Nonintrusive method based on neural networks for video quality of experience assessment

ABSTRACT: The measurement and evaluation of the QoE (Quality of Experience) have become one of the main focuses in the telecommunications to provide services with the expected quality for their users.However, factors like the network parameters and codification can affect the quality of video, limit...

Full description

Autores:
Gaviria Gómez, Natalia
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/7912
Acceso en línea:
http://hdl.handle.net/10495/7912
http://dx.doi.org/10.1155/2016/1730814
Palabra clave:
Quality of service
Complex networks
Mean square error
Neural networks
Quality control
Video signal processing
Calidad del servicio
Control de calidad
Procesamiento de señales
Redes neurales
Rights
openAccess
License
https://creativecommons.org/licenses/by/2.5/co/
id UDEA2_eb76bf08a9bf36431d9eb941748121af
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/7912
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Nonintrusive method based on neural networks for video quality of experience assessment
title Nonintrusive method based on neural networks for video quality of experience assessment
spellingShingle Nonintrusive method based on neural networks for video quality of experience assessment
Quality of service
Complex networks
Mean square error
Neural networks
Quality control
Video signal processing
Calidad del servicio
Control de calidad
Procesamiento de señales
Redes neurales
title_short Nonintrusive method based on neural networks for video quality of experience assessment
title_full Nonintrusive method based on neural networks for video quality of experience assessment
title_fullStr Nonintrusive method based on neural networks for video quality of experience assessment
title_full_unstemmed Nonintrusive method based on neural networks for video quality of experience assessment
title_sort Nonintrusive method based on neural networks for video quality of experience assessment
dc.creator.fl_str_mv Gaviria Gómez, Natalia
dc.contributor.author.none.fl_str_mv Gaviria Gómez, Natalia
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Telecomunicaciones Aplicadas (GITA)
dc.subject.none.fl_str_mv Quality of service
Complex networks
Mean square error
Neural networks
Quality control
Video signal processing
Calidad del servicio
Control de calidad
Procesamiento de señales
Redes neurales
topic Quality of service
Complex networks
Mean square error
Neural networks
Quality control
Video signal processing
Calidad del servicio
Control de calidad
Procesamiento de señales
Redes neurales
description ABSTRACT: The measurement and evaluation of the QoE (Quality of Experience) have become one of the main focuses in the telecommunications to provide services with the expected quality for their users.However, factors like the network parameters and codification can affect the quality of video, limiting the correlation between the objective and subjective metrics. The above increases the complexity to evaluate the real quality of video perceived by users. In this paper, a model based on artificial neural networks such as BPNNs (Backpropagation Neural Networks) and the RNNs (RandomNeural Networks) is applied to evaluate the subjective qualitymetrics MOS (Mean Opinion Score) and the PSNR (Peak Signal Noise Ratio), SSIM (Structural Similarity Index Metric), VQM (Video Quality Metric), and QIBF (Quality Index Based Frame). The proposed model allows establishing the QoS (Quality of Service) based in the strategy Diffserv.The metrics were analyzed through Pearson’s and Spearman’s correlation coefficients, RMSE (Root Mean Square Error), and outliers rate. Correlation values greater than 90% were obtained for all the evaluated metrics.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2017-08-10T19:58:25Z
dc.date.available.none.fl_str_mv 2017-08-10T19:58:25Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Botia, D. J. & Gómez, N. (2016). Nonintrusive method based on neural networks for video quality of experience assessment. Advances in Multimedia, 2016, 1-17.
dc.identifier.issn.none.fl_str_mv 1687-5680
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10495/7912
dc.identifier.doi.none.fl_str_mv http://dx.doi.org/10.1155/2016/1730814
dc.identifier.eissn.none.fl_str_mv 1687-5699
identifier_str_mv Botia, D. J. & Gómez, N. (2016). Nonintrusive method based on neural networks for video quality of experience assessment. Advances in Multimedia, 2016, 1-17.
1687-5680
1687-5699
url http://hdl.handle.net/10495/7912
http://dx.doi.org/10.1155/2016/1730814
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 17
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 2016
dc.relation.ispartofjournal.spa.fl_str_mv Advances in Multimedia
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.*.fl_str_mv Atribución 2.5 Colombia (CC BY 2.5 CO)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
