Desarrollo de resinas híbridas poliuretano/acrílicas para la preparación de Scaffolds vía estereolitografía

La estereolitografía (SLA) es una técnica de impresión 3D de alta resolución, capaz de fabricar andamios con geometrías complejas para aplicaciones biomédicas. Estos andamios requieren propiedades químicas, mecánicas y estructurales adecuadas para la adhesión, proliferación y diferenciación celular,...

Full description

Autores:
Cardona Cortés, Álvaro Antonio
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
spa
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/46141
Acceso en línea:
https://hdl.handle.net/10495/46141
Palabra clave:
Impresión 3D
Three-dimensional printing
Resinas acrílicas
Acrylic resins
Espectroscopia infrarroja por transformada de Fourier
Fourier transform infrared spectroscopy
Materiales - Propiedades mecánicas
Materials - Mechanical properties
Fotopolimerización
Photopolymerization
Ingeniería de tejidos
Tissue engineering
Estereolitografía
Stereolithography
Andamios del tejido
Tissue scaffolds
Materiales biocompatibles
Biocompatible materials
Poliuretano
Polyurethane
http://aims.fao.org/aos/agrovoc/c_28513
http://id.loc.gov/authorities/subjects/sh2009006799
http://id.loc.gov/authorities/subjects/sh85000675
http://id.loc.gov/authorities/subjects/sh88002426
http://id.loc.gov/authorities/subjects/sh2007002252
http://id.loc.gov/authorities/subjects/sh97005795
http://id.loc.gov/authorities/subjects/sh2003001133
https://id.nlm.nih.gov/mesh/D000076227
https://id.nlm.nih.gov/mesh/D054457
https://id.nlm.nih.gov/mesh/D001672
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UDEA2_e9b0295cb02003fb67042af797c1cfe8
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/46141
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de resinas híbridas poliuretano/acrílicas para la preparación de Scaffolds vía estereolitografía
title Desarrollo de resinas híbridas poliuretano/acrílicas para la preparación de Scaffolds vía estereolitografía
spellingShingle Desarrollo de resinas híbridas poliuretano/acrílicas para la preparación de Scaffolds vía estereolitografía
Impresión 3D
Three-dimensional printing
Resinas acrílicas
Acrylic resins
Espectroscopia infrarroja por transformada de Fourier
Fourier transform infrared spectroscopy
Materiales - Propiedades mecánicas
Materials - Mechanical properties
Fotopolimerización
Photopolymerization
Ingeniería de tejidos
Tissue engineering
Estereolitografía
Stereolithography
Andamios del tejido
Tissue scaffolds
Materiales biocompatibles
Biocompatible materials
Poliuretano
Polyurethane
http://aims.fao.org/aos/agrovoc/c_28513
http://id.loc.gov/authorities/subjects/sh2009006799
http://id.loc.gov/authorities/subjects/sh85000675
http://id.loc.gov/authorities/subjects/sh88002426
http://id.loc.gov/authorities/subjects/sh2007002252
http://id.loc.gov/authorities/subjects/sh97005795
http://id.loc.gov/authorities/subjects/sh2003001133
https://id.nlm.nih.gov/mesh/D000076227
https://id.nlm.nih.gov/mesh/D054457
https://id.nlm.nih.gov/mesh/D001672
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
title_short Desarrollo de resinas híbridas poliuretano/acrílicas para la preparación de Scaffolds vía estereolitografía
title_full Desarrollo de resinas híbridas poliuretano/acrílicas para la preparación de Scaffolds vía estereolitografía
title_fