An inverse linearization model for the characterization of non-contact thermopiles

ABSTRACT: A thermopile is an electronic device that converts thermal energy into electrical energy by means of arrangements of thermocouples that are connected in series. In addition, optical filters restrict the wavelength that strikes the thermopile. One of the main advantages of using a thermopil...

Full description

Autores:
Salazar Jiménez, Augusto Enrique
Botero Valencia, Juan Sebastián
Morantes Guzmán, Luis Javier
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/38443
Acceso en línea:
https://hdl.handle.net/10495/38443
Palabra clave:
Aparatos termoeléctricos
Thermoelectric apparatus and appliances
Thermopile
Non-contact
Thermistor
Peltier effect
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_f13e00e22d021b7290b2a68ae2df256d
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/38443
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv An inverse linearization model for the characterization of non-contact thermopiles
title An inverse linearization model for the characterization of non-contact thermopiles
spellingShingle An inverse linearization model for the characterization of non-contact thermopiles
Aparatos termoeléctricos
Thermoelectric apparatus and appliances
Thermopile
Non-contact
Thermistor
Peltier effect
title_short An inverse linearization model for the characterization of non-contact thermopiles
title_full An inverse linearization model for the characterization of non-contact thermopiles
title_fullStr An inverse linearization model for the characterization of non-contact thermopiles
title_full_unstemmed An inverse linearization model for the characterization of non-contact thermopiles
title_sort An inverse linearization model for the characterization of non-contact thermopiles
dc.creator.fl_str_mv Salazar Jiménez, Augusto Enrique
Botero Valencia, Juan Sebastián
Morantes Guzmán, Luis Javier
dc.contributor.author.none.fl_str_mv Salazar Jiménez, Augusto Enrique
Botero Valencia, Juan Sebastián
Morantes Guzmán, Luis Javier
dc.contributor.researchgroup.spa.fl_str_mv Sistemas Embebidos e Inteligencia Computacional (SISTEMIC)
dc.subject.lemb.none.fl_str_mv Aparatos termoeléctricos
Thermoelectric apparatus and appliances
topic Aparatos termoeléctricos
Thermoelectric apparatus and appliances
Thermopile
Non-contact
Thermistor
Peltier effect
dc.subject.proposal.spa.fl_str_mv Thermopile
Non-contact
Thermistor
Peltier effect
description ABSTRACT: A thermopile is an electronic device that converts thermal energy into electrical energy by means of arrangements of thermocouples that are connected in series. In addition, optical filters restrict the wavelength that strikes the thermopile. One of the main advantages of using a thermopile is its sensitivity to infrared radiation, which allows implementing non-contact thermometers. However, the thermopile does not provide an absolute temperature value, but a value that is proportional to the temperature gradient between the local temperature in th e measurement range of the thermopile and its internal temperature. Therefore, it is necessary to integrate temperature sensors aiming to correct the output temperature value. In this sense, the output of the thermopile corresponds to a value generatedfrom the relationship between the internal temperature of the thermopile and the output temperature. This work proposes and evaluates a thermopile characterization model, which uses an incubation system and a thermoelectric cooling device to control the room temperature and the temperature that is read out using the thermopile, respectively. This is based on the automation of the data collection procedure and the characterization of the thermistor that is used to measure the temperature of the thermopile. The result is an experimental operating surface, from which a linearization model was derived.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2024-03-03T16:35:50Z
dc.date.available.none.fl_str_mv 2024-03-03T16:35:50Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/38443
dc.identifier.doi.none.fl_str_mv 10.21307/ijssis-2017-888
dc.identifier.eissn.none.fl_str_mv 1178-5608
url https://hdl.handle.net/10495/38443
identifier_str_mv 10.21307/ijssis-2017-888
1178-5608
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 650
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 637
