Nonintrusive method based on neural networks for video quality of experience assessment
ABSTRACT: The measurement and evaluation of the QoE (Quality of Experience) have become one of the main focuses in the telecommunications to provide services with the expected quality for their users.However, factors like the network parameters and codification can affect the quality of video, limit...
- Autores:
-
Gaviria Gómez, Natalia
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/7912
- Acceso en línea:
- http://hdl.handle.net/10495/7912
http://dx.doi.org/10.1155/2016/1730814
- Palabra clave:
- Quality of service
Complex networks
Mean square error
Neural networks
Quality control
Video signal processing
Calidad del servicio
Control de calidad
Procesamiento de señales
Redes neurales
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by/2.5/co/
| id |
UDEA2_eb76bf08a9bf36431d9eb941748121af |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/7912 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Nonintrusive method based on neural networks for video quality of experience assessment |
| title |
Nonintrusive method based on neural networks for video quality of experience assessment |
| spellingShingle |
Nonintrusive method based on neural networks for video quality of experience assessment Quality of service Complex networks Mean square error Neural networks Quality control Video signal processing Calidad del servicio Control de calidad Procesamiento de señales Redes neurales |
| title_short |
Nonintrusive method based on neural networks for video quality of experience assessment |
| title_full |
Nonintrusive method based on neural networks for video quality of experience assessment |
| title_fullStr |
Nonintrusive method based on neural networks for video quality of experience assessment |
| title_full_unstemmed |
Nonintrusive method based on neural networks for video quality of experience assessment |
| title_sort |
Nonintrusive method based on neural networks for video quality of experience assessment |
| dc.creator.fl_str_mv |
Gaviria Gómez, Natalia |
| dc.contributor.author.none.fl_str_mv |
Gaviria Gómez, Natalia |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Telecomunicaciones Aplicadas (GITA) |
| dc.subject.none.fl_str_mv |
Quality of service Complex networks Mean square error Neural networks Quality control Video signal processing Calidad del servicio Control de calidad Procesamiento de señales Redes neurales |
| topic |
Quality of service Complex networks Mean square error Neural networks Quality control Video signal processing Calidad del servicio Control de calidad Procesamiento de señales Redes neurales |
| description |
ABSTRACT: The measurement and evaluation of the QoE (Quality of Experience) have become one of the main focuses in the telecommunications to provide services with the expected quality for their users.However, factors like the network parameters and codification can affect the quality of video, limiting the correlation between the objective and subjective metrics. The above increases the complexity to evaluate the real quality of video perceived by users. In this paper, a model based on artificial neural networks such as BPNNs (Backpropagation Neural Networks) and the RNNs (RandomNeural Networks) is applied to evaluate the subjective qualitymetrics MOS (Mean Opinion Score) and the PSNR (Peak Signal Noise Ratio), SSIM (Structural Similarity Index Metric), VQM (Video Quality Metric), and QIBF (Quality Index Based Frame). The proposed model allows establishing the QoS (Quality of Service) based in the strategy Diffserv.The metrics were analyzed through Pearson’s and Spearman’s correlation coefficients, RMSE (Root Mean Square Error), and outliers rate. Correlation values greater than 90% were obtained for all the evaluated metrics. |
| publishDate |
2016 |
| dc.date.issued.none.fl_str_mv |
2016 |
| dc.date.accessioned.none.fl_str_mv |
2017-08-10T19:58:25Z |
| dc.date.available.none.fl_str_mv |
2017-08-10T19:58:25Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Botia, D. J. & Gómez, N. (2016). Nonintrusive method based on neural networks for video quality of experience assessment. Advances in Multimedia, 2016, 1-17. |
| dc.identifier.issn.none.fl_str_mv |
1687-5680 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/7912 |
| dc.identifier.doi.none.fl_str_mv |
http://dx.doi.org/10.1155/2016/1730814 |
| dc.identifier.eissn.none.fl_str_mv |
1687-5699 |
| identifier_str_mv |
Botia, D. J. & Gómez, N. (2016). Nonintrusive method based on neural networks for video quality of experience assessment. Advances in Multimedia, 2016, 1-17. 1687-5680 1687-5699 |
| url |
http://hdl.handle.net/10495/7912 http://dx.doi.org/10.1155/2016/1730814 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.citationendpage.spa.fl_str_mv |
17 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
