Influence of Modifications with Ni(II), Mn(II), and Cu(II) on the Photoelectrochemical Properties of g-C3N4 Deposited Over FTO and Its Use for Degrading Pharmaceuticals in Wastewater
Currently, graphitic carbon nitrides (g-C3N4) are materials of increasing interest in the scientific community due to their stability as semiconductors and their modulable valance (VB) and conduction band (CB). However, these materials also present drawbacks, including a high rate of electron-hole r...
- Autores:
-
Lasso Escobar, Angie Vanessa
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/46055
- Acceso en línea:
- https://hdl.handle.net/10495/46055
- Palabra clave:
- Drug pollution of water
Contaminación del agua por drogas
Water - Purification - Photocatalysis
Agua - Purificación - Fotocatálisis
Sewage - Purification - Electrochemical treatment
Aguas residuales - Purificación - Tratamiento electroquímico
Coordination compounds
Compuestos de coordinación
Photoelectrochemistry
Fotoelectroquímica
Chemical decontamination
Descontaminación química
Remediación ambiental
http://aims.fao.org/aos/agrovoc/c_28334
http://id.loc.gov/authorities/subjects/sh2023000980
http://id.loc.gov/authorities/subjects/sh93004424
http://id.loc.gov/authorities/subjects/sh2021015844
http://id.loc.gov/authorities/subjects/sh85032243
http://id.loc.gov/authorities/subjects/sh97008225
ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
| id |
UDEA2_eea1bc30a64772baf07834f6d64182a8 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/46055 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.eng.fl_str_mv |
Influence of Modifications with Ni(II), Mn(II), and Cu(II) on the Photoelectrochemical Properties of g-C3N4 Deposited Over FTO and Its Use for Degrading Pharmaceuticals in Wastewater |
| title |
Influence of Modifications with Ni(II), Mn(II), and Cu(II) on the Photoelectrochemical Properties of g-C3N4 Deposited Over FTO and Its Use for Degrading Pharmaceuticals in Wastewater |
| spellingShingle |
Influence of Modifications with Ni(II), Mn(II), and Cu(II) on the Photoelectrochemical Properties of g-C3N4 Deposited Over FTO and Its Use for Degrading Pharmaceuticals in Wastewater Drug pollution of water Contaminación del agua por drogas Water - Purification - Photocatalysis Agua - Purificación - Fotocatálisis Sewage - Purification - Electrochemical treatment Aguas residuales - Purificación - Tratamiento electroquímico Coordination compounds Compuestos de coordinación Photoelectrochemistry Fotoelectroquímica Chemical decontamination Descontaminación química Remediación ambiental http://aims.fao.org/aos/agrovoc/c_28334 http://id.loc.gov/authorities/subjects/sh2023000980 http://id.loc.gov/authorities/subjects/sh93004424 http://id.loc.gov/authorities/subjects/sh2021015844 http://id.loc.gov/authorities/subjects/sh85032243 http://id.loc.gov/authorities/subjects/sh97008225 ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos |
| title_short |
Influence of Modifications with Ni(II), Mn(II), and Cu(II) on the Photoelectrochemical Properties of g-C3N4 Deposited Over FTO and Its Use for Degrading Pharmaceuticals in Wastewater |
| title_full |
Influence of Modifications with Ni(II), Mn(II), and Cu(II) on the Photoelectrochemical Properties of g-C3N4 Deposited Over FTO and Its Use for Degrading Pharmaceuticals in Wastewater |
| title_fullStr |
Influence of Modifications with Ni(II), Mn(II), and Cu(II) on the Photoelectrochemical Properties of g-C3N4 Deposited Over FTO and Its Use for Degrading Pharmaceuticals in Wastewater |
| title_full_unstemmed |
Influence of Modifications with Ni(II), Mn(II), and Cu(II) on the Photoelectrochemical Properties of g-C3N4 Deposited Over FTO and Its Use for Degrading Pharmaceuticals in Wastewater |
| title_sort |
Influence of Modifications with Ni(II), Mn(II), and Cu(II) on the Photoelectrochemical Properties of g-C3N4 Deposited Over FTO and Its Use for Degrading Pharmaceuticals in Wastewater |
| dc.creator.fl_str_mv |
Lasso Escobar, Angie Vanessa |
| dc.contributor.advisor.none.fl_str_mv |
Serna Galvis, Efraím Adolfo Ávila Torres, Yenny Patricia Palacio Olarte, Rubén Alberto |
| dc.contributor.author.none.fl_str_mv |
Lasso Escobar, Angie Vanessa |
| dc.contributor.researchgroup.none.fl_str_mv |
Grupo de Investigación en Remediación Ambiental y Biocatálisis |
| dc.contributor.jury.none.fl_str_mv |
Palma Goyes, Ricardo Enrique Lado Ribeiro, Ana Rita |
| dc.subject.lcsh.none.fl_str_mv |
Drug pollution of water Contaminación del agua por drogas Water - Purification - Photocatalysis Agua - Purificación - Fotocatálisis Sewage - Purification - Electrochemical treatment Aguas residuales - Purificación - Tratamiento electroquímico Coordination compounds Compuestos de coordinación Photoelectrochemistry Fotoelectroquímica |
| topic |
Drug pollution of water Contaminación del agua por drogas Water - Purification - Photocatalysis Agua - Purificación - Fotocatálisis Sewage - Purification - Electrochemical treatment Aguas residuales - Purificación - Tratamiento electroquímico Coordination compounds Compuestos de coordinación Photoelectrochemistry Fotoelectroquímica Chemical decontamination Descontaminación química Remediación ambiental http://aims.fao.org/aos/agrovoc/c_28334 http://id.loc.gov/authorities/subjects/sh2023000980 http://id.loc.gov/authorities/subjects/sh93004424 http://id.loc.gov/authorities/subjects/sh2021015844 http://id.loc.gov/authorities/subjects/sh85032243 http://id.loc.gov/authorities/subjects/sh97008225 ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos |
| dc.subject.agrovoc.none.fl_str_mv |
Chemical decontamination Descontaminación química |
| dc.subject.proposal.spa.fl_str_mv |
Remediación ambiental |
| dc.subject.agrovocuri.none.fl_str_mv |
http://aims.fao.org/aos/agrovoc/c_28334 |
| dc.subject.lcshuri.none.fl_str_mv |
http://id.loc.gov/authorities/subjects/sh2023000980 http://id.loc.gov/authorities/subjects/sh93004424 http://id.loc.gov/authorities/subjects/sh2021015844 http://id.loc.gov/authorities/subjects/sh85032243 http://id.loc.gov/authorities/subjects/sh97008225 |
| dc.subject.ods.none.fl_str_mv |
ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos |
| description |
Currently, graphitic carbon nitrides (g-C3N4) are materials of increasing interest in the scientific community due to their stability as semiconductors and their modulable valance (VB) and conduction band (CB). However, these materials also present drawbacks, including a high rate of electron-hole recombination, low specific area, and restricted light absorption in the visible range. Modifications of g-C3N4 can change its structure and modify its electronic properties. Herein, a mild-conditions synthesis using nickel (II), manganese (II), and copper (II) was employed to form coordination compounds as a strategy to increase their absorption capability in the visible region of the electromagnetic spectrum. Additionally, as a second strategy, photoelectrodes were made by depositing these synthesized materials onto fluorine-doped oxide (FTO, which is a transparent conductor substrate), to mitigate the electron-hole recombination and improve the efficiency of photons to electrons conversion. This research work aimed to understand the effects of transition metals modification on g-C3N4. The synthesized materials were spectroscopically and electrochemically characterized. The textural properties, CB, VB, and other properties were determined, revealing the potential for degrading pharmaceuticals in wastewater, (which are recalcitrant to conventional municipal wastewater treatment processes) causing environmental harm. The proposed structure corresponds to a carbon nitride structure linked to the metal center by the lone pairs of electrons of the peripheral amines' nitrogen for the material modified with copper (II), on the contrary, the nickel (II) and manganese (II) material the metal is linked to the lone pair of electron in the tris-s-triazine nitrogen. All the materials were used to degrade pharmaceuticals in water, achieving a 55.5%, 51.8%, 55.6%, and 32,1% for Cu-g-C3N4, Mn-g-C3N4, Ni-g-C3N4, and g-C3N4 of degradation in photocatalysis and 23.7%, 18.7%, 17.5% and 21.2% for Cu-g-C3N4, Mn-g-C3N4, Ni-g-C3N4, and g-C3N4 in photoelectrocatalysis. The determination of reactive oxygen species (ROS) in the presence of ciprofloxacin confirmed the predominant role of superoxide anion radical and a minor contribution of hydroxyl radical as a degrading species. The Cu-g-C3N4 material showed the best performance at degradation of CIP by photocatalysis, subsequently, was used to make an extent of treatment with simulated hospital wastewater (SHWW). |
