Applying Transformers to Naval Route Prediction

This work studies the application of the transformer technology, usually used for natural language processing tasks, in the realm of maritime route prediction. We use as dataset the reports from the Automatic Identification System which contain the recent historic coordinate of most ships. Then we i...

Full description

Autores:
Gómez Zapata, Camilo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/45988
Acceso en línea:
https://hdl.handle.net/10495/45988
Palabra clave:
Deep learning (Machine learning)
Aprendizaje profundo (Aprendizaje automático)
Spatial data mining
Minería de datos espaciales
Ships - Automatic identification systems
Barcos - Sistemas de identificación automática
Maritime transport
Transporte marítimo
Machine learning
Aprendizaje automático
Artificial intelligence
Inteligencia artificial
Neural networks
Redes neuronales
Naval route prediction
Predicción de Rutas Navales
http://aims.fao.org/aos/agrovoc/c_49834
http://aims.fao.org/aos/agrovoc/c_27064
http://aims.fao.org/aos/agrovoc/c_37467
http://id.loc.gov/authorities/subjects/sh90001937
http://id.loc.gov/authorities/subjects/sh2021006947
http://id.loc.gov/authorities/subjects/sh2019001855
http://id.loc.gov/authorities/subjects/sh2003001275
http://vocabularies.unesco.org/thesaurus/concept11744
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
Description
Summary:This work studies the application of the transformer technology, usually used for natural language processing tasks, in the realm of maritime route prediction. We use as dataset the reports from the Automatic Identification System which contain the recent historic coordinate of most ships. Then we implement a methodology to discretize the dataset by splitting the world into a grid and splitting the data into routes, so that we can train a model to predict the next element of the route. And finally we perform the training on a subset of the full dataset, where we achieve a 68 % accuracy in the top 25% of ships in the validation dataset.