An inverse linearization model for the characterization of non-contact thermopiles
ABSTRACT: A thermopile is an electronic device that converts thermal energy into electrical energy by means of arrangements of thermocouples that are connected in series. In addition, optical filters restrict the wavelength that strikes the thermopile. One of the main advantages of using a thermopil...
- Autores:
-
Salazar Jiménez, Augusto Enrique
Botero Valencia, Juan Sebastián
Morantes Guzmán, Luis Javier
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/38443
- Acceso en línea:
- https://hdl.handle.net/10495/38443
- Palabra clave:
- Aparatos termoeléctricos
Thermoelectric apparatus and appliances
Thermopile
Non-contact
Thermistor
Peltier effect
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
UDEA2_f13e00e22d021b7290b2a68ae2df256d |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/38443 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
An inverse linearization model for the characterization of non-contact thermopiles |
| title |
An inverse linearization model for the characterization of non-contact thermopiles |
| spellingShingle |
An inverse linearization model for the characterization of non-contact thermopiles Aparatos termoeléctricos Thermoelectric apparatus and appliances Thermopile Non-contact Thermistor Peltier effect |
| title_short |
An inverse linearization model for the characterization of non-contact thermopiles |
| title_full |
An inverse linearization model for the characterization of non-contact thermopiles |
| title_fullStr |
An inverse linearization model for the characterization of non-contact thermopiles |
| title_full_unstemmed |
An inverse linearization model for the characterization of non-contact thermopiles |
| title_sort |
An inverse linearization model for the characterization of non-contact thermopiles |
| dc.creator.fl_str_mv |
Salazar Jiménez, Augusto Enrique Botero Valencia, Juan Sebastián Morantes Guzmán, Luis Javier |
| dc.contributor.author.none.fl_str_mv |
Salazar Jiménez, Augusto Enrique Botero Valencia, Juan Sebastián Morantes Guzmán, Luis Javier |
| dc.contributor.researchgroup.spa.fl_str_mv |
Sistemas Embebidos e Inteligencia Computacional (SISTEMIC) |
| dc.subject.lemb.none.fl_str_mv |
Aparatos termoeléctricos Thermoelectric apparatus and appliances |
| topic |
Aparatos termoeléctricos Thermoelectric apparatus and appliances Thermopile Non-contact Thermistor Peltier effect |
| dc.subject.proposal.spa.fl_str_mv |
Thermopile Non-contact Thermistor Peltier effect |
| description |
ABSTRACT: A thermopile is an electronic device that converts thermal energy into electrical energy by means of arrangements of thermocouples that are connected in series. In addition, optical filters restrict the wavelength that strikes the thermopile. One of the main advantages of using a thermopile is its sensitivity to infrared radiation, which allows implementing non-contact thermometers. However, the thermopile does not provide an absolute temperature value, but a value that is proportional to the temperature gradient between the local temperature in th e measurement range of the thermopile and its internal temperature. Therefore, it is necessary to integrate temperature sensors aiming to correct the output temperature value. In this sense, the output of the thermopile corresponds to a value generatedfrom the relationship between the internal temperature of the thermopile and the output temperature. This work proposes and evaluates a thermopile characterization model, which uses an incubation system and a thermoelectric cooling device to control the room temperature and the temperature that is read out using the thermopile, respectively. This is based on the automation of the data collection procedure and the characterization of the thermistor that is used to measure the temperature of the thermopile. The result is an experimental operating surface, from which a linearization model was derived. |
| publishDate |
2016 |
| dc.date.issued.none.fl_str_mv |
2016 |
| dc.date.accessioned.none.fl_str_mv |
2024-03-03T16:35:50Z |
| dc.date.available.none.fl_str_mv |
2024-03-03T16:35:50Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/38443 |
| dc.identifier.doi.none.fl_str_mv |
10.21307/ijssis-2017-888 |
| dc.identifier.eissn.none.fl_str_mv |
1178-5608 |
| url |
https://hdl.handle.net/10495/38443 |
| identifier_str_mv |
10.21307/ijssis-2017-888 1178-5608 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.spa.fl_str_mv |
650 |
| dc.relation.citationissue.spa.fl_str_mv |
2 |
| dc.relation.citationstartpage.spa.fl_str_mv |
637 |
| dc.relation.citationvolume.spa.fl_str_mv |
9 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
International Journal on Smart Sensing and Intelligent Systems |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
14 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Sciendo |
| dc.publisher.place.spa.fl_str_mv |
Nueva Zelanda |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/8e688613-3055-498b-ab40-d4010210d49b/download https://bibliotecadigital.udea.edu.co/bitstreams/e3ed6697-b9fb-48a9-a2ff-e3097deeb3bb/download https://bibliotecadigital.udea.edu.co/bitstreams/cecb2947-0a87-4af1-9869-a03e4410c8b8/download https://bibliotecadigital.udea.edu.co/bitstreams/1e362ab1-256c-49d8-91be-34d94b044a87/download https://bibliotecadigital.udea.edu.co/bitstreams/cc153030-5491-40b7-9886-3d5e66af8d89/download |
| bitstream.checksum.fl_str_mv |
27aa2d1cfed9d05b7d54139f980c4f7c b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 b085094924812bde69a7c9d58a522412 a999a2c1c057171c2b0ffd0f02ff93a5 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052385858748416 |
| spelling |
Salazar Jiménez, Augusto EnriqueBotero Valencia, Juan SebastiánMorantes Guzmán, Luis JavierSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2024-03-03T16:35:50Z2024-03-03T16:35:50Z2016https://hdl.handle.net/10495/3844310.21307/ijssis-2017-8881178-5608ABSTRACT: A thermopile is an electronic device that converts thermal energy into electrical energy by means of arrangements of thermocouples that are connected in series. In addition, optical filters restrict the wavelength that strikes the thermopile. One of the main advantages of using a thermopile is its sensitivity to infrared radiation, which allows implementing non-contact thermometers. However, the thermopile does not provide an absolute temperature value, but a value that is proportional to the temperature gradient between the local temperature in th e measurement range of the thermopile and its internal temperature. Therefore, it is necessary to integrate temperature sensors aiming to correct the output temperature value. In this sense, the output of the thermopile corresponds to a value generatedfrom the relationship between the internal temperature of the thermopile and the output temperature. This work proposes and evaluates a thermopile characterization model, which uses an incubation system and a thermoelectric cooling device to control the room temperature and the temperature that is read out using the thermopile, respectively. This is based on the automation of the data collection procedure and the characterization of the thermistor that is used to measure the temperature of the thermopile. The result is an experimental operating surface, from which a linearization model was derived.COL001071714 páginasapplication/pdfengSciendoNueva Zelandahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2An inverse linearization model for the characterization of non-contact thermopilesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAparatos termoeléctricosThermoelectric apparatus and appliancesThermopileNon-contactThermistorPeltier effect65026379International Journal on Smart Sensing and Intelligent SystemsPublicationORIGINALSalazarAugusto_2016_AnInverseLinearizationModel.pdfSalazarAugusto_2016_AnInverseLinearizationModel.pdfArtículo de investigaciónapplication/pdf1338389https://bibliotecadigital.udea.edu.co/bitstreams/8e688613-3055-498b-ab40-d4010210d49b/download27aa2d1cfed9d05b7d54139f980c4f7cMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/e3ed6697-b9fb-48a9-a2ff-e3097deeb3bb/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/cecb2947-0a87-4af1-9869-a03e4410c8b8/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTSalazarAugusto_2016_AnInverseLinearizationModel.pdf.txtSalazarAugusto_2016_AnInverseLinearizationModel.pdf.txtExtracted texttext/plain27609https://bibliotecadigital.udea.edu.co/bitstreams/1e362ab1-256c-49d8-91be-34d94b044a87/downloadb085094924812bde69a7c9d58a522412MD54falseAnonymousREADTHUMBNAILSalazarAugusto_2016_AnInverseLinearizationModel.pdf.jpgSalazarAugusto_2016_AnInverseLinearizationModel.pdf.jpgGenerated Thumbnailimage/jpeg16322https://bibliotecadigital.udea.edu.co/bitstreams/cc153030-5491-40b7-9886-3d5e66af8d89/downloada999a2c1c057171c2b0ffd0f02ff93a5MD55falseAnonymousREAD10495/38443oai:bibliotecadigital.udea.edu.co:10495/384432025-03-26 21:29:23.182http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
