data analysis. We prove consistency of this method which is viewed as a particular case of the structural expectation procedure for curve alignment, which corresponds to a notion of barycenter of measures in the Wasserstein space. Moreover, we show that, this method fails in some case of mixtures, and we propose a new methodology to cope with this issue.COL001380813 páginasapplication/pdfengElsevierNueva York, Estados Unidoshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Wasserstein distanceCurve registrationManifold registrationMicroarray data analysisNormalizationOrder statisticsStructural expectationStatistical properties of the quantile normalization method for density curve alignmentArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion1422129242Mathematical BiosciencesPublicationORIGINALGallonSantiago_2013_StatisticalPropertiesQuantile.pdfGallonSantiago_2013_StatisticalPropertiesQuantile.pdfArtículo de investigaciónapplication/pdf7268447https://bibliotecadigital.udea.edu.co/bitstreams/06428757-a1b8-43a7-aab3-de6a4f266110/download32f30ede8187333f619b29e75f152b23MD51trueAnonymousREADCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstreams/6ac36f38-cd78-4642-82ed-c2e7a07f9bde/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/9f7f2ac6-81f9-4921-9a7a-cedb289bc614/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/48fcd20d-c3f2-4d3f-9765-8ba35ae69d67/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/bdfacec7-9316-4b05-b15b-a2641ee39965/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADTEXTGallonSantiago_2013_StatisticalPropertiesQuantile.pdf.txtGallonSantiago_2013_StatisticalPropertiesQuantile.pdf.txtExtracted texttext/plain68532https://bibliotecadigital.udea.edu.co/bitstreams/d238eedf-49b8-42dc-abbf-6b7f90ce9e8b/downloadb28fa4c201dec0d305b9ebc62704088dMD510falseAnonymousREADTHUMBNAILGallonSantiago_2013_StatisticalPropertiesQuantile.pdf.jpgGallonSantiago_2013_StatisticalPropertiesQuantile.pdf.jpgGenerated Thumbnailimage/jpeg7796https://bibliotecadigital.udea.edu.co/bitstreams/7dfa1f2e-d3a0-4a0b-bfa0-8d0a94389010/downloadeb0e892223c8a57ff02eb0e93cbb9234MD511falseAnonymousREAD10495/7347oai:bibliotecadigital.udea.edu.co:10495/73472025-03-26 17:20:25.626http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=