Normal subdigroups and the isomorphismtheorems for digroups

ABSTRACT: We discuss the notion of normality of a sub-object in the category of digroups. This allows us to define quotient digroups, and then establish the corresponding analogues of the classical Isomorphism Theorems.

Autores:
Ongay Larios, Fausto Antonio
Velásquez Ossa, Raúl Eduardo
Wills Toro, Luis Alberto
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/22162
Acceso en línea:
http://hdl.handle.net/10495/22162
http://admjournal.luguniv.edu.ua/index.php/adm/article/view/191
Palabra clave:
Isomorfismo (matemáticas)
Isomorphisms (Mathematics)
Subgrupos
Teoremas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
id UDEA2_ecfa2b27a5ba78a861e42e03edf5f279
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/22162
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Normal subdigroups and the isomorphismtheorems for digroups
title Normal subdigroups and the isomorphismtheorems for digroups
spellingShingle Normal subdigroups and the isomorphismtheorems for digroups
Isomorfismo (matemáticas)
Isomorphisms (Mathematics)
Subgrupos
Teoremas
title_short Normal subdigroups and the isomorphismtheorems for digroups
title_full Normal subdigroups and the isomorphismtheorems for digroups
title_fullStr Normal subdigroups and the isomorphismtheorems for digroups
title_full_unstemmed Normal subdigroups and the isomorphismtheorems for digroups
title_sort Normal subdigroups and the isomorphismtheorems for digroups
dc.creator.fl_str_mv Ongay Larios, Fausto Antonio
Velásquez Ossa, Raúl Eduardo
Wills Toro, Luis Alberto
dc.contributor.author.none.fl_str_mv Ongay Larios, Fausto Antonio
Velásquez Ossa, Raúl Eduardo
Wills Toro, Luis Alberto
dc.contributor.researchgroup.spa.fl_str_mv Álgebra U de A
dc.subject.lemb.none.fl_str_mv Isomorfismo (matemáticas)
Isomorphisms (Mathematics)
topic Isomorfismo (matemáticas)
Isomorphisms (Mathematics)
Subgrupos
Teoremas
dc.subject.proposal.spa.fl_str_mv Subgrupos
Teoremas
description ABSTRACT: We discuss the notion of normality of a sub-object in the category of digroups. This allows us to define quotient digroups, and then establish the corresponding analogues of the classical Isomorphism Theorems.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2021-09-04T00:14:27Z
dc.date.available.none.fl_str_mv 2021-09-04T00:14:27Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1726-3255
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/22162
dc.identifier.eissn.none.fl_str_mv 2415-721X
dc.identifier.url.spa.fl_str_mv http://admjournal.luguniv.edu.ua/index.php/adm/article/view/191
identifier_str_mv 1726-3255
2415-721X
url http://hdl.handle.net/10495/22162
http://admjournal.luguniv.edu.ua/index.php/adm/article/view/191
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Algebra Discret. Math.
dc.relation.citationendpage.spa.fl_str_mv 283
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 262
dc.relation.citationvolume.spa.fl_str_mv 22
dc.relation.ispartofjournal.spa.fl_str_mv Algebra and Discrete Mathematics
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 22
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Lugansk National Taras Shevchenko University
dc.publisher.place.spa.fl_str_mv Luhansk, Ucrania
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/f4d438f9-a9a4-4e5e-852b-fd723a037f18/download
https://bibliotecadigital.udea.edu.co/bitstreams/3ef1437c-01b6-463f-9957-5af4a775f6af/download
https://bibliotecadigital.udea.edu.co/bitstreams/cc6ef301-087d-4dee-a022-1e0d50fdc5ee/download
https://bibliotecadigital.udea.edu.co/bitstreams/8e461f0c-0210-494b-ae58-a699ba30880d/download
https://bibliotecadigital.udea.edu.co/bitstreams/4a142423-add6-40d4-ad32-0bd287ef08f3/download
bitstream.checksum.fl_str_mv 80f510e9a2fc341fb6af6f81059b7027
e2060682c9c70d4d30c83c51448f4eed
8a4605be74aa9ea9d79846c1fba20a33
aa167677b261729a45ef64634fe966f0
1a2413ad886cf9029f301741cf7f2c63
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052521817112576
spelling Ongay Larios, Fausto AntonioVelásquez Ossa, Raúl EduardoWills Toro, Luis AlbertoÁlgebra U de A2021-09-04T00:14:27Z2021-09-04T00:14:27Z20161726-3255http://hdl.handle.net/10495/221622415-721Xhttp://admjournal.luguniv.edu.ua/index.php/adm/article/view/191ABSTRACT: We discuss the notion of normality of a sub-object in the category of digroups. This allows us to define quotient digroups, and then establish the corresponding analogues of the classical Isomorphism Theorems.COL008689622application/pdfengLugansk National Taras Shevchenko UniversityLuhansk, Ucraniahttp://creativecommons.org/licenses/by-nc-sa/2.5/co/https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Normal subdigroups and the isomorphismtheorems for digroupsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionIsomorfismo (matemáticas)Isomorphisms (Mathematics)SubgruposTeoremasAlgebra Discret. Math.283226222Algebra and Discrete MathematicsPublicationORIGINALVelásquezRaúl_2016_SubdigroupsIsomorphismTheorems.pdfVelásquezRaúl_2016_SubdigroupsIsomorphismTheorems.pdfArtículo de investigaciónapplication/pdf403540https://bibliotecadigital.udea.edu.co/bitstreams/f4d438f9-a9a4-4e5e-852b-fd723a037f18/download80f510e9a2fc341fb6af6f81059b7027MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstreams/3ef1437c-01b6-463f-9957-5af4a775f6af/downloade2060682c9c70d4d30c83c51448f4eedMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/cc6ef301-087d-4dee-a022-1e0d50fdc5ee/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTVelásquezRaúl_2016_SubdigroupsIsomorphismTheorems.pdf.txtVelásquezRaúl_2016_SubdigroupsIsomorphismTheorems.pdf.txtExtracted texttext/plain46233https://bibliotecadigital.udea.edu.co/bitstreams/8e461f0c-0210-494b-ae58-a699ba30880d/downloadaa167677b261729a45ef64634fe966f0MD54falseAnonymousREADTHUMBNAILVelásquezRaúl_2016_SubdigroupsIsomorphismTheorems.pdf.jpgVelásquezRaúl_2016_SubdigroupsIsomorphismTheorems.pdf.jpgGenerated Thumbnailimage/jpeg8858https://bibliotecadigital.udea.edu.co/bitstreams/4a142423-add6-40d4-ad32-0bd287ef08f3/download1a2413ad886cf9029f301741cf7f2c63MD55falseAnonymousREAD10495/22162oai:bibliotecadigital.udea.edu.co:10495/221622025-03-26 23:43:49.569http://creativecommons.org/licenses/by-nc-sa/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=