Efficient design and optimal application of tax incentives to promote investments in renewable energy technologies
ABSTRACT : Governments are interested in maximizing the capacity of Renewable Energy Technologies (RET) to support the energy transition. They can attract investments in RET—like solar photovoltaic, onshore and offshore wind, green hydrogen, enhanced geothermal systems, Etc.—by enacting tax incentiv...
- Autores:
-
Castillo Ramírez, Alejandro
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/39217
- Acceso en línea:
- https://hdl.handle.net/10495/39217
- Palabra clave:
- Recursos energéticos renovables
Renewable energy sources
Análisis financiero
Financial analysis
Precios de la energía
Tax incentives
Incentivos tributarios
Optimization methods
Método de optimización
Renewable energy technologies
Tax optimization models
Financial performance analysis
Electricity price uncertainty
Optimal governmental tax rate
http://aims.fao.org/aos/agrovoc/c_5372
- Rights
- embargoedAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_ef9a0a692e66a99a36e68585f441782a |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/39217 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Efficient design and optimal application of tax incentives to promote investments in renewable energy technologies |
| title |
Efficient design and optimal application of tax incentives to promote investments in renewable energy technologies |
| spellingShingle |
Efficient design and optimal application of tax incentives to promote investments in renewable energy technologies Recursos energéticos renovables Renewable energy sources Análisis financiero Financial analysis Precios de la energía Tax incentives Incentivos tributarios Optimization methods Método de optimización Renewable energy technologies Tax optimization models Financial performance analysis Electricity price uncertainty Optimal governmental tax rate http://aims.fao.org/aos/agrovoc/c_5372 |
| title_short |
Efficient design and optimal application of tax incentives to promote investments in renewable energy technologies |
| title_full |
Efficient design and optimal application of tax incentives to promote investments in renewable energy technologies |
| title_fullStr |
Efficient design and optimal application of tax incentives to promote investments in renewable energy technologies |
| title_full_unstemmed |
Efficient design and optimal application of tax incentives to promote investments in renewable energy technologies |
| title_sort |
Efficient design and optimal application of tax incentives to promote investments in renewable energy technologies |
| dc.creator.fl_str_mv |
Castillo Ramírez, Alejandro |
| dc.contributor.advisor.none.fl_str_mv |
Mejía Giraldo, Diego |
| dc.contributor.author.none.fl_str_mv |
Castillo Ramírez, Alejandro |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Manejo Eficiente de la Energía (GIMEL) |
| dc.subject.lemb.none.fl_str_mv |
Recursos energéticos renovables Renewable energy sources Análisis financiero Financial analysis Precios de la energía Tax incentives Incentivos tributarios |
| topic |
Recursos energéticos renovables Renewable energy sources Análisis financiero Financial analysis Precios de la energía Tax incentives Incentivos tributarios Optimization methods Método de optimización Renewable energy technologies Tax optimization models Financial performance analysis Electricity price uncertainty Optimal governmental tax rate http://aims.fao.org/aos/agrovoc/c_5372 |
| dc.subject.agrovoc.none.fl_str_mv |
Optimization methods Método de optimización |
| dc.subject.proposal.spa.fl_str_mv |
Renewable energy technologies Tax optimization models Financial performance analysis Electricity price uncertainty Optimal governmental tax rate |
| dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_5372 |
| description |
ABSTRACT : Governments are interested in maximizing the capacity of Renewable Energy Technologies (RET) to support the energy transition. They can attract investments in RET—like solar photovoltaic, onshore and offshore wind, green hydrogen, enhanced geothermal systems, Etc.—by enacting tax incentives granted to potential investors generally known as generation companies (GENCOs) that would invest in those projects motivated by the income tax reductions. The purpose of this research is focused on analyzing fiscal policies to promote RET. At the company level, we have analyzed the financial performance of GENCOs willing to invest in RET projects. Special attention has been paid to obtain optimal tax management decisions–of GENCOs owning not only a RET project but also a portfolio of energy projects—to minimize income taxes. To that, we have developed a tax optimization model that strategically manages depreciation, Tax Losses Carryforward (TLC), and Investment Tax Allowances (ITA) use. One of our key findings