Convergence of solutions of some third order systems of non-linear ordinary differential equations

RESUMEN: Consideramos la convergencia de soluciones de ecuaciones de la forma X ⃛+AX ¨+G(X ˙)+H(X)=P(t,X,X ˙,X ¨), en las que X∈ℝ n , P: ℝ×ℝ n ×ℝ n ×ℝ n →ℝ n , A es una matriz constante ×n. Suponemos que las funciones G y H son de clase C(ℝ n ), y satisfacen para cualquier X 1 ,X 2 ,Y 1 ,Y 2 en ℝ n...

Full description

Autores:
Afuwape Afuwape, Anthony
Tipo de recurso:
Article of investigation
Fecha de publicación:
2009
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/30799
Acceso en línea:
https://hdl.handle.net/10495/30799
Palabra clave:
Ecuaciones diferenciales no lineales
Differential equations, nonlinear
Convergencia de soluciones
Sistema de ecuaciones
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id UDEA2_ef6377d663183298fc65be1c5f1289c1
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/30799
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Convergence of solutions of some third order systems of non-linear ordinary differential equations
title Convergence of solutions of some third order systems of non-linear ordinary differential equations
spellingShingle Convergence of solutions of some third order systems of non-linear ordinary differential equations
Ecuaciones diferenciales no lineales
Differential equations, nonlinear
Convergencia de soluciones
Sistema de ecuaciones
title_short Convergence of solutions of some third order systems of non-linear ordinary differential equations
title_full Convergence of solutions of some third order systems of non-linear ordinary differential equations
title_fullStr Convergence of solutions of some third order systems of non-linear ordinary differential equations
title_full_unstemmed Convergence of solutions of some third order systems of non-linear ordinary differential equations
title_sort Convergence of solutions of some third order systems of non-linear ordinary differential equations
dc.creator.fl_str_mv Afuwape Afuwape, Anthony
dc.contributor.author.none.fl_str_mv Afuwape Afuwape, Anthony
dc.contributor.researchgroup.spa.fl_str_mv Modelación con Ecuaciones Diferenciales
dc.subject.lemb.none.fl_str_mv Ecuaciones diferenciales no lineales
Differential equations, nonlinear
topic Ecuaciones diferenciales no lineales
Differential equations, nonlinear
Convergencia de soluciones
Sistema de ecuaciones
dc.subject.proposal.spa.fl_str_mv Convergencia de soluciones
Sistema de ecuaciones
description RESUMEN: Consideramos la convergencia de soluciones de ecuaciones de la forma X ⃛+AX ¨+G(X ˙)+H(X)=P(t,X,X ˙,X ¨), en las que X∈ℝ n , P: ℝ×ℝ n ×ℝ n ×ℝ n →ℝ n , A es una matriz constante ×n. Suponemos que las funciones G y H son de clase C(ℝ n ), y satisfacen para cualquier X 1 ,X 2 ,Y 1 ,Y 2 en ℝ n G(Y 2 )=G(Y 1 )+B g ( Y 1 ,Y 2 )(Y 2 -Y 1 ), H(X 2 )=H(X 1 )+C h (X 1 ,X 2 )(X 2 -X 1 ), donde B g (Y 1 , Y 2 ),C h (X 1 ,X 2 ) son n×n operadores continuos reales, con valores propios positivos. Bajo diferentes condiciones en P, damos condiciones suficientes para establecer la convergencia de las soluciones.  
publishDate 2009
dc.date.issued.none.fl_str_mv 2009
dc.date.accessioned.none.fl_str_mv 2022-09-23T21:12:01Z
dc.date.available.none.fl_str_mv 2022-09-23T21:12:01Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Afuwape, Anthony. (2009). Convergence of solutions of some third order systems of non-linear ordinary differential equations. Analele Ştiinţifice ale Universităţii Al. I. Cuza din Iaşi. Serie Nouă. Matematică. 55.
dc.identifier.issn.none.fl_str_mv 1221-8421
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/30799
dc.identifier.eissn.none.fl_str_mv 2344-4967
identifier_str_mv Afuwape, Anthony. (2009). Convergence of solutions of some third order systems of non-linear ordinary differential equations. Analele Ştiinţifice ale Universităţii Al. I. Cuza din Iaşi. Serie Nouă. Matematică. 55.