| publishDate |
2024 |
| dc.date.issued.none.fl_str_mv |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-05-22T16:11:43Z |
| dc.type.none.fl_str_mv |
Trabajo de grado - Maestría |
| dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
| dc.type.content.none.fl_str_mv |
Text |
| dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
| dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/draft |
| status_str |
draft |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/46055 |
| url |
https://hdl.handle.net/10495/46055 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.references.none.fl_str_mv |
J. Jia, Q. Zhang, K. Li, Y. Zhang, E. Liu, and X. Li, “Recent advances on g–C3N4–based Z-scheme photocatalysts: Structural design and photocatalytic applications,” Int. J. Hydrogen Energy, vol. 48, no. 1, pp. 196–231, 2023, doi: 10.1016/j.ijhydene.2022.09.272. S. Parsons, Advanced Oxidation Processes for Water and Wastewater Treatment, vol. 4. 2015. doi: 10.2166/9781780403076. S. C. Ameta and R. Ameta, Advanced oxidation processes for wastewater treatment: Emerging green chemical technology. 2018. I. Sirés, E. Brillas, M. A. Oturan, M. A. Rodrigo, and M. Panizza, “Electrochemical advanced oxidation processes: Today and tomorrow. A review,” Environ. Sci. Pollut. Res., vol. 21, no. 14, pp. 8336–8367, 2014, doi: 10.1007/s11356-014-2783-1. F. C. Moreira, R. A. R. Boaventura, E. Brillas, and V. J. P. Vilar, “Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters,” Appl. Catal. B Environ., vol. 202, pp. 217–261, 2017, doi: 10.1016/j.apcatb.2016.08.037. T. J. Al-Musawi et al., “Synthesis of a Doped alpha-Fe2O3/g-C3N4 Catalyst for High-Efficiency Degradation of Diazinon Contaminant from Liquid Wastes,” Magnetochemistry, vol. 8, no. 11, p. 137, Oct. 2022, doi: 10.3390/magnetochemistry8110137. P. Chen, S. Di, X. Qiu, and S. Zhu, “One-step synthesis of F-TiO2/g-C3N4 heterojunction as highly efficient visible-light-active catalysts for tetrabromobisphenol A and sulfamethazine degradation,” Appl. Surf. Sci., vol. 587, no. November 2021, p. 152889, 2022, doi: 10.1016/j.apsusc.2022.152889. J. Zhou and B. Zhu, “Novel 1D/3D CeO2/g-C3N4 catalysts for photodegradation of ciprofloxacin under visible light via dimensional regulation and heterostructure construction,” J. Phys. Chem. Solids, vol. 171, no. September, p. 111002, 2022, doi: 10.1016/j.jpcs.2022.111002. Z. Xing, Z. Wang, W. Chen, M. Zhang, X. Fu, and Y. Gao, “Degradation of levofloxacin in wastewater by photoelectric and ultrasonic synergy with TiO2/g-C3N4@AC combined electrode,” J. Environ. Manage., vol. 330, no. January, p. 117168, 2023, doi: 10.1016/j.jenvman.2022.117168. F. Yu, Y. Wang, H. Ma, and G. Dong, “Enhancing the yield of hydrogen peroxide and phenol degradation via a synergistic effect of photoelectrocatalysis using a g-C3N4/ACF electrode,” Int. J. Hydrogen Energy, vol. 43, no. 42, pp. 19500–19509, 2018, doi: 10.1016/j.ijhydene.2018.08.217. C. Zhang et al., “Photoelectrocatalytic degradation of m-chloronitrobenzene through rGO/g-C3N4/TiO2 nanotube arrays photoelectrode under visible light: Performance, DFT calculation and mechanism,” Sep. Purif. Technol., vol. 302, no. June, p. 121944, 2022, doi: 10.1016/j.seppur.2022.121944. Y. Gong et al., “Developing high-quality g-C3N4 film electrode for the photoelectrocatalytic degradation of methylene blue in water,” Chinese Chem. Lett., vol. 34, no. 3, p. 107535, 2022, doi: 10.1016/j.cclet.2022.05.049. D. S. Vavilapalli, R. G. Peri, M. B, K. Sridharan, M. S. R. Rao, and S. Singh, “Enhanced photocatalytic and photoelectrochemical performance of KBiFe2O5/g-C3N4 heterojunction photocatalyst under visible light,” Phys. B Condens. Matter, vol. 648, no. June 2022, p. 414411, 2023, doi: 10.1016/j.physb.2022.414411. A. M. S. et al., “A Contemporary Assessment on Composite Titania onto Graphitic Carbon Nitride-Based Catalyst as Photocatalyst,” J. Energy Saf. Technol., vol. 2, no. 1, pp. 21–25, 2019, doi: 10.11113/jest.v2n1.39. H. Sun et al., “High-efficient degradation of oxytetracycline by visible photoFenton process using MnFe2O4/g-C3N4: Performance and mechanisms,” Sep. Purif. Technol., vol. 299, no. May, p. 121771, 2022, doi: 10.1016/j.seppur.2022.121771. X. Yang et al., “Recent advances in metal-free CDs/g-C3N4 photocatalysts: Synthetic strategies, mechanism insight, and applications,” J. Mater. Sci. Technol., 2023, doi: 10.1016/j.jmst.2022.10.092. Z. Zhang et al., “Enhanced photocatalytic degradation of 2-chlorophenol over Z-scheme heterojunction of CdS-decorated oxygen-doped g-C3N4 under visible-light,” Appl. Catal. B Environ., vol. 324, no. December 2022, p. 122276, 2023, doi: 10.1016/j.apcatb.2022.122276. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements. Elsevier, 1997. doi: 10.1016/C2009-0-30414-6. Cotton F. A., Wilkinson G., Murillo C., and Bochmann M., Advanced inorganic chemistry, vol. 6. 1999. M. Gruden-Pavlović, M. Zlatar, C. W. Schläpfer, and C. Daul, “DFT study of the Jahn-Teller effect in Cu(II) chelate complexes,” J. Mol. Struct. THEOCHEM, vol. 954, no. 1–3, pp. 80–85, 2010, doi: 10.1016/j.theochem.2010.03.031. F. Habashi, 2-Handbook of Extracive Metallurgy Volume 2. 1997. K. N. Sheaffer, Mineral commodity summaries 2023. 2023. [Online]. Available: http://pubs.er.usgs.gov/publication/mcs2023 N. M. Samuels and J. P. Klinman, “2,4,5-Trihydroxyphenylalanine quinone biogenesis in the copper amine oxidase from Hansenula polymorpha with the alternate metal nickel,” Biochemistry, vol. 44, no. 43, pp. 14308–14317, 2005, doi: 10.1021/bi051176m. D. Candas and J. J. Li, “MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx,” Antioxidants Redox Signal., vol. 20, no. 10, pp. 1599–1617, 2014, doi: 10.1089/ars.2013.5305. D. Horn, H. Al-Ali, and A. Barrientos, “ Cmc1p Is a Conserved Mitochondrial Twin CX 9 C Protein Involved in Cytochrome c Oxidase Biogenesis ,” Mol. Cell. Biol., vol. 28, no. 13, pp. 4354–4364, 2008, doi: 10.1128/mcb.01920-07. S. I. Cerone, A. S. Sansinanea, S. A. Streitenberger, M. C. Garcia, and N. J. Auza, “Cytochrome c oxidase, Cu, Zn-superoxide dismutase, and ceruloplasmin activities in copper-deficient bovines,” Biol. Trace Elem. Res., vol. 73, no. 3, pp. 269–278, 2000, doi: 10.1385/BTER:73:3:269. Y. Zeng, Y. Xu, D. Zhong, J. Mou, H. Yao, and N. Zhong, “Visible-light responsive photocatalytic fuel cell with double Z-scheme heterojunction PTh/Ag3PO4/BiOI/Ti photoanode for efficient rhodamine B degradation and stable electricity generation,” Opt. Mater. (Amst)., vol. 134, no. PA, p. 113103, 2022, doi: 10.1016/j.optmat.2022.113103. Y. Huo, L. Zhang, S. Wang, and X. Wang, “Polyoxometalate@g-C3N4 nanocomposite for enhancing visible light photoelectrocatalytic performance,” Chemosphere, vol. 279, p. 130559, 2021, doi: 10.1016/j.chemosphere.2021.130559. C. F. Sanz-Navarro, S. F. Lee, S. S. Yap, C. H. Nee, and S. L. Yap, “Electrochemical stability and corrosion mechanism of fluorine-doped tin oxide film under cathodic polarization in near neutral electrolyte,” Thin Solid Films, vol. 768, no. December 2022, p. 139697, 2023, doi: 10.1016/j.tsf.2023.139697. D. Burnat et al., “Functional fluorine-doped tin oxide coating for optoelectrochemical label-free biosensors,” Sensors Actuators B Chem., vol. 367, no. March, pp. 1–12, 2022, doi: 10.1016/j.snb.2022.132145. J. E. Carrera-Crespo et al., “Unrevealing the effect of transparent fluorinedoped tin oxide (FTO) substrate and irradiance configuration to unmask the activity of FTO-BiVO4 heterojunction,” Mater. Sci. Semicond. Process., vol. 128, no. September 2020, 2021, doi: 10.1016/j.mssp.2021.105717. M. Patel, R. Kumar, K. Kishor, T. Mlsna, C. U. Pittman, and D. Mohan, “Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods,” Chem. Rev., vol. 119, no. 6, pp. 3510–3673, 2019, doi: 10.1021/acs.chemrev.8b00299. E. Palacios-Rosas and L. I. Castro-Pastrana, “Pharmaceuticals Reaching the Environment: Concepts, Evidence, and Concerns,” Handb. Environ. Chem., vol. 66, pp. 21–41, 2019, doi: 10.1007/698_2017_141. M. Ismael, “A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis,” J. Alloys Compd., vol. 846, p. 156446, 2020, doi: 10.1016/j.jallcom.2020.156446. L. Jiang et al., “Doping of graphitic carbon nitride for photocatalysis: A reveiw,” Appl. Catal. B Environ., vol. 217, pp. 388–406, 2017, doi: 10.1016/j.apcatb.2017.06.003. Z. Ding, X. Chen, M. Antonietti, and X. Wang, “Synthesis of transition metalmodified carbon nitride polymers for selective