Convergence of solutions of some third order systems of non-linear ordinary differential equations
RESUMEN: Consideramos la convergencia de soluciones de ecuaciones de la forma X ⃛+AX ¨+G(X ˙)+H(X)=P(t,X,X ˙,X ¨), en las que X∈ℝ n , P: ℝ×ℝ n ×ℝ n ×ℝ n →ℝ n , A es una matriz constante ×n. Suponemos que las funciones G y H son de clase C(ℝ n ), y satisfacen para cualquier X 1 ,X 2 ,Y 1 ,Y 2 en ℝ n...
- Autores:
-
Afuwape Afuwape, Anthony
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2009
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/30799
- Acceso en línea:
- https://hdl.handle.net/10495/30799
- Palabra clave:
- Ecuaciones diferenciales no lineales
Differential equations, nonlinear
Convergencia de soluciones
Sistema de ecuaciones
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UDEA2_ef6377d663183298fc65be1c5f1289c1 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/30799 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Convergence of solutions of some third order systems of non-linear ordinary differential equations |
| title |
Convergence of solutions of some third order systems of non-linear ordinary differential equations |
| spellingShingle |
Convergence of solutions of some third order systems of non-linear ordinary differential equations Ecuaciones diferenciales no lineales Differential equations, nonlinear Convergencia de soluciones Sistema de ecuaciones |
| title_short |
Convergence of solutions of some third order systems of non-linear ordinary differential equations |
| title_full |
Convergence of solutions of some third order systems of non-linear ordinary differential equations |
| title_fullStr |
Convergence of solutions of some third order systems of non-linear ordinary differential equations |
| title_full_unstemmed |
Convergence of solutions of some third order systems of non-linear ordinary differential equations |
| title_sort |
Convergence of solutions of some third order systems of non-linear ordinary differential equations |
| dc.creator.fl_str_mv |
Afuwape Afuwape, Anthony |
| dc.contributor.author.none.fl_str_mv |
Afuwape Afuwape, Anthony |
| dc.contributor.researchgroup.spa.fl_str_mv |
Modelación con Ecuaciones Diferenciales |
| dc.subject.lemb.none.fl_str_mv |
Ecuaciones diferenciales no lineales Differential equations, nonlinear |
| topic |
Ecuaciones diferenciales no lineales Differential equations, nonlinear Convergencia de soluciones Sistema de ecuaciones |
| dc.subject.proposal.spa.fl_str_mv |
Convergencia de soluciones Sistema de ecuaciones |
| description |
RESUMEN: Consideramos la convergencia de soluciones de ecuaciones de la forma X ⃛+AX ¨+G(X ˙)+H(X)=P(t,X,X ˙,X ¨), en las que X∈ℝ n , P: ℝ×ℝ n ×ℝ n ×ℝ n →ℝ n , A es una matriz constante ×n. Suponemos que las funciones G y H son de clase C(ℝ n ), y satisfacen para cualquier X 1 ,X 2 ,Y 1 ,Y 2 en ℝ n G(Y 2 )=G(Y 1 )+B g ( Y 1 ,Y 2 )(Y 2 -Y 1 ), H(X 2 )=H(X 1 )+C h (X 1 ,X 2 )(X 2 -X 1 ), donde B g (Y 1 , Y 2 ),C h (X 1 ,X 2 ) son n×n operadores continuos reales, con valores propios positivos. Bajo diferentes condiciones en P, damos condiciones suficientes para establecer la convergencia de las soluciones. |
| publishDate |
2009 |
| dc.date.issued.none.fl_str_mv |
2009 |
| dc.date.accessioned.none.fl_str_mv |
2022-09-23T21:12:01Z |
| dc.date.available.none.fl_str_mv |
2022-09-23T21:12:01Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Afuwape, Anthony. (2009). Convergence of solutions of some third order systems of non-linear ordinary differential equations. Analele Ştiinţifice ale Universităţii Al. I. Cuza din Iaşi. Serie Nouă. Matematică. 55. |
| dc.identifier.issn.none.fl_str_mv |
1221-8421 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/30799 |
| dc.identifier.eissn.none.fl_str_mv |
2344-4967 |
| identifier_str_mv |
Afuwape, Anthony. (2009). Convergence of solutions of some third order systems of non-linear ordinary differential equations. Analele Ştiinţifice ale Universităţii Al. I. Cuza din Iaşi. Serie Nouă. Matematică. 55. 1221-8421 2344-4967 |