Atribución 2.5 Colombia (CC BY 2.5 CO)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 16
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Hindawi Publishing Corporation
dc.publisher.place.spa.fl_str_mv Reino Unido
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/a069f496-9433-4c37-87c5-7a29bc09ad71/download
https://bibliotecadigital.udea.edu.co/bitstreams/752ad869-2bc8-4d71-82a4-2c8756b4d7e8/download
https://bibliotecadigital.udea.edu.co/bitstreams/8a3198a5-8c07-4270-8076-a421883e6dfe/download
https://bibliotecadigital.udea.edu.co/bitstreams/bbd4cc5e-f35b-4b8f-b919-51b5f1fd4d6e/download
https://bibliotecadigital.udea.edu.co/bitstreams/fc91f937-b34b-45d7-995c-ab95f47a13e7/download
https://bibliotecadigital.udea.edu.co/bitstreams/f6317827-195a-4b60-87cb-1f65a5c54373/download
https://bibliotecadigital.udea.edu.co/bitstreams/8d8a6733-beac-4c42-b7e0-ad3cd9a44336/download
bitstream.checksum.fl_str_mv f01c026d245137aa09f8e158216464db
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
8a4605be74aa9ea9d79846c1fba20a33
d628db1c413fbb76c8df751b82fc4c0a
7fcca2210b5c7b6ff0d6ff5414e4faa9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052595936755712
spelling Gaviria Gómez, NataliaGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)2017-08-10T19:58:25Z2017-08-10T19:58:25Z2016Botia, D. J. & Gómez, N. (2016). Nonintrusive method based on neural networks for video quality of experience assessment. Advances in Multimedia, 2016, 1-17.1687-5680http://hdl.handle.net/10495/7912http://dx.doi.org/10.1155/2016/17308141687-5699ABSTRACT: The measurement and evaluation of the QoE (Quality of Experience) have become one of the main focuses in the telecommunications to provide services with the expected quality for their users.However, factors like the network parameters and codification can affect the quality of video, limiting the correlation between the objective and subjective metrics. The above increases the complexity to evaluate the real quality of video perceived by users. In this paper, a model based on artificial neural networks such as BPNNs (Backpropagation Neural Networks) and the RNNs (RandomNeural Networks) is applied to evaluate the subjective qualitymetrics MOS (Mean Opinion Score) and the PSNR (Peak Signal Noise Ratio), SSIM (Structural Similarity Index Metric), VQM (Video Quality Metric), and QIBF (Quality Index Based Frame). The proposed model allows establishing the QoS (Quality of Service) based in the strategy Diffserv.The metrics were analyzed through Pearson’s and Spearman’s correlation coefficients, RMSE (Root Mean Square Error), and outliers rate. Correlation values greater than 90% were obtained for all the evaluated metrics.16application/pdfengHindawi Publishing CorporationReino Unidohttps://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/Atribución 2.5 Colombia (CC BY 2.5 CO)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Quality of serviceComplex networksMean square errorNeural networksQuality controlVideo signal processingCalidad del servicioControl de calidadProcesamiento de señalesRedes neuralesNonintrusive method based on neural networks for video quality of experience assessmentArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersion1712016Advances in MultimediaPublicationORIGINALGaviria_Natalia_2016_NonintrusiveMethod.pdfGaviria_Natalia_2016_NonintrusiveMethod.pdfArtículo de investigaciónapplication/pdf3008764https://bibliotecadigital.udea.edu.co/bitstreams/a069f496-9433-4c37-87c5-7a29bc09ad71/downloadf01c026d245137aa09f8e158216464dbMD51trueAnonymousREADCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://bibliotecadigital.udea.edu.co/bitstreams/752ad869-2bc8-4d71-82a4-2c8756b4d7e8/download4afdbb8c545fd630ea7db775da747b2fMD52falseAnonymousREADlicense_textlicense_texttext/html; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/8a3198a5-8c07-4270-8076-a421883e6dfe/downloadd41d8cd98f00b204e9800998ecf8427eMD53falseAnonymousREADlicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://bibliotecadigital.udea.edu.co/bitstreams/bbd4cc5e-f35b-4b8f-b919-51b5f1fd4d6e/downloadd41d8cd98f00b204e9800998ecf8427eMD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/fc91f937-b34b-45d7-995c-ab95f47a13e7/download8a4605be74aa9ea9d79846c1fba20a33MD55falseAnonymousREADTEXTGaviria_Natalia_2016_NonintrusiveMethod.pdf.txtGaviria_Natalia_2016_NonintrusiveMethod.pdf.txtExtracted texttext/plain74637https://bibliotecadigital.udea.edu.co/bitstreams/f6317827-195a-4b60-87cb-1f65a5c54373/downloadd628db1c413fbb76c8df751b82fc4c0aMD56falseAnonymousREADTHUMBNAILGaviria_Natalia_2016_NonintrusiveMethod.pdf.jpgGaviria_Natalia_2016_NonintrusiveMethod.pdf.jpgGenerated Thumbnailimage/jpeg13322https://bibliotecadigital.udea.edu.co/bitstreams/8d8a6733-beac-4c42-b7e0-ad3cd9a44336/download7fcca2210b5c7b6ff0d6ff5414e4faa9MD57falseAnonymousREAD10495/7912oai:bibliotecadigital.udea.edu.co:10495/79122025-03-27 00:48:30.305https://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=