1221-8421
2344-4967
url https://hdl.handle.net/10495/30799
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 20
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 11
dc.relation.citationvolume.spa.fl_str_mv 55
dc.relation.ispartofjournal.spa.fl_str_mv Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 10
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Alexandru Ioan Cuza de Iași
dc.publisher.place.spa.fl_str_mv Iași, Rumanía
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/b7d48676-f949-4467-8821-79347a85d2ee/download
https://bibliotecadigital.udea.edu.co/bitstreams/20daed70-9354-49ff-a8fa-f624e9eb715c/download
https://bibliotecadigital.udea.edu.co/bitstreams/fe94bb89-e68d-4ee9-a169-22ed576a4196/download
https://bibliotecadigital.udea.edu.co/bitstreams/efa2b8b0-2b80-41b0-b9ce-3ed2ef4f037f/download
bitstream.checksum.fl_str_mv 9597fd7f3b8e2c23f988d3494103da0c
8a4605be74aa9ea9d79846c1fba20a33
4c1afec4d5fb1b1c82ccf407d290046f
4591970b89c201cf3664bd3412eb1c25
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052584104624128
spelling Afuwape Afuwape, AnthonyModelación con Ecuaciones Diferenciales2022-09-23T21:12:01Z2022-09-23T21:12:01Z2009Afuwape, Anthony. (2009). Convergence of solutions of some third order systems of non-linear ordinary differential equations. Analele Ştiinţifice ale Universităţii Al. I. Cuza din Iaşi. Serie Nouă. Matematică. 55.1221-8421https://hdl.handle.net/10495/307992344-4967RESUMEN: Consideramos la convergencia de soluciones de ecuaciones de la forma X ⃛+AX ¨+G(X ˙)+H(X)=P(t,X,X ˙,X ¨), en las que X∈ℝ n , P: ℝ×ℝ n ×ℝ n ×ℝ n →ℝ n , A es una matriz constante ×n. Suponemos que las funciones G y H son de clase C(ℝ n ), y satisfacen para cualquier X 1 ,X 2 ,Y 1 ,Y 2 en ℝ n G(Y 2 )=G(Y 1 )+B g ( Y 1 ,Y 2 )(Y 2 -Y 1 ), H(X 2 )=H(X 1 )+C h (X 1 ,X 2 )(X 2 -X 1 ), donde B g (Y 1 , Y 2 ),C h (X 1 ,X 2 ) son n×n operadores continuos reales, con valores propios positivos. Bajo diferentes condiciones en P, damos condiciones suficientes para establecer la convergencia de las soluciones.  Universidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODICOL002436510application/pdfengUniversidad Alexandru Ioan Cuza de IașiIași, Rumaníahttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Convergence of solutions of some third order systems of non-linear ordinary differential equationsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionEcuaciones diferenciales no linealesDifferential equations, nonlinearConvergencia de solucionesSistema de ecuaciones2011155Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica10095CE.PublicationORIGINALAfuwapeAnthony_2009_ConvergenceOfSolutionsSomeThirdOrder.pdfAfuwapeAnthony_2009_ConvergenceOfSolutionsSomeThirdOrder.pdfArtículo de investigaciónapplication/pdf180037https://bibliotecadigital.udea.edu.co/bitstreams/b7d48676-f949-4467-8821-79347a85d2ee/download9597fd7f3b8e2c23f988d3494103da0cMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/20daed70-9354-49ff-a8fa-f624e9eb715c/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTEXTAfuwapeAnthony_2009_ConvergenceOfSolutionsSomeThirdOrder.pdf.txtAfuwapeAnthony_2009_ConvergenceOfSolutionsSomeThirdOrder.pdf.txtExtracted texttext/plain16633https://bibliotecadigital.udea.edu.co/bitstreams/fe94bb89-e68d-4ee9-a169-22ed576a4196/download4c1afec4d5fb1b1c82ccf407d290046fMD53falseAnonymousREADTHUMBNAILAfuwapeAnthony_2009_ConvergenceOfSolutionsSomeThirdOrder.pdf.jpgAfuwapeAnthony_2009_ConvergenceOfSolutionsSomeThirdOrder.pdf.jpgGenerated Thumbnailimage/jpeg7819https://bibliotecadigital.udea.edu.co/bitstreams/efa2b8b0-2b80-41b0-b9ce-3ed2ef4f037f/download4591970b89c201cf3664bd3412eb1c25MD54falseAnonymousREAD10495/30799oai:bibliotecadigital.udea.edu.co:10495/307992025-03-27 00:39:03.162https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=