hydrocarbon oxidation,” ChemSusChem, vol. 4, no. 2, pp. 274–281, 2011, doi: 10.1002/cssc.201000149. G. Dong, Y. Zhang, Q. Pan, and J. Qiu, “Journal of Photochemistry and Photobiology C : Photochemistry Reviews A fantastic graphitic carbon nitride ( g-C3N4 ) material : Electronic structure , photocatalytic and photoelectronic properties ଝ,” "Journal Photochem. Photobiol. C Photochem. Rev., vol. 20, pp. 33–50, 2014, doi: 10.1016/j.jphotochemrev.2014.04.002. R. H. Gao, Q. Ge, N. Jiang, H. Cong, M. Liu, and Y. Q. Zhang, “Graphitic carbon nitride (g-C3N4)-based photocatalytic materials for hydrogen evolution,” Front. Chem., vol. 10, no. October, pp. 1–11, 2022, doi: 10.3389/fchem.2022.1048504. V. K. Saharan, D. V. Pinjari, P. R. Gogate, and A. B. Pandit, “Advanced Oxidation Technologies for Wastewater Treatment: An Overview,” Ind. Wastewater Treat. Recycl. Reuse, pp. 141–191, 2014, doi: 10.1016/B978-0-08-099968-5.00003-9. B. P. Chaplin, “Environmental Science Processes & Impacts Critical review of electrochemical advanced oxidation processes for water treatment applications,” vol. 1, no. 312, pp. 1182–1203, 2014, doi: 10.1039/c3em00679d. D. Sundar, P. Dharm, P. Jyoti, M. Chandrakant, and T. Kailas, “Doped graphitic carbon nitride ( g‑C3N4 ) catalysts for efficient photodegradation of tetracycline antibiotics in aquatic environments,” Environ. Sci. Pollut. Res., pp. 24919–24926, 2023, doi: 10.1007/s11356-022-19766-y. R. E. Palma-Goyes et al., “In search of the active chlorine species on Ti/ZrO2-RuO2-Sb2O3 anodes using DEMS and XPS,” Electrochim. Acta, vol. 275, pp. 265–274, 2018, doi: 10.1016/j.electacta.2018.04.114. B. Marselli, J. Garcia-Gomez, P.-A. Michaud, M. A. Rodrigo, and C. Comninellis, “Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes,” J. Electrochem. Soc., vol. 150, no. 3, p. D79, 2003, doi: 10.1149/1.1553790. Y. T. Lin, C. Liang, and J. H. Chen, “Feasibility study of ultraviolet activated persulfate oxidation of phenol,” Chemosphere, vol. 82, no. 8, pp. 1168–1172, 2011, doi: 10.1016/j.chemosphere.2010.12.027. V. Hasija et al., “An overview on photocatalytic sulfate radical formation via doped graphitic carbon nitride for water remediation,” Curr. Opin. Chem. Eng., vol. 37, p. 100841, 2022, doi: 10.1016/j.coche.2022.100841. T. Ni et al., “Enhanced adsorption and catalytic degradation of antibiotics by porous 0D/3D Co3O4/g-C3N4 activated peroxymonosulfate: An experimental and mechanistic study,” J. Colloid Interface Sci., vol. 625, pp. 466–478, 2022, doi: 10.1016/j.jcis.2022.06.057. J. Wang et al., “Core-shell g-C3N4@ZnO composites as photoanodes with double synergistic effects for enhanced visible-light photoelectrocatalytic activities,” Appl. Catal. B Environ., vol. 217, pp. 169–180, Nov. 2017, doi: 10.1016/j.apcatb.2017.05.034. M. D. Hernando, M. Mezcua, A. R. Fernández-Alba, and D. Barceló, “Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments,” Talanta, vol. 69, no. 2 SPEC. ISS., pp. 334–342, 2006, doi: 10.1016/j.talanta.2005.09.037. M. Patel, R. Kumar, K. Kishor, T. Mlsna, C. U. Pittman, and D. Mohan, “Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods,” Chem. Rev., vol. 119, no. 6, pp. 3510–3673, 2019, doi: 10.1021/acs.chemrev.8b00299. A. J. Watkinson, E. J. Murby, D. W. Kolpin, and S. D. Costanzo, “The occurrence of antibiotics in an urban watershed: From wastewater to drinking water,” Sci. Total Environ., vol. 407, no. 8, pp. 2711–2723, 2009, doi: 10.1016/j.scitotenv.2008.11.059. A. Ayaliew and A. Islam, “Heliyon Post-treatment disinfection technologies for sustainable removal of antibiotic residues and antimicrobial resistance bacteria from hospital wastewater,” Heliyon, vol. 9, no. 4, p. e15360, 2023, doi: 10.1016/j.heliyon.2023.e15360. Q. Su, J. Sun, J. Wang, Z. Yang, W. Cheng, and S. Zhang, “Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates,” Catal. Sci. Technol., vol. 4, no. 6, pp. 1556–1562, 2014, doi: 10.1039/c3cy00921a. D. F. Mercado, P. Caregnato, L. S. Villata, and M. C. Gonzalez, “Ilex araguariensis Extract-Coated Magnetite Nanoparticles: A Sustainable Nano-adsorbent and Antioxidant,” J. Inorg. Organomet. Polym. Mater., vol. 28, no. 2, pp. 519–527, 2018, doi: 10.1007/s10904-017-0757-8. C. K. Remucal and D. Manley, “Emerging investigators series: the efficacy of chlorine photolysis as an advanced oxidation process for drinking water treatment,” Environ. Sci. Water Res. Technol., vol. 2, no. 4, pp. 565–579, 2016, doi: 10.1039/C6EW00029K. O. Fónagy, E. Szabó-Bárdos, and O. Horváth, “1,4-Benzoquinone and 1,4-hydroquinone based determination of electron and superoxide radical formed in heterogeneous photocatalytic systems,” J. Photochem. Photobiol. A Chem., vol. 407, 2021, doi: 10.1016/j.jphotochem.2020.113057. B. C. Ma, S. Ghasimi, K. Landfester, F. Vilela, and K. A. I. Zhang, “Conjugated microporous polymer nanoparticles with enhanced dispersibility and water compatibility for photocatalytic applications,” J. Mater. Chem. A, vol. 3, no. 31, pp. 16064–16071, 2015, doi: 10.1039/c5ta03820k. Z. Liu et al., “Microwave-assisted high-efficiency degradation of methyl orange by using CuFe2O4/CNT catalysts and insight into degradation mechanism,” Environ. Sci. Pollut. Res., vol. 28, no. 31, pp. 42683–42693, 2021, doi: 10.1007/s11356-021-13694-z. N. J. Hoekstra, T. Bosker, and E. A. Lantinga, “Effects of cattle dung from farms with different feeding strategies on germination and initial root growth of cress (Lepidium sativum L.),” Agric. Ecosyst. Environ., vol. 93, no. 1–3, pp. 189–196, 2002, doi: 10.1016/S0167-8809(01)00348-6. Y. Zheng et al., “Molecule-Level g-C3N4 Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions,” J. Am. Chem. Soc., vol. 139, no. 9, pp. 3336–3339, 2017, doi: 10.1021/jacs.6b13100. N. Kraupner et al., “Selective concentration for ciprofloxacin resistance in Escherichia coli grown in complex aquatic bacterial biofilms,” Environ. Int., vol. 116, no. April, pp. 255–268, 2018, doi: 10.1016/j.envint.2018.04.029. A. Ibrahim, S. Daood, and E. Sulliman, “Quantum Calculations of pKa values for Some Amine Compounds,” 2020, doi: 10.4108/eai.28-6-2020.2297886. S. P. Sellers, B. J. Korte, J. P. Fitzgerald, W. M. Reiff, and G. T. Yee, “Canted ferromagnetism and other magnetic phenomena in square- planar, neutral manganese(II) and iron(II) octaethyltetraazaporphyrins,” J. Am. Chem. Soc., vol. 120, no. 19, pp. 4662–4670, 1998, doi: 10.1021/ja973787a. I. Shimizu et al., “Tetrahedral Copper(II) Complexes with a Labile Coordination Site Supported by a Tris-tetramethylguanidinato Ligand,” Inorg. Chem., vol. 56, no. 16, pp. 9634–9645, 2017, doi: 10.1021/acs.inorgchem.7b01154. M. J. Muñoz-Batista, L. Andrini, F. G. Requejo, M. N. Gómez-Cerezo, M. Fernández-García, and A. Kubacka, “Sunlight active g-C3N4-based Mn+ (M[dbnd]Cu, Ni, Zn, Mn) – promoted catalysts: Sharing of nitrogen atoms as a door for optimizing photo-activity,” Mol. Catal., vol. 484, no. October, p. 110725, 2020, doi: 10.1016/j.mcat.2019.110725. F. Li, L. Zhang, D. G. Evans, and X. Duan, “Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 244, no. 1–3, pp. 169–177, 2004, doi: 10.1016/j.colsurfa.2004.06.022. F. Fina, S. K. Callear, G. M. Carins, and J. T. S. Irvine, “Structural investigation of graphitic carbon nitride via XRD and neutron diffraction,” Chem. Mater., vol. 27, no. 7, pp. 2612–2618, 2015, doi: 10.1021/acs.chemmater.5b00411. L. Ge, C. Han, J. Liu, and Y. Li, “Enhanced visible light photocatalytic activity of novel polymeric g-C 3N4 loaded with Ag nanoparticles,” Appl. Catal. A Gen., vol. 409–410, pp. 215–222, 2011, doi: 10.1016/j.apcata.2011.10.006. A. Kumar, G. D. Thakre, P. K. Arya, and A. K. Jain, “2D Structured NanoSheets of Octadecylamine Grafted Graphitic-Carbon Nitride (g-C3N4) as Lubricant Additives,” Macromol. Symp., vol. 376, no. 1, pp. 1–7, 2017, doi: 10.1002/masy.201700009. “Spanish-Number 49g,” 2023, Accessed: May 19, 2024. [Online]. Available: www.HealthLinkBC.ca/more/resources/healthlink-bc-files D. Zhu and Q. Zhou, “Novel Bi2WO6 modified by N-doped graphitic carbon nitride photocatalyst for efficient photocatalytic degradation of phenol under visible light,” Appl. Catal. B Environ., vol. 268, p. 118426, 2020, doi: 10.1016/j.apcatb.2019.118426. J. Feng et al., “A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction,” Nat. Commun., vol. 11, no. 1, pp. 1–8, 2020, doi: 10.1038/s41467-020-18143-y. M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, and R. S. C. Smart, “X-ray photoelectron spectroscopic chemical state Quantification of mixed nickel metal, oxide and