is that optimal tax-related decisions strongly depend on GENCOs’ revenues from electricity sales. When revenues are not significantly high, GENCOs need to be strategic and implement the optimal levels of annual depreciation, TLC, and ITA as the proposed model suggests in order to minimize its income tax. Moreover, we adapt the latter approach by including debt parameters like debt ratio and loan interest rates. A detailed case study was carefully constructed involving four (4) types of RET, twelve (12) realistic Colombian GENCOs—–that hypothetically are willing to invest in a RET project, and four (4) electricity price scenarios. Based on these results, we find that the longer the GENCOs take to implement ITA, the more necessary it will be to use a tax optimization model to determine the optimal debt ratios. The fact that tax incentives application may depend on the level of GENCOs revenues has strongly motivated the development of a tax optimization model under electricity price uncertainty. To that, an exact probability distribution model of Net Present Value (NPV) is constructed to assist RET investors in the decision-making process. Two investors’ perspectives were evaluated: a developer that only owns a solar project; and an existent Generation Company (GENCO) that owns a portfolio of projects. The likelihood that the GENCO ends up with a positive NPV is greater than the likelihood for the developer. That is why the ownership of additional projects enables the GENCO to take fully ITA in short periods. At the government level, a theoretical method was constructed to support the efficient design—from the government’s perspective—and the optimal application—from the GENCOs’ standpoint—of tax incentives that promote RET investments. The problem when considering both GENCOs and governments is much harder to engage given that the government objective is subject to the GENCOs optimization problems. In particular, our method is focused on designing optimal tax rates for a government that maximizes RET investments subject to a set of GENCOs that maximizes their net present values. That is why the government should learn more about optimal tax strategies (best responses) of GENCOs. In conclusion, under certain conditions, optimal tax rates were identified. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-05-09T16:03:44Z |
| dc.date.available.none.fl_str_mv |
2024-05-09T16:03:44Z |
| dc.date.issued.none.fl_str_mv |
2024 |
| dc.type.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Doctorado |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TD |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
| format |
http://purl.org/coar/resource_type/c_db06 |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/39217 |
| url |
https://hdl.handle.net/10495/39217 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ http://creativecommons.org/licenses/by-nc-sa/2.5/co/ http://purl.org/coar/access_right/c_f1cf |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.extent.spa.fl_str_mv |
194 páginas |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería. Doctorado en Ingeniería Electrónica y de Computación |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/c6ecb78d-43c6-4ffb-bf99-f9448449b413/download https://bibliotecadigital.udea.edu.co/bitstreams/19e11998-45b7-4998-b1ef-d9baa0eba753/download https://bibliotecadigital.udea.edu.co/bitstreams/781627bd-59d1-4925-8d69-8bfa452505ee/download https://bibliotecadigital.udea.edu.co/bitstreams/feab1164-6d54-46a6-8ee8-d495a7ee06f3/download https://bibliotecadigital.udea.edu.co/bitstreams/97b7b7cf-7a85-4a28-9dd5-4b697ba5e5c9/download |
| bitstream.checksum.fl_str_mv |
e2060682c9c70d4d30c83c51448f4eed e5955d70e1d9ba8d4dbad34bad1c88d2 8a4605be74aa9ea9d79846c1fba20a33 076cc70d88dfe1351950064302c9d4ce c564bd0f83a93328d5517161c228a938 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052116144029696 |
| spelling |
Mejía Giraldo, DiegoCastillo Ramírez, AlejandroGrupo de Manejo Eficiente de la Energía (GIMEL)2024-05-09T16:03:44Z2024-05-09T16:03:44Z2024https://hdl.handle.net/10495/39217ABSTRACT : Governments are interested in maximizing the capacity of Renewable Energy Technologies (RET) to support the energy transition. They can attract investments in RET—like solar photovoltaic, onshore and offshore wind, green hydrogen, enhanced geothermal systems, Etc.