| url |
https://hdl.handle.net/10495/30799 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.spa.fl_str_mv |
20 |
| dc.relation.citationissue.spa.fl_str_mv |
1 |
| dc.relation.citationstartpage.spa.fl_str_mv |
11 |
| dc.relation.citationvolume.spa.fl_str_mv |
55 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
10 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Universidad Alexandru Ioan Cuza de Iași |
| dc.publisher.place.spa.fl_str_mv |
Iași, Rumanía |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/b7d48676-f949-4467-8821-79347a85d2ee/download https://bibliotecadigital.udea.edu.co/bitstreams/20daed70-9354-49ff-a8fa-f624e9eb715c/download https://bibliotecadigital.udea.edu.co/bitstreams/fe94bb89-e68d-4ee9-a169-22ed576a4196/download https://bibliotecadigital.udea.edu.co/bitstreams/efa2b8b0-2b80-41b0-b9ce-3ed2ef4f037f/download |
| bitstream.checksum.fl_str_mv |
9597fd7f3b8e2c23f988d3494103da0c 8a4605be74aa9ea9d79846c1fba20a33 4c1afec4d5fb1b1c82ccf407d290046f 4591970b89c201cf3664bd3412eb1c25 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052584104624128 |
| spelling |
Afuwape Afuwape, AnthonyModelación con Ecuaciones Diferenciales2022-09-23T21:12:01Z2022-09-23T21:12:01Z2009Afuwape, Anthony. (2009). Convergence of solutions of some third order systems of non-linear ordinary differential equations. Analele Ştiinţifice ale Universităţii Al. I. Cuza din Iaşi. Serie Nouă. Matematică. 55.1221-8421https://hdl.handle.net/10495/307992344-4967RESUMEN: Consideramos la convergencia de soluciones de ecuaciones de la forma X ⃛+AX ¨+G(X ˙)+H(X)=P(t,X,X ˙,X ¨), en las que X∈ℝ n , P: ℝ×ℝ n ×ℝ n ×ℝ n →ℝ n , A es una matriz constante ×n. Suponemos que las funciones G y H son de clase C(ℝ n ), y satisfacen para cualquier X 1 ,X 2 ,Y 1 ,Y 2 en ℝ n G(Y 2 )=G(Y 1 )+B g ( Y 1 ,Y 2 )(Y 2 -Y 1 ), H(X 2 )=H(X 1 )+C h (X 1 ,X 2 )(X 2 -X 1 ), donde B g (Y 1 , Y 2 ),C h (X 1 ,X 2 ) son n×n operadores continuos reales, con valores propios positivos. Bajo diferentes condiciones en P, damos condiciones suficientes para establecer la convergencia de las soluciones. Universidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODICOL002436510application/pdfengUniversidad Alexandru Ioan Cuza de IașiIași, Rumaníahttps://creativecommons.org/licenses/by-nc-nd/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Convergence of solutions of some third order systems of non-linear ordinary differential equationsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionEcuaciones diferenciales no linealesDifferential equations, nonlinearConvergencia de solucionesSistema de ecuaciones2011155Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica10095CE.PublicationORIGINALAfuwapeAnthony_2009_ConvergenceOfSolutionsSomeThirdOrder.pdfAfuwapeAnthony_2009_ConvergenceOfSolutionsSomeThirdOrder.pdfArtículo de investigaciónapplication/pdf180037https://bibliotecadigital.udea.edu.co/bitstreams/b7d48676-f949-4467-8821-79347a85d2ee/download9597fd7f3b8e2c23f988d3494103da0cMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/20daed70-9354-49ff-a8fa-f624e9eb715c/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTEXTAfuwapeAnthony_2009_ConvergenceOfSolutionsSomeThirdOrder.pdf.txtAfuwapeAnthony_2009_ConvergenceOfSolutionsSomeThirdOrder.pdf.txtExtracted texttext/plain16633https://bibliotecadigital.udea.edu.co/bitstreams/fe94bb89-e68d-4ee9-a169-22ed576a4196/download4c1afec4d5fb1b1c82ccf407d290046fMD53falseAnonymousREADTHUMBNAILAfuwapeAnthony_2009_ConvergenceOfSolutionsSomeThirdOrder.pdf.jpgAfuwapeAnthony_2009_ConvergenceOfSolutionsSomeThirdOrder.pdf.jpgGenerated Thumbnailimage/jpeg7819https://bibliotecadigital.udea.edu.co/bitstreams/efa2b8b0-2b80-41b0-b9ce-3ed2ef4f037f/download4591970b89c201cf3664bd3412eb1c25MD54falseAnonymousREAD10495/30799oai:bibliotecadigital.udea.edu.co:10495/307992025-03-27 00:39:03.162https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