hydroxide systems,” Surf. Interface Anal., vol. 41, no. 4, pp. 324–332, 2009, doi: 10.1002/sia.3026. G. Pan and Z. Sun, “Cu-doped g-C3N4 catalyst with stable Cu0 and Cu+ for enhanced amoxicillin degradation by heterogeneous electro-Fenton process at neutral pH,” Chemosphere, vol. 283, no. May, p. 131257, 2021, doi: 10.1016/j.chemosphere.2021.131257. N. Sharifpour, F. M. Moghaddam, G. Mardani, and M. Malakootian, “Evaluation of the activated carbon coated with multiwalled carbon nanotubes in removal of ciprofloxacin from aqueous solutions,” Appl. Water Sci., vol. 10, no. 6, pp. 1–17, 2020, doi: 10.1007/s13201-020-01229-9. X. Liu et al., “Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants,” Crit. Rev. Environ. Sci. Technol., vol. 51, no. 8, pp. 751–790, 2021, doi: 10.1080/10643389.2020.1734433. H. Yu, X. Jiang, Z. Shao, J. Feng, X. Yang, and Y. Liu, “Metal-Free HalfMetallicity in B-Doped gh-C3N4 Systems,” Nanoscale Res. Lett., vol. 13, pp. 0–6, 2018, doi: 10.1186/s11671-018-2473-x. C. Zhu, Q. Fang, R. Liu, W. Dong, S. Song, and Y. Shen, “Insights into the Crucial Role of Electron and Spin Structures in Heteroatom-Doped Covalent Triazine Frameworks for Removing Organic Micropollutants,” Environ. Sci. Technol., 2022, doi: 10.1021/ACS.EST.2C01781/SUPPL_FILE/ES2C01781_SI_001.PDF. J. T. Schneider, D. S. Firak, R. R. Ribeiro, and P. Peralta-Zamora, “Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations,” Phys. Chem. Chem. Phys., vol. 22, no. 27, pp. 15723–15733, 2020, doi: 10.1039/d0cp02411b. C. Murugan, K. Ranjithkumar, and A. Pandikumar, “Interfacial charge dynamics in type-II heterostructured sulfur doped-graphitic carbon nitride/bismuth tungstate as competent photoelectrocatalytic water splitting photoanode,” J. Colloid Interface Sci., vol. 602, pp. 437–451, 2021, doi: 10.1016/j.jcis.2021.05.179. Y. Rajput, P. Kumar, T. C. Zhang, D. Kumar, and M. Nemiwal, “Recent advances in g-C3N4-based photocatalysts for hydrogen evolution reactions,” Int. J. Hydrogen Energy, vol. 47, no. 91, pp. 38533–38555, 2022, doi: 10.1016/j.ijhydene.2022.09.038 M. Pourbaix, H. Zhang, and A. Pourbaix, “Presentation of an Atlas of chemical and electrochemical equilibria in the presence of a gaseous phase,” Mater. Sci. Forum, vol. 251–254, pp. 143–148, 1997, doi: 10.4028/www.scientific.net/msf.251-254.143. L. M. Torres and A. Montes-Rojas, “Conversión de potenciales entre distintos electrodos de referencia: Una analogía para facilitar su comprensión,” Boletín la Soc. Química México, vol. 11, no. 1, pp. 12–14, 2017. A. H. Johnstone, “CRC Handbook of Chemistry and Physics—69th Edition Editor in Chief R. C. Weast, CRC Press Inc., Boca Raton, Florida, 1988, pp. 2400, ISBN 0–8493–0369–5,” J. Chem. Technol. Biotechnol., vol. 50, no. 2, pp. 294–295, 1991, doi: 10.1002/jctb.280500215. Y. Cui, X. Zhang, H. Zhang, Q. Cheng, and X. Cheng, “Construction of BiOCOOH/g-C3N4 composite photocatalyst and its enhanced visible light photocatalytic degradation of amido black 10B,” Sep. Purif. Technol., vol. 210, no. June 2018, pp. 125–134, 2019, doi: 10.1016/j.seppur.2018.07.059. K. Gelderman, L. Lee, and S. W. Donne, “Flat-band potential of a semiconductor: Using the Mott-Schottky equation,” J. Chem. Educ., vol. 84, no. 4, pp. 685–688, 2007, doi: 10.1021/ed084p685. A. C. Lazanas and M. I. Prodromidis, “Electrochemical Impedance Spectroscopy � A Tutorial,” 2023, doi: 10.1021/acsmeasuresciau.2c00070. Y. Yang and Z. Bian, “Oxygen doping through oxidation causes the main active substance in g-C3N4 photocatalysis to change from holes to singlet oxygen,” Sci. Total Environ., vol. 753, p. 141908, 2021, doi: 10.1016/j.scitotenv.2020.141908. H. Cai et al., “Enhanced photoelectrochemical activity of vertically aligned ZnO-coated TiO2 nanotubes,” Appl. Phys. Lett., vol. 104, no. 5, 2014, doi:10.1063/1.4863852. J. Gao et al., “Self-Doping Surface Oxygen Vacancy-Induced Lattice Strains for Enhancing Visible Light-Driven Photocatalytic H2 Evolution over Black TiO2,” ACS Appl. Mater. Interfaces, vol. 13, no. 16, pp. 18758–18771, 2021, doi: 10.1021/acsami.1c01101. and G. V. K. Bo Shen, Xianghua Wena*, “Electrochemical oxidation of Ciprofloxacin in two 4 different processes: the electron transfer process on 5 anode surface and the indirect oxidation process in bulk 6 solutions,” 2018, doi: 10.1039/C8EM00122G. E. Kudlek, M. Dudziak, and J. Bohdziewicz, “Influence of Inorganic Ions and Organic Substances on the Degradation of Pharmaceutical Compound in Water Matrix,” Water (Switzerland), vol. 8, no. 11, 2016, doi: 10.3390/w8110532. E. A. Serna-Galvis, J. Silva-Agredo, A. M. Botero-Coy, A. Moncayo-Lasso, F. Hernández, and R. A. Torres-Palma, “Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process,” Sci. Total Environ., vol. 670, pp. 623–632, 2019, doi: 10.1016/j.scitotenv.2019.03.153. S. Y. Shaban, A. E. M. M. Ramadan, M. M. Ibrahim, F. I. Elshami, and R. van Eldik, “Square planar versus square pyramidal copper(II) complexes containing N3O moiety: Synthesis, structural characterization, kinetic and catalytic mimicking activity,” Inorganica Chim. Acta, vol. 486, no. Ii, pp. 608–616, 2019, doi: 10.1016/j.ica.2018.11.024. P. Villegas-Guzman, F. Hofer, J. Silva-Agredo, and R. A. Torres-Palma, “Role of sulfate, chloride, and nitrate anions on the degradation of fluoroquinolone antibiotics by photoelectro-Fenton,” Environ. Sci. Pollut. Res., vol. 24, no. 36, pp. 28175–28189, 2017, doi: 10.1007/s11356-017-0404-5. D. Wang et al., “Mechanism and experimental study on the photocatalytic performance of Ag/AgCl @ chiral TiO2 nanofibers photocatalyst: The impact of wastewater components,” J. Hazard. Mater., vol. 285, pp. 277–284, 2015, doi: 10.1016/j.jhazmat.2014.10.060. M. R. Awual, “Efficient phosphate removal from water for controlling eutrophication using novel composite adsorbent,” J. Clean. Prod., vol. 228, pp. 1311–1319, 2019, doi: 10.1016/j.jclepro.2019.04.325. B. Gupta, A. K. Gupta, C. S. Tiwary, and P. S. Ghosal, “A multivariate modeling and experimental realization of photocatalytic system of engineered S–C3N4/ZnO hybrid for ciprofloxacin removal: Influencing factors and degradation pathways,” Environ. Res., vol. 196, no. October 2020, p. 110390, 2021, doi: 10.1016/j.envres.2020.110390. H. Zhang, L. chao Nengzi, Z. Wang, X. Zhang, B. Li, and X. Cheng, “Construction of Bi2O3/CuNiFe LDHs composite and its enhanced photocatalytic degradation of lomefloxacin with persulfate under simulated sunlight,” J. Hazard. Mater., vol. 383, no. May 2019, 2020, doi: 10.1016/j.jhazmat.2019.121236. M. Sarafraz, M. Sadeghi, A. Yazdanbakhsh, M. M. Amini, M. Sadani, and A. Eslami, “Enhanced photocatalytic degradation of ciprofloxacin by black Ti3+/N-TiO2 under visible LED light irradiation: Kinetic, energy consumption, degradation pathway, and toxicity assessment,” Process Saf. Environ. Prot., vol. 137, pp. 261–272, 2020, doi: 10.1016/j.psep.2020.02.030. F. Du, Z. Lai, H. Tang, H. Wang, and C. Zhao, “Construction and application of BiOCl/Cu-doped Bi2S3 composites for highly efficient photocatalytic degradation of ciprofloxacin,” Chemosphere, vol. 287, no. P4, p. 132391, 2022, doi: 10.1016/j.chemosphere.2021.132391. W. Liu, J. Zhou, and J. Yao, “Shuttle-like CeO2/g-C3N4 composite combined with persulfate for the enhanced photocatalytic degradation of norfloxacinunder visible light,” Ecotoxicol. Environ. Saf., vol. 190, no. October 2019, p. 110062, 2020, doi: 10.1016/j.ecoenv.2019.110062. T. Paul, M. C. Dodd, and T. J. Strathmann, “Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: Transformation products and residual antibacterial activity,” Water Res., vol. 44, no. 10, pp. 3121–3132, 2010, doi: 10.1016/j.watres.2010.03.002. X. Liu et al., “Facile synthesis of modified carbon nitride with enhanced activity for photocatalytic degradation of atrazine,” J. Environ. Chem. Eng., vol. 9, no. 5, p. 105807, 2021, doi: 10.1016/j.jece.2021.105807. P. Rajiv, N. Mengelizadeh, G. McKay, and D. Balarak, “Photocatalytic degradation of ciprofloxacin with Fe2O3 nanoparticles loaded on graphitic carbon nitride: mineralisation, degradation mechanism and toxicity assessment,” Int. J. Environ. Anal. Chem., pp. 1–15, 2021, doi: 10.1080/03067319.2021.1890059. |
| dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.license.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
| dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.none.fl_str_mv |
121 páginas |
| dc.format.mimetype.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de Antioquia |
| dc.publisher.program.none.fl_str_mv |