—by enacting tax incentives granted to potential investors generally known as generation companies (GENCOs) that would invest in those projects motivated by the income tax reductions. The purpose of this research is focused on analyzing fiscal policies to promote RET. At the company level, we have analyzed the financial performance of GENCOs willing to invest in RET projects. Special attention has been paid to obtain optimal tax management decisions–of GENCOs owning not only a RET project but also a portfolio of energy projects—to minimize income taxes. To that, we have developed a tax optimization model that strategically manages depreciation, Tax Losses Carryforward (TLC), and Investment Tax Allowances (ITA) use. One of our key findings is that optimal tax-related decisions strongly depend on GENCOs’ revenues from electricity sales. When revenues are not significantly high, GENCOs need to be strategic and implement the optimal levels of annual depreciation, TLC, and ITA as the proposed model suggests in order to minimize its income tax. Moreover, we adapt the latter approach by including debt parameters like debt ratio and loan interest rates. A detailed case study was carefully constructed involving four (4) types of RET, twelve (12) realistic Colombian GENCOs—–that hypothetically are willing to invest in a RET project, and four (4) electricity price scenarios. Based on these results, we find that the longer the GENCOs take to implement ITA, the more necessary it will be to use a tax optimization model to determine the optimal debt ratios. The fact that tax incentives application may depend on the level of GENCOs revenues has strongly motivated the development of a tax optimization model under electricity price uncertainty. To that, an exact probability distribution model of Net Present Value (NPV) is constructed to assist RET investors in the decision-making process. Two investors’ perspectives were evaluated: a developer that only owns a solar project; and an existent Generation Company (GENCO) that owns a portfolio of projects. The likelihood that the GENCO ends up with a positive NPV is greater than the likelihood for the developer. That is why the ownership of additional projects enables the GENCO to take fully ITA in short periods. At the government level, a theoretical method was constructed to support the efficient design—from the government’s perspective—and the optimal application—from the GENCOs’ standpoint—of tax incentives that promote RET investments. The problem when considering both GENCOs and governments is much harder to engage given that the government objective is subject to the GENCOs optimization problems. In particular, our method is focused on designing optimal tax rates for a government that maximizes RET investments subject to a set of GENCOs that maximizes their net present values. That is why the government should learn more about optimal tax strategies (best responses) of GENCOs. In conclusion, under certain conditions, optimal tax rates were identified.COL0010477DoctoradoDoctor en Ingeniería Electrónica y de Computación194 páginasapplication/pdfengUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Doctorado en Ingeniería Electrónica y de Computaciónhttps://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by-nc-sa/2.5/co/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfEfficient design and optimal application of tax incentives to promote investments in renewable energy technologiesTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06https://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/draftRecursos energéticos renovablesRenewable energy sourcesAnálisis financieroFinancial analysisPrecios de la energíaTax incentivesIncentivos tributariosOptimization methodsMétodo de optimizaciónRenewable energy technologiesTax optimization modelsFinancial performance analysisElectricity price uncertaintyOptimal governmental tax ratehttp://aims.fao.org/aos/agrovoc/c_5372PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstreams/c6ecb78d-43c6-4ffb-bf99-f9448449b413/downloade2060682c9c70d4d30c83c51448f4eedMD54falseAnonymousREADORIGINALCastilloAlejandro_2024_OptimalTaxStrategies.pdfCastilloAlejandro_2024_OptimalTaxStrategies.pdfTesis doctoralapplication/pdf3727147https://bibliotecadigital.udea.edu.co/bitstreams/19e11998-45b7-4998-b1ef-d9baa0eba753/downloade5955d70e1d9ba8d4dbad34bad1c88d2MD53trueAnonymousREAD2025-12-31LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/781627bd-59d1-4925-8d69-8bfa452505ee/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADTEXTCastilloAlejandro_2024_OptimalTaxStrategies.pdf.txtCastilloAlejandro_2024_OptimalTaxStrategies.pdf.txtExtracted texttext/plain100840https://bibliotecadigital.udea.edu.co/bitstreams/feab1164-6d54-46a6-8ee8-d495a7ee06f3/download076cc70d88dfe1351950064302c9d4ceMD510falseAnonymousREAD2025-12-31THUMBNAILCastilloAlejandro_2024_OptimalTaxStrategies.pdf.jpgCastilloAlejandro_2024_OptimalTaxStrategies.pdf.jpgGenerated Thumbnailimage/jpeg6957https://bibliotecadigital.udea.edu.co/bitstreams/97b7b7cf-7a85-4a28-9dd5-4b697ba5e5c9/downloadc564bd0f83a93328d5517161c228a938MD511falseAnonymousREAD2025-12-3110495/39217oai:bibliotecadigital.udea.edu.co:10495/392172025-03-26 17:12:57.701https://creativecommons.org/licenses/by-nc-sa/4.0/embargo2025-12-31https://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