dc.relation.citationvolume.spa.fl_str_mv 9
dc.relation.ispartofjournal.spa.fl_str_mv International Journal on Smart Sensing and Intelligent Systems
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Sciendo
dc.publisher.place.spa.fl_str_mv Nueva Zelanda
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/8e688613-3055-498b-ab40-d4010210d49b/download
https://bibliotecadigital.udea.edu.co/bitstreams/e3ed6697-b9fb-48a9-a2ff-e3097deeb3bb/download
https://bibliotecadigital.udea.edu.co/bitstreams/cecb2947-0a87-4af1-9869-a03e4410c8b8/download
https://bibliotecadigital.udea.edu.co/bitstreams/1e362ab1-256c-49d8-91be-34d94b044a87/download
https://bibliotecadigital.udea.edu.co/bitstreams/cc153030-5491-40b7-9886-3d5e66af8d89/download
bitstream.checksum.fl_str_mv 27aa2d1cfed9d05b7d54139f980c4f7c
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
b085094924812bde69a7c9d58a522412
a999a2c1c057171c2b0ffd0f02ff93a5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052385858748416
spelling Salazar Jiménez, Augusto EnriqueBotero Valencia, Juan SebastiánMorantes Guzmán, Luis JavierSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2024-03-03T16:35:50Z2024-03-03T16:35:50Z2016https://hdl.handle.net/10495/3844310.21307/ijssis-2017-8881178-5608ABSTRACT: A thermopile is an electronic device that converts thermal energy into electrical energy by means of arrangements of thermocouples that are connected in series. In addition, optical filters restrict the wavelength that strikes the thermopile. One of the main advantages of using a thermopile is its sensitivity to infrared radiation, which allows implementing non-contact thermometers. However, the thermopile does not provide an absolute temperature value, but a value that is proportional to the temperature gradient between the local temperature in th e measurement range of the thermopile and its internal temperature. Therefore, it is necessary to integrate temperature sensors aiming to correct the output temperature value. In this sense, the output of the thermopile corresponds to a value generatedfrom the relationship between the internal temperature of the thermopile and the output temperature. This work proposes and evaluates a thermopile characterization model, which uses an incubation system and a thermoelectric cooling device to control the room temperature and the temperature that is read out using the thermopile, respectively. This is based on the automation of the data collection procedure and the characterization of the thermistor that is used to measure the temperature of the thermopile. The result is an experimental operating surface, from which a linearization model was derived.COL001071714 páginasapplication/pdfengSciendoNueva Zelandahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2An inverse linearization model for the characterization of non-contact thermopilesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAparatos termoeléctricosThermoelectric apparatus and appliancesThermopileNon-contactThermistorPeltier effect65026379International Journal on Smart Sensing and Intelligent SystemsPublicationORIGINALSalazarAugusto_2016_AnInverseLinearizationModel.pdfSalazarAugusto_2016_AnInverseLinearizationModel.pdfArtículo de investigaciónapplication/pdf1338389https://bibliotecadigital.udea.edu.co/bitstreams/8e688613-3055-498b-ab40-d4010210d49b/download27aa2d1cfed9d05b7d54139f980c4f7cMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/e3ed6697-b9fb-48a9-a2ff-e3097deeb3bb/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/cecb2947-0a87-4af1-9869-a03e4410c8b8/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTSalazarAugusto_2016_AnInverseLinearizationModel.pdf.txtSalazarAugusto_2016_AnInverseLinearizationModel.pdf.txtExtracted texttext/plain27609https://bibliotecadigital.udea.edu.co/bitstreams/1e362ab1-256c-49d8-91be-34d94b044a87/downloadb085094924812bde69a7c9d58a522412MD54falseAnonymousREADTHUMBNAILSalazarAugusto_2016_AnInverseLinearizationModel.pdf.jpgSalazarAugusto_2016_AnInverseLinearizationModel.pdf.jpgGenerated Thumbnailimage/jpeg16322https://bibliotecadigital.udea.edu.co/bitstreams/cc153030-5491-40b7-9886-3d5e66af8d89/downloada999a2c1c057171c2b0ffd0f02ff93a5MD55falseAnonymousREAD10495/38443oai:bibliotecadigital.udea.edu.co:10495/384432025-03-26 21:29:23.182http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=