Maestría en Ciencias Químicas |
| dc.publisher.department.none.fl_str_mv |
Instituto de Química |
| dc.publisher.place.none.fl_str_mv |
Medellín, Colombia |
| dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Exactas y Naturales |
| dc.publisher.branch.none.fl_str_mv |
Campus Medellín - Ciudad Universitaria |
| publisher.none.fl_str_mv |
Universidad de Antioquia |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/935405fe-86a2-42aa-b028-1b885da1be0f/download https://bibliotecadigital.udea.edu.co/bitstreams/0eb264e0-5baf-4f87-9352-6d830d10cb24/download https://bibliotecadigital.udea.edu.co/bitstreams/02231bf2-b0a7-46af-863a-20d011545630/download https://bibliotecadigital.udea.edu.co/bitstreams/d8fc6887-22bd-4189-b5df-feea2d40be2f/download https://bibliotecadigital.udea.edu.co/bitstreams/c12d64ad-22bd-4494-8441-ef1bdf762ba6/download |
| bitstream.checksum.fl_str_mv |
b76e7a76e24cf2f94b3ce0ae5ed275d0 fa52dbe481e0c405b48c297a5797fdfc 5643bfd9bcf29d560eeec56d584edaa9 a88078ffc475d5ba2bc1fbc3e5e8c01d ff4dc2532d3d6fa5502432d78eda2902 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052538899464192 |
| spelling |
Serna Galvis, Efraím AdolfoÁvila Torres, Yenny PatriciaPalacio Olarte, Rubén AlbertoLasso Escobar, Angie VanessaGrupo de Investigación en Remediación Ambiental y BiocatálisisPalma Goyes, Ricardo EnriqueLado Ribeiro, Ana Rita2025-05-22T16:11:43Z2024https://hdl.handle.net/10495/46055Currently, graphitic carbon nitrides (g-C3N4) are materials of increasing interest in the scientific community due to their stability as semiconductors and their modulable valance (VB) and conduction band (CB). However, these materials also present drawbacks, including a high rate of electron-hole recombination, low specific area, and restricted light absorption in the visible range. Modifications of g-C3N4 can change its structure and modify its electronic properties. Herein, a mild-conditions synthesis using nickel (II), manganese (II), and copper (II) was employed to form coordination compounds as a strategy to increase their absorption capability in the visible region of the electromagnetic spectrum. Additionally, as a second strategy, photoelectrodes were made by depositing these synthesized materials onto fluorine-doped oxide (FTO, which is a transparent conductor substrate), to mitigate the electron-hole recombination and improve the efficiency of photons to electrons conversion. This research work aimed to understand the effects of transition metals modification on g-C3N4. The synthesized materials were spectroscopically and electrochemically characterized. The textural properties, CB, VB, and other properties were determined, revealing the potential for degrading pharmaceuticals in wastewater, (which are recalcitrant to conventional municipal wastewater treatment processes) causing environmental harm. The proposed structure corresponds to a carbon nitride structure linked to the metal center by the lone pairs of electrons of the peripheral amines' nitrogen for the material modified with copper (II), on the contrary, the nickel (II) and manganese (II) material the metal is linked to the lone pair of electron in the tris-s-triazine nitrogen. All the materials were used to degrade pharmaceuticals in water, achieving a 55.5%, 51.8%, 55.6%, and 32,1% for Cu-g-C3N4, Mn-g-C3N4, Ni-g-C3N4, and g-C3N4 of degradation in photocatalysis and 23.7%, 18.7%, 17.5% and 21.2% for Cu-g-C3N4, Mn-g-C3N4, Ni-g-C3N4, and g-C3N4 in photoelectrocatalysis. The determination of reactive oxygen species (ROS) in the presence of ciprofloxacin confirmed the predominant role of superoxide anion radical and a minor contribution of hydroxyl radical as a degrading species. The Cu-g-C3N4 material showed the best performance at degradation of CIP by photocatalysis, subsequently, was used to make an extent of treatment with simulated hospital wastewater (SHWW).SUMMARY 15 CHAPTER 1: RESEARCH WORK BACKGROUND 17 1.1. Introduction 17 1.2. Problem statement 17 1.3. Hypothesis 19 1.4. Objectives 19 1.4.1. General objective 19 1.4.2. Specific objectives 19 1.5. Theoretical framework 19 1.5.1. Graphitic carbon nitride (g-C3N4) 20 1.5.1.1. Modifications of g-C3N4 21 1.5.2. Advanced oxidation processes (AOPs) 23 1.5.2.1. Heterogeneous photocatalysis 25 1.5.2.2. Electrochemical advanced oxidation processes (EAOPs) 27 1.5.2.2.1. Electrodes for AO 28 1.5.2.3. Photoelectrocatalysis 30 1.5.3. Contaminants of emerging concern 30 1.5.3.1. Pharmaceuticals as contaminants of emerging concern 31 CHAPTER 2. METHODOLOGICAL DESIGN 33 2.1. Chemicals 33 2.2. Carbon nitride synthesis 33 2.3. Spectroscopic characterization 35 2.4. Electrochemical characterization 36 2.5. Reaction system 37 2.5.1. Photocatalytic process 37 2.5.2. Photoelectrocatalytic process 39 2.6. Analytical techniques 40 2.6.1. Pharmaceuticals quantification 40 2.6.2. Lixiviation evaluation 40 2.6.3. Total organic carbon (TOC) analysis 40 2.6.4. Antimicrobial activity and phytotoxicity tests 41 CHAPTER 3: SYNTHESIS AND EVALUATION OF PHOTOCATALYTIC PROPERTIES OF MODIFIED CARBON NITRIDE MATERIALS: EFFECT OVER ELECTRONIC PROPERTIES 43 3.1. Introduction 43 3.2. Results and discussion 43 3.2.1. Preliminary evaluation of photocatalytic properties of the modified materials 43 3.2.2. Materials characterization enhanced with transition metals 49 3.2.2.1. Morphological and spectroscopic characterization of g-C3N4 modified with copper (II), manganese (II), and nickel (II) 49 3.2.3. Evidencing the catalytic properties of g-C3N4 modified with copper (II), manganese (II), and nickel (II) 65 3.2.4. Identification of ROS and reaction mechanism during the photocatalytic treatment 69 3.2.4.1. Role of reactive oxygen species and transition metals in the process 69 3.3. Chapter conclusion 71 CHAPTER 4: PHOTOELECTROCATALITYC PROCESSES AND THE CHANGE IN THE ELECTRON-HOLE RECOMBINATION OF MODIFIED MATERIALS 73 4.1. Introduction 73 4.2. Results and discussion 73 4.2.1. Electrochemical characterization of g-C3N4 modified with copper (II), manganese (II), and nickel (II) deposited over FTO 73 4.2.2. Evaluation of the photoelectrochemical capability of g-C3N4 modified with copper (II), manganese (II), and nickel (II) for the degradation of CIP 83 4.3. Chapter conclusion 89 CHAPTER 5: STRUCTURAL EFFECTS OF THE POLLUTANT, MATRIX EFFECT IN THE PHOTOCATALYTIC PROCESS, AND EXTENT OF TREATMENT 90 5.1. Introduction 90 5.2. Results and discussion 90 5.2.1. Stability of coordination chemistry in Cu-g-C3N4 90 5.2.2. The structural effect of pollutants in the photocatalytic degradation 92 5.2.3. Effect of a complex matrix upon photocatalysis 96 5.2.4. Extent of treatment: total carbonic carbon, antimicrobial activity evolution, and phytotoxicity of solution after treatment 98 5.3. Chapter conclusion 102 CHAPTER 6: GENERAL CONCLUSIONS AND FUTURE WORK 103 REFERENCES 104 ANEXES 119Electroquímica Ambiental y FotocatálisisCOL0125116MaestríaMagíster en Ciencias Químicas121 páginasapplication/pdfengUniversidad de AntioquiaMaestría en Ciencias QuímicasInstituto de QuímicaMedellín, ColombiaFacultad de Ciencias Exactas y NaturalesCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Drug pollution of waterContaminación del agua por drogasWater - Purification - PhotocatalysisAgua - Purificación - FotocatálisisSewage - Purification - Electrochemical treatmentAguas residuales - Purificación - Tratamiento electroquímicoCoordination compoundsCompuestos de coordinaciónPhotoelectrochemistryFotoelectroquímicaChemical decontaminationDescontaminación químicaRemediación ambientalhttp://aims.fao.org/aos/agrovoc/c_28334http://id.loc.gov/authorities/subjects/sh2023000980http://id.loc.gov/authorities/subjects/sh93004424http://id.loc.gov/authorities/subjects/sh2021015844http://id.loc.gov/authorities/subjects/sh85032243http://id.loc.gov/authorities/subjects/sh97008225ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todosInfluence of Modifications with Ni(II), Mn(II), and Cu(II) on the Photoelectrochemical Properties of g-C3N4 Deposited Over FTO and Its Use for Degrading Pharmaceuticals in WastewaterTrabajo de grado - Maestríahttp://purl.org/redcol/resource_type/TMTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/draftJ. Jia, Q. Zhang, K. Li, Y. Zhang, E. Liu, and X. Li, “Recent advances on g–C3N4–based Z-scheme photocatalysts: Structural design and photocatalytic applications,” Int. J. Hydrogen Energy, vol. 48, no. 1, pp. 196–231, 2023, doi: 10.1016/j.ijhydene.2022.09.272.S. Parsons, Advanced Oxidation Processes for Water and Wastewater Treatment, vol. 4. 