2016 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Advances in Multimedia |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.rights.accessrights.*.fl_str_mv |
Atribución 2.5 Colombia (CC BY 2.5 CO) |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/co/ https://creativecommons.org/licenses/by/4.0/ Atribución 2.5 Colombia (CC BY 2.5 CO) http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
16 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Hindawi Publishing Corporation |
| dc.publisher.place.spa.fl_str_mv |
Reino Unido |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/a069f496-9433-4c37-87c5-7a29bc09ad71/download https://bibliotecadigital.udea.edu.co/bitstreams/752ad869-2bc8-4d71-82a4-2c8756b4d7e8/download https://bibliotecadigital.udea.edu.co/bitstreams/8a3198a5-8c07-4270-8076-a421883e6dfe/download https://bibliotecadigital.udea.edu.co/bitstreams/bbd4cc5e-f35b-4b8f-b919-51b5f1fd4d6e/download https://bibliotecadigital.udea.edu.co/bitstreams/fc91f937-b34b-45d7-995c-ab95f47a13e7/download https://bibliotecadigital.udea.edu.co/bitstreams/f6317827-195a-4b60-87cb-1f65a5c54373/download https://bibliotecadigital.udea.edu.co/bitstreams/8d8a6733-beac-4c42-b7e0-ad3cd9a44336/download |
| bitstream.checksum.fl_str_mv |
f01c026d245137aa09f8e158216464db 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 8a4605be74aa9ea9d79846c1fba20a33 d628db1c413fbb76c8df751b82fc4c0a 7fcca2210b5c7b6ff0d6ff5414e4faa9 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052595936755712 |
| spelling |
Gaviria Gómez, NataliaGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)2017-08-10T19:58:25Z2017-08-10T19:58:25Z2016Botia, D. J. & Gómez, N. (2016). Nonintrusive method based on neural networks for video quality of experience assessment. Advances in Multimedia, 2016, 1-17.1687-5680http://hdl.handle.net/10495/7912http://dx.doi.org/10.1155/2016/17308141687-5699ABSTRACT: The measurement and evaluation of the QoE (Quality of Experience) have become one of the main focuses in the telecommunications to provide services with the expected quality for their users.However, factors like the network parameters and codification can affect the quality of video, limiting the correlation between the objective and subjective metrics. The above increases the complexity to evaluate the real quality of video perceived by users. In this paper, a model based on artificial neural networks such as BPNNs (Backpropagation Neural Networks) and the RNNs (RandomNeural Networks) is applied to evaluate the subjective qualitymetrics MOS (Mean Opinion Score) and the PSNR (Peak Signal Noise Ratio), SSIM (Structural Similarity Index Metric), VQM (Video Quality Metric), and QIBF (Quality Index Based Frame). The proposed model allows establishing the QoS (Quality of Service) based in the strategy Diffserv.The metrics were analyzed through Pearson’s and Spearman’s correlation coefficients, RMSE (Root Mean Square Error), and outliers rate. Correlation values greater than 90% were obtained for all the evaluated metrics.16application/pdfengHindawi Publishing CorporationReino Unidohttps://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/Atribución 2.5 Colombia (CC BY 2.5 CO)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Quality of serviceComplex networksMean square errorNeural networksQuality controlVideo signal processingCalidad del servicioControl de calidadProcesamiento de señalesRedes neuralesNonintrusive method based on neural networks for video quality of experience assessmentArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion1712016Advances in MultimediaPublicationORIGINALGaviria_Natalia_2016_NonintrusiveMethod.pdfGaviria_Natalia_2016_NonintrusiveMethod.pdfArtículo de investigaciónapplication/pdf3008764https://bibliotecadigital.udea.edu.co/bitstreams/a069f496-9433-4c37-87c5-7a29bc09ad71/downloadf01c026d245137aa09f8e158216464dbMD51trueAnonymousREADCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstreams/752ad869-2bc8-4d71-82a4-2c8756b4d7e8/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/8a3198a5-8c07-4270-8076-a421883e6dfe/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/bbd4cc5e-f35b-4b8f-b919-51b5f1fd4d6e/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/fc91f937-b34b-45d7-995c-ab95f47a13e7/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADTEXTGaviria_Natalia_2016_NonintrusiveMethod.pdf.txtGaviria_Natalia_2016_NonintrusiveMethod.pdf.txtExtracted texttext/plain74637https://bibliotecadigital.udea.edu.co/bitstreams/f6317827-195a-4b60-87cb-1f65a5c54373/downloadd628db1c413fbb76c8df751b82fc4c0aMD56falseAnonymousREADTHUMBNAILGaviria_Natalia_2016_NonintrusiveMethod.pdf.jpgGaviria_Natalia_2016_NonintrusiveMethod.pdf.jpgGenerated Thumbnailimage/jpeg13322https://bibliotecadigital.udea.edu.co/bitstreams/8d8a6733-beac-4c42-b7e0-ad3cd9a44336/download7fcca2210b5c7b6ff0d6ff5414e4faa9MD57falseAnonymousREAD10495/7912oai:bibliotecadigital.udea.edu.co:10495/79122025-03-27 00:48:30.305https://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