2015. doi: 10.2166/9781780403076.S. C. Ameta and R. Ameta, Advanced oxidation processes for wastewater treatment: Emerging green chemical technology. 2018.I. Sirés, E. Brillas, M. A. Oturan, M. A. Rodrigo, and M. Panizza, “Electrochemical advanced oxidation processes: Today and tomorrow. A review,” Environ. Sci. Pollut. Res., vol. 21, no. 14, pp. 8336–8367, 2014, doi: 10.1007/s11356-014-2783-1.F. C. Moreira, R. A. R. Boaventura, E. Brillas, and V. J. P. Vilar, “Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters,” Appl. Catal. B Environ., vol. 202, pp. 217–261, 2017, doi: 10.1016/j.apcatb.2016.08.037.T. J. Al-Musawi et al., “Synthesis of a Doped alpha-Fe2O3/g-C3N4 Catalyst for High-Efficiency Degradation of Diazinon Contaminant from Liquid Wastes,” Magnetochemistry, vol. 8, no. 11, p. 137, Oct. 2022, doi: 10.3390/magnetochemistry8110137.P. Chen, S. Di, X. Qiu, and S. Zhu, “One-step synthesis of F-TiO2/g-C3N4 heterojunction as highly efficient visible-light-active catalysts for tetrabromobisphenol A and sulfamethazine degradation,” Appl. Surf. Sci., vol. 587, no. November 2021, p. 152889, 2022, doi: 10.1016/j.apsusc.2022.152889.J. Zhou and B. Zhu, “Novel 1D/3D CeO2/g-C3N4 catalysts for photodegradation of ciprofloxacin under visible light via dimensional regulation and heterostructure construction,” J. Phys. Chem. Solids, vol. 171, no. September, p. 111002, 2022, doi: 10.1016/j.jpcs.2022.111002.Z. Xing, Z. Wang, W. Chen, M. Zhang, X. Fu, and Y. Gao, “Degradation of levofloxacin in wastewater by photoelectric and ultrasonic synergy with TiO2/g-C3N4@AC combined electrode,” J. Environ. Manage., vol. 330, no. January, p. 117168, 2023, doi: 10.1016/j.jenvman.2022.117168.F. Yu, Y. Wang, H. Ma, and G. Dong, “Enhancing the yield of hydrogen peroxide and phenol degradation via a synergistic effect of photoelectrocatalysis using a g-C3N4/ACF electrode,” Int. J. Hydrogen Energy, vol. 43, no. 42, pp. 19500–19509, 2018, doi: 10.1016/j.ijhydene.2018.08.217.C. Zhang et al., “Photoelectrocatalytic degradation of m-chloronitrobenzene through rGO/g-C3N4/TiO2 nanotube arrays photoelectrode under visible light: Performance, DFT calculation and mechanism,” Sep. Purif. Technol., vol. 302, no. June, p. 121944, 2022, doi: 10.1016/j.seppur.2022.121944.Y. Gong et al., “Developing high-quality g-C3N4 film electrode for the photoelectrocatalytic degradation of methylene blue in water,” Chinese Chem. Lett., vol. 34, no. 3, p. 107535, 2022, doi: 10.1016/j.cclet.2022.05.049.D. S. Vavilapalli, R. G. Peri, M. B, K. Sridharan, M. S. R. Rao, and S. Singh, “Enhanced photocatalytic and photoelectrochemical performance of KBiFe2O5/g-C3N4 heterojunction photocatalyst under visible light,” Phys. B Condens. Matter, vol. 648, no. June 2022, p. 414411, 2023, doi: 10.1016/j.physb.2022.414411.A. M. S. et al., “A Contemporary Assessment on Composite Titania onto Graphitic Carbon Nitride-Based Catalyst as Photocatalyst,” J. Energy Saf. Technol., vol. 2, no. 1, pp. 21–25, 2019, doi: 10.11113/jest.v2n1.39.H. Sun et al., “High-efficient degradation of oxytetracycline by visible photoFenton process using MnFe2O4/g-C3N4: Performance and mechanisms,” Sep. Purif. Technol., vol. 299, no. May, p. 121771, 2022, doi: 10.1016/j.seppur.2022.121771.X. Yang et al., “Recent advances in metal-free CDs/g-C3N4 photocatalysts: Synthetic strategies, mechanism insight, and applications,” J. Mater. Sci. Technol., 2023, doi: 10.1016/j.jmst.2022.10.092.Z. Zhang et al., “Enhanced photocatalytic degradation of 2-chlorophenol over Z-scheme heterojunction of CdS-decorated oxygen-doped g-C3N4 under visible-light,” Appl. Catal. B Environ., vol. 324, no. December 2022, p. 122276, 2023, doi: 10.1016/j.apcatb.2022.122276.N. N. Greenwood and A. Earnshaw, Chemistry of the Elements. Elsevier, 1997. doi: 10.1016/C2009-0-30414-6.Cotton F. A., Wilkinson G., Murillo C., and Bochmann M., Advanced inorganic chemistry, vol. 6. 1999.M. Gruden-Pavlović, M. Zlatar, C. W. Schläpfer, and C. Daul, “DFT study of the Jahn-Teller effect in Cu(II) chelate complexes,” J. Mol. Struct. THEOCHEM, vol. 954, no. 1–3, pp. 80–85, 2010, doi: 10.1016/j.theochem.2010.03.031.F. Habashi, 2-Handbook of Extracive Metallurgy Volume 2. 1997.K. N. Sheaffer, Mineral commodity summaries 2023. 2023. [Online]. Available: http://pubs.er.usgs.gov/publication/mcs2023N. M. Samuels and J. P. Klinman, “2,4,5-Trihydroxyphenylalanine quinone biogenesis in the copper amine oxidase from Hansenula polymorpha with the alternate metal nickel,” Biochemistry, vol. 44, no. 43, pp. 14308–14317, 2005, doi: 10.1021/bi051176m.D. Candas and J. J. Li, “MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx,” Antioxidants Redox Signal., vol. 20, no. 10, pp. 1599–1617, 2014, doi: 10.1089/ars.2013.5305.D. Horn, H. Al-Ali, and A. Barrientos, “ Cmc1p Is a Conserved Mitochondrial Twin CX 9 C Protein Involved in Cytochrome c Oxidase Biogenesis ,” Mol. Cell. Biol., vol. 28, no. 13, pp. 4354–4364, 2008, doi: 10.1128/mcb.01920-07.S. I. Cerone, A. S. Sansinanea, S. A. Streitenberger, M. C. Garcia, and N. J. Auza, “Cytochrome c oxidase, Cu, Zn-superoxide dismutase, and ceruloplasmin activities in copper-deficient bovines,” Biol. Trace Elem. Res., vol. 73, no. 3, pp. 269–278, 2000, doi: 10.1385/BTER:73:3:269.Y. Zeng, Y. Xu, D. Zhong, J. Mou, H. Yao, and N. Zhong, “Visible-light responsive photocatalytic fuel cell with double Z-scheme heterojunction PTh/Ag3PO4/BiOI/Ti photoanode for efficient rhodamine B degradation and stable electricity generation,” Opt. Mater. (Amst)., vol. 134, no. PA, p. 113103, 2022, doi: 10.1016/j.optmat.2022.113103.Y. Huo, L. Zhang, S. Wang, and X. Wang, “Polyoxometalate@g-C3N4 nanocomposite for enhancing visible light photoelectrocatalytic performance,” Chemosphere, vol. 279, p. 130559, 2021, doi: 10.1016/j.chemosphere.2021.130559.C. F. Sanz-Navarro, S. F. Lee, S. S. Yap, C. H. Nee, and S. L. Yap, “Electrochemical stability and corrosion mechanism of fluorine-doped tin oxide film under cathodic polarization in near neutral electrolyte,” Thin Solid Films, vol. 768, no. December 2022, p. 139697, 2023, doi: 10.1016/j.tsf.2023.139697.D. Burnat et al., “Functional fluorine-doped tin oxide coating for optoelectrochemical label-free biosensors,” Sensors Actuators B Chem., vol. 367, no. March, pp. 1–12, 2022, doi: 10.1016/j.snb.2022.132145.J. E. Carrera-Crespo et al., “Unrevealing the effect of transparent fluorinedoped tin oxide (FTO) substrate and irradiance configuration to unmask the activity of FTO-BiVO4 heterojunction,” Mater. Sci. Semicond. Process., vol. 128, no. September 2020, 2021, doi: 10.1016/j.mssp.2021.105717.M. Patel, R. Kumar, K. Kishor, T. Mlsna, C. U. Pittman, and D. Mohan, “Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods,” Chem. Rev., vol. 119, no. 6, pp. 3510–3673, 2019, doi: 10.1021/acs.chemrev.8b00299.E. Palacios-Rosas and L. I. Castro-Pastrana, “Pharmaceuticals Reaching the Environment: Concepts, Evidence, and Concerns,” Handb. Environ. Chem., vol. 66, pp. 21–41, 2019, doi: 10.1007/698_2017_141.M. Ismael, “A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis,” J. Alloys Compd., vol. 846, p. 156446, 2020, doi: 10.1016/j.jallcom.2020.156446.L. Jiang et al., “Doping of graphitic carbon nitride for photocatalysis: A reveiw,” Appl. Catal. B Environ., vol. 217, pp. 388–406, 2017, doi: 10.1016/j.apcatb.2017.06.003.Z. Ding, X. Chen, M. Antonietti, and X. Wang, “Synthesis of transition metalmodified carbon nitride polymers for selective hydrocarbon oxidation,” ChemSusChem, vol. 4, no. 2, pp. 274–281, 2011, doi: 10.1002/cssc.201000149.G. Dong, Y. Zhang, Q. Pan, and J. Qiu, “Journal of Photochemistry and Photobiology C : Photochemistry Reviews A fantastic graphitic carbon nitride ( g-C3N4 ) material : Electronic structure , photocatalytic and photoelectronic properties ଝ,” "Journal Photochem. Photobiol. C Photochem. Rev., vol. 20, pp. 33–50, 2014, doi: 10.1016/j.jphotochemrev.2014.04.002.R. H. Gao, Q. Ge, N. Jiang, H. Cong, M. Liu, and Y. Q. Zhang, “Graphitic carbon nitride (g-C3N4)-based photocatalytic materials for hydrogen evolution,” Front. Chem., vol. 10, no. October, pp. 1–11, 2022, doi: 10.3389/fchem.2022.1048504.V. K. Saharan, D. V. Pinjari, P. R. Gogate, and A. B. Pandit, “Advanced Oxidation Technologies for Wastewater Treatment: An Overview,” Ind. Wastewater Treat. Recycl. Reuse, pp. 141–191, 2014, doi: 10.1016/B978-0-08-099968-5.00003-9.B. P. Chaplin, “Environmental Science Processes & Impacts Critical review of electrochemical advanced oxidation processes for water treatment applications,” vol. 1, no. 312, pp. 1182–1203, 2014, doi: 10.1039/c3em00679d.D. Sundar, P. Dharm, P. Jyoti, M. Chandrakant, and T. Kailas, “Doped graphitic carbon nitride ( g‑C3N4 ) catalysts for efficient photodegradation of tetracycline antibiotics in aquatic environments,” Environ. Sci. Pollut. Res., pp. 24919–24926, 2023, doi: 10.1007/s11356-022-19766-y.R. E. Palma-Goyes et al., “In search of the active chlorine species on Ti/ZrO2-RuO2-Sb2O3 anodes using DEMS and XPS,” Electrochim. Acta, vol. 275, pp. 265–274, 2018, doi: 10.1016/j.electacta.2018.04.114.B. Marselli, J. Garcia-Gomez, P.-A. Michaud, M. A. Rodrigo, and C. Comninellis, “Electrogeneration of Hydroxyl Radicals on Boron-Doped Diamond Electrodes,” J. Electrochem. Soc., vol. 150, no. 3, p. D79, 2003, doi: 10.1149/1.1553790.Y. T. Lin, C. Liang, and J. H. Chen, “Feasibility study of ultraviolet activated persulfate oxidation of phenol,” Chemosphere, vol. 82, no. 8, pp. 1168–1172, 2011, doi: 10.1016/j.chemosphere.2010.12.027.V. Hasija et al., “An overview on photocatalytic sulfate radical formation via doped graphitic carbon nitride for water remediation,” Curr. Opin. Chem. Eng., vol. 37, p. 100841, 2022, doi: 10.1016/j.coche.2022.100841.T. Ni et al., “Enhanced adsorption and catalytic degradation of antibiotics by porous 0D/3D Co3O4/g-C3N4 activated peroxymonosulfate: An experimental and mechanistic study,” J. Colloid Interface Sci., vol. 625, pp. 466–478, 2022, doi: 10.1016/j.jcis.2022.06.057.J. Wang et al., “Core-shell g-C3N4@ZnO composites as photoanodes with double synergistic effects for enhanced visible-light photoelectrocatalytic activities,” Appl. Catal. B Environ., vol. 217, pp. 169–180, Nov. 2017, doi: 10.1016/j.apcatb.2017.05.034.M. D. Hernando, M. Mezcua, A. R. Fernández-Alba, and D. Barceló, “Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments,” Talanta, vol. 69, no. 2 SPEC. ISS., pp. 334–342, 2006, doi: 10.1016/j.talanta.2005.09.037.M. Patel, R. Kumar, K. Kishor, T. Mlsna, C. U. Pittman, and D. Mohan, “Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods,” Chem. Rev., vol. 119, no. 6, pp. 3510–3673, 2019, doi: 10.1021/acs.chemrev.8b00299.A. J. Watkinson, E. J. Murby, D. W. Kolpin, and S. D. Costanzo, “The occurrence of antibiotics in an urban watershed: From wastewater to drinking water,” Sci. Total Environ., vol. 407, no. 8, pp. 2711–2723, 2009, doi: 10.1016/j.scitotenv.2008.11.059.A. Ayaliew and A. Islam, “Heliyon Post-treatment disinfection technologies for sustainable removal of antibiotic residues and antimicrobial resistance bacteria from hospital wastewater,” Heliyon, vol. 9, no. 4, p. e15360, 2023, doi: 10.1016/j.heliyon.2023.e15360.Q. Su, J. Sun, J. Wang, Z. Yang, W. Cheng, and S. Zhang, “Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates,” Catal. Sci. Technol., vol. 4, no. 6, pp. 1556–1562, 2014, doi: 10.1039/c3cy00921a.D. F. Mercado, P. Caregnato, L. S. Villata, and M. C. Gonzalez, “Ilex araguariensis Extract-Coated Magnetite Nanoparticles: A Sustainable Nano-adsorbent and Antioxidant,” J. Inorg. Organomet. Polym. Mater., vol. 28, no. 2, pp. 519–527, 2018, doi: 10.1007/s10904-017-0757-8.C. K. Remucal and D. Manley, “Emerging investigators series: the efficacy of chlorine photolysis as an advanced oxidation process for drinking water treatment,” Environ. Sci. Water Res. Technol., vol. 2, no. 4, pp. 565–579, 2016, doi: 10.1039/C6EW00029K.O. Fónagy, E. Szabó-Bárdos, and O. Horváth, “1,4-Benzoquinone and 1,4-hydroquinone based determination of electron and superoxide radical formed in heterogeneous photocatalytic systems,” J. Photochem. Photobiol. A Chem., vol. 407, 2021, doi: 10.1016/j.jphotochem.2020.113057.B. C. Ma, S. Ghasimi, K. Landfester, F. Vilela, and K. A. I. Zhang, “Conjugated microporous polymer nanoparticles with enhanced dispersibility and water compatibility for photocatalytic applications,” J. Mater. Chem. A, vol. 3, no. 31, pp. 16064–16071, 2015, doi: 10.1039/c5ta03820k.Z. Liu et al., “Microwave-assisted high-efficiency degradation of methyl orange by using CuFe2O4/CNT catalysts and insight into degradation mechanism,” Environ. Sci. Pollut. Res., vol. 28, no. 31, pp. 42683–42693, 2021, doi: 10.1007/s11356-021-13694-z.N. J. Hoekstra, T. Bosker, and E. A. Lantinga, “Effects of cattle dung from farms with different feeding strategies on germination and initial root growth of cress (Lepidium sativum L.),” Agric. Ecosyst. Environ., vol. 93, no. 1–3, pp. 189–196, 2002, doi: 10.1016/S0167-8809(01)00348-6.Y. Zheng et al., “Molecule-Level g-C3N4 Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions,” J. Am. Chem. Soc., vol. 139, no. 9, pp. 3336–3339, 2017, doi: 10.1021/jacs.6b13100.N. Kraupner et al., “Selective concentration for ciprofloxacin resistance in Escherichia coli grown in complex aquatic bacterial biofilms,” Environ. Int., vol. 116, no. April, pp. 255–268, 2018, doi: 10.1016/j.envint.2018.04.029.A. Ibrahim, S. Daood, and E. Sulliman, “Quantum Calculations of pKa values for Some Amine Compounds,” 2020, doi: 10.4108/eai.28-6-2020.2297886.S. P. Sellers, B. J. Korte, J. P. Fitzgerald, W. M. Reiff, and G. T. Yee, “Canted ferromagnetism and other magnetic phenomena in square- planar, neutral manganese(II) and iron(II) octaethyltetraazaporphyrins,” J. Am. Chem. Soc., vol. 120, no. 19, pp. 4662–4670, 1998, doi: 10.1021/ja973787a.I. Shimizu et al., “Tetrahedral Copper(II) Complexes with a Labile Coordination Site Supported by a Tris-tetramethylguanidinato Ligand,” Inorg. Chem., vol. 56, no. 16, pp. 9634–9645, 2017, doi: 10.1021/acs.inorgchem.7b01154.M. J. Muñoz-Batista, L. Andrini, F. G. Requejo, M. N. Gómez-Cerezo, M. Fernández-García, and A. Kubacka, “Sunlight active g-C3N4-based Mn+ (M[dbnd]Cu, Ni, Zn, Mn) – promoted catalysts: Sharing of nitrogen atoms as a door for optimizing photo-activity,” Mol. Catal., vol. 484, no. October, p. 110725, 2020, doi: 10.1016/j.mcat.2019.110725.F. Li, L. Zhang, D. G. Evans, and X. Duan, “Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 244, no. 1–3, pp. 169–177, 2004, doi: 10.1016/j.colsurfa.2004.06.022.F. Fina, S. K. Callear, G. M. Carins, and J. T. S. Irvine, “Structural investigation of graphitic carbon nitride via XRD and neutron diffraction,” Chem. Mater., vol. 27, no. 7, pp. 2612–2618, 2015, doi: 10.1021/acs.chemmater.5b00411.L. Ge, C. Han, J. Liu, and Y. Li, “Enhanced visible light photocatalytic activity of novel polymeric g-C 3N4 loaded with Ag nanoparticles,” Appl. Catal. A Gen., vol. 409–410, pp. 215–222, 2011, doi: 10.1016/j.apcata.2011.10.006.A. Kumar, G. D. Thakre, P. K. Arya, and A. K. Jain, “2D Structured NanoSheets of Octadecylamine Grafted Graphitic-Carbon Nitride (g-C3N4) as Lubricant Additives,” Macromol. Symp., vol. 376, no. 1, pp. 1–7, 2017, doi: 10.1002/masy.201700009.“Spanish-Number 49g,” 2023, Accessed: May 19, 2024. [Online]. Available: www.HealthLinkBC.ca/more/resources/healthlink-bc-filesD. Zhu and Q. Zhou, “Novel Bi2WO6 modified by N-doped graphitic carbon nitride photocatalyst for efficient photocatalytic degradation of phenol under visible light,” Appl. Catal. B Environ., vol. 268, p. 118426, 2020, doi: 10.1016/j.apcatb.2019.118426.J. Feng et al., “A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction,” Nat. Commun., vol. 11, no. 1, pp. 1–8, 2020, doi: 10.1038/s41467-020-18143-y.M. C. Biesinger, B. P. Payne, L. W. M. Lau, A. Gerson, and R. S. C. Smart, “X-ray photoelectron spectroscopic chemical state Quantification of mixed nickel metal, oxide and hydroxide systems,” Surf. Interface Anal., vol. 41, no. 4, pp. 324–332, 2009, doi: 10.1002/sia.3026.G. Pan and Z. Sun, “Cu-doped g-C3N4 catalyst with stable Cu0 and Cu+ for enhanced amoxicillin degradation by heterogeneous electro-Fenton process at neutral pH,” Chemosphere, vol. 283, no. May, p. 131257, 2021, doi: 10.1016/j.chemosphere.2021.131257.N. Sharifpour, F. M. Moghaddam, G. Mardani, and M. Malakootian, “Evaluation of the activated carbon coated with multiwalled carbon nanotubes in removal of ciprofloxacin from aqueous solutions,” Appl. Water Sci., vol. 10, no. 6, pp. 1–17, 2020, doi: 10.1007/s13201-020-01229-9.X. Liu et al., “Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants,” Crit. Rev. Environ. Sci. Technol., vol. 51, no. 8, pp. 751–790, 2021, doi: 10.1080/10643389.2020.1734433.H. Yu, X. Jiang, Z. Shao, J. Feng, X. Yang, and Y. Liu, “Metal-Free HalfMetallicity in B-Doped gh-C3N4 Systems,” Nanoscale Res. Lett., vol. 13, pp. 0–6, 2018, doi: 10.1186/s11671-018-2473-x.C. Zhu, Q. Fang, R. Liu, W. Dong, S. Song, and Y. Shen, “Insights into the Crucial Role of Electron and Spin Structures in Heteroatom-Doped Covalent Triazine Frameworks for Removing Organic Micropollutants,” Environ. Sci. Technol., 2022, doi: 10.1021/ACS.EST.2C01781/SUPPL_FILE/ES2C01781_SI_001.PDF.J. T. Schneider, D. S. Firak, R. R. Ribeiro, and P. Peralta-Zamora, “Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations,” Phys. Chem. Chem. Phys., vol. 22, no. 27, pp. 15723–15733, 2020, doi: 10.1039/d0cp02411b.C. Murugan, K. Ranjithkumar, and A. Pandikumar, “Interfacial charge dynamics in type-II heterostructured sulfur doped-graphitic carbon nitride/bismuth tungstate as competent photoelectrocatalytic water splitting photoanode,” J. Colloid Interface Sci., vol. 602, pp. 437–451, 2021, doi: 10.1016/j.jcis.2021.05.179.Y. Rajput, P. Kumar, T. C. Zhang, D. Kumar, and M. Nemiwal, “Recent advances in g-C3N4-based photocatalysts for hydrogen evolution reactions,” Int. J. Hydrogen Energy, vol. 47, no. 91, pp. 38533–38555, 2022, doi: 10.1016/j.ijhydene.2022.09.038M. Pourbaix, H. Zhang, and A. Pourbaix, “Presentation of an Atlas of chemical and electrochemical equilibria in the presence of a gaseous phase,” Mater. Sci. Forum, vol. 251–254, pp. 143–148, 1997, doi: 10.4028/www.scientific.net/msf.251-254.143.L. M. Torres and A. Montes-Rojas, “Conversión de potenciales entre distintos electrodos de referencia: Una analogía para facilitar su comprensión,” Boletín la Soc. Química México, vol. 11, no. 1, pp. 12–14, 2017.A. H. Johnstone, “CRC Handbook of Chemistry and Physics—69th Edition Editor in Chief R. C. Weast, CRC Press Inc., Boca Raton, Florida, 1988, pp. 2400, ISBN 0–8493–0369–5,” J. Chem. Technol. Biotechnol., vol. 50, no. 2, pp. 294–295, 1991, doi: 10.1002/jctb.280500215.Y. Cui, X. Zhang, H. Zhang, Q. Cheng, and X. Cheng, “Construction of BiOCOOH/g-C3N4 composite photocatalyst and its enhanced visible light photocatalytic degradation of amido black 10B,” Sep. Purif. Technol., vol. 210, no. June 2018, pp. 125–134, 2019, doi: 10.1016/j.seppur.2018.07.059.K. Gelderman, L. Lee, and S. W. Donne, “Flat-band potential of a semiconductor: Using the Mott-Schottky equation,” J. Chem. Educ., vol. 84, no. 4, pp. 685–688, 2007, doi: 10.1021/ed084p685.A. C. Lazanas and M. I. Prodromidis, “Electrochemical Impedance Spectroscopy � A Tutorial,” 2023, doi: 10.1021/acsmeasuresciau.2c00070.Y. Yang and Z. Bian, “Oxygen doping through oxidation causes the main active substance in g-C3N4 photocatalysis to change from holes to singlet oxygen,” Sci. Total Environ., vol. 753, p. 141908, 2021, doi: 10.1016/j.scitotenv.2020.141908.H. Cai et al., “Enhanced photoelectrochemical activity of vertically aligned ZnO-coated TiO2 nanotubes,” Appl. Phys. Lett., vol. 104, no. 5, 2014, doi:10.1063/1.4863852.J. Gao et al., “Self-Doping Surface Oxygen Vacancy-Induced Lattice Strains for Enhancing Visible Light-Driven Photocatalytic H2 Evolution over Black TiO2,” ACS Appl. Mater. Interfaces, vol. 13, no. 16, pp. 18758–18771, 2021, doi: 10.1021/acsami.1c01101.and G. V. K. Bo Shen, Xianghua Wena*, “Electrochemical oxidation of Ciprofloxacin in two 4 different processes: the electron transfer process on 5 anode surface and the indirect oxidation process in bulk 6 solutions,” 2018, doi: 10.1039/C8EM00122G.E. Kudlek, M. Dudziak, and J. Bohdziewicz, “Influence of Inorganic Ions and Organic Substances on the Degradation of Pharmaceutical Compound in Water Matrix,” Water (Switzerland), vol. 8, no. 11, 2016, doi: 10.3390/w8110532.E. A. Serna-Galvis, J. Silva-Agredo, A. M. Botero-Coy, A. Moncayo-Lasso, F. Hernández, and R. A. Torres-Palma, “Effective elimination of fifteen relevant pharmaceuticals in hospital wastewater from Colombia by combination of a biological system with a sonochemical process,” Sci. Total Environ., vol. 670, pp. 623–632, 2019, doi: 10.1016/j.scitotenv.2019.03.153.S. Y. Shaban, A. E. M. M. Ramadan, M. M. Ibrahim, F. I. Elshami, and R. van Eldik, “Square planar versus square pyramidal copper(II) complexes containing N3O moiety: Synthesis, structural characterization, kinetic and catalytic mimicking activity,” Inorganica Chim. Acta, vol. 486, no. Ii, pp. 608–616, 2019, doi: 10.1016/j.ica.2018.11.024.P. Villegas-Guzman, F. Hofer, J. Silva-Agredo, and R. A. Torres-Palma, “Role of sulfate, chloride, and nitrate anions on the degradation of fluoroquinolone antibiotics by photoelectro-Fenton,” Environ. Sci. Pollut. Res., vol. 24, no. 36, pp. 28175–28189, 2017, doi: 10.1007/s11356-017-0404-5.D. Wang et al., “Mechanism and experimental study on the photocatalytic performance of Ag/AgCl @ chiral TiO2 nanofibers photocatalyst: The impact of wastewater components,” J. Hazard. Mater., vol. 285, pp. 277–284, 2015, doi: 10.1016/j.jhazmat.2014.10.060.M. R. Awual, “Efficient phosphate removal from water for controlling eutrophication using novel composite adsorbent,” J. Clean. Prod., vol. 228, pp. 1311–1319, 2019, doi: 10.1016/j.jclepro.2019.04.325.B. Gupta, A. K. Gupta, C. S. Tiwary, and P. S. Ghosal, “A multivariate modeling and experimental realization of photocatalytic system of engineered S–C3N4/ZnO hybrid for ciprofloxacin removal: Influencing factors and degradation pathways,” Environ. Res., vol. 196, no. October 2020, p. 110390, 2021, doi: 10.1016/j.envres.2020.110390.H. Zhang, L. chao Nengzi, Z. Wang, X. Zhang, B. Li, and X. Cheng, “Construction of Bi2O3/CuNiFe LDHs composite and its enhanced photocatalytic degradation of lomefloxacin with persulfate under simulated sunlight,” J. Hazard. Mater., vol. 383, no. May 2019, 2020, doi: 10.1016/j.jhazmat.2019.121236.M. Sarafraz, M. Sadeghi, A. Yazdanbakhsh, M. M. Amini, M. Sadani, and A. Eslami, “Enhanced photocatalytic degradation of ciprofloxacin by black Ti3+/N-TiO2 under visible LED light irradiation: Kinetic, energy consumption, degradation pathway, and toxicity assessment,” Process Saf. Environ. Prot., vol. 137, pp. 261–272, 2020, doi: 10.1016/j.psep.2020.02.030.F. Du, Z. Lai, H. Tang, H. Wang, and C. Zhao, “Construction and application of BiOCl/Cu-doped Bi2S3 composites for highly efficient photocatalytic degradation of ciprofloxacin,” Chemosphere, vol. 287, no. P4, p. 132391, 2022, doi: 10.1016/j.chemosphere.2021.132391.W. Liu, J. Zhou, and J. Yao, “Shuttle-like CeO2/g-C3N4 composite combined with persulfate for the enhanced photocatalytic degradation of norfloxacinunder visible light,” Ecotoxicol. Environ. Saf., vol. 190, no. October 2019, p. 110062, 2020, doi: 10.1016/j.ecoenv.2019.110062.T. Paul, M. C. Dodd, and T. J. Strathmann, “Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: Transformation products and residual antibacterial activity,” Water Res., vol. 44, no. 10, pp. 3121–3132, 2010, doi: 10.1016/j.watres.2010.03.002.X. Liu et al., “Facile synthesis of modified carbon nitride with enhanced activity for photocatalytic degradation of atrazine,” J. Environ. Chem. Eng., vol. 9, no. 5, p. 105807, 2021, doi: 10.1016/j.jece.2021.105807.P. Rajiv, N. Mengelizadeh, G. McKay, and D. Balarak, “Photocatalytic degradation of ciprofloxacin with Fe2O3 nanoparticles loaded on graphitic carbon nitride: mineralisation, degradation mechanism and toxicity assessment,” Int. J. Environ. Anal. Chem., pp. 1–15, 2021, doi: 10.1080/03067319.2021.1890059.Publication50.000.000LICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/935405fe-86a2-42aa-b028-1b885da1be0f/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD52falseAnonymousREADORIGINALLassoAngie_2024_PhotoelectrochemicalDegradingPharmaceuticals.pdfLassoAngie_2024_PhotoelectrochemicalDegradingPharmaceuticals.pdfapplication/pdf3766883https://bibliotecadigital.udea.edu.co/bitstreams/0eb264e0-5baf-4f87-9352-6d830d10cb24/downloadfa52dbe481e0c405b48c297a5797fdfcMD55trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/02231bf2-b0a7-46af-863a-20d011545630/download5643bfd9bcf29d560eeec56d584edaa9MD54falseAnonymousREADTEXTLassoAngie_2024_PhotoelectrochemicalDegradingPharmaceuticals.pdf.txtLassoAngie_2024_PhotoelectrochemicalDegradingPharmaceuticals.pdf.txtExtracted texttext/plain100725https://bibliotecadigital.udea.edu.co/bitstreams/d8fc6887-22bd-4189-b5df-feea2d40be2f/downloada88078ffc475d5ba2bc1fbc3e5e8c01dMD56falseAnonymousREADTHUMBNAILLassoAngie_2024_PhotoelectrochemicalDegradingPharmaceuticals.pdf.jpgLassoAngie_2024_PhotoelectrochemicalDegradingPharmaceuticals.pdf.jpgGenerated Thumbnailimage/jpeg7215https://bibliotecadigital.udea.edu.co/bitstreams/c12d64ad-22bd-4494-8441-ef1bdf762ba6/downloadff4dc2532d3d6fa5502432d78eda2902MD57falseAnonymousREAD10495/46055oai:bibliotecadigital.udea.edu.co:10495/460552025-07-11 12:20:08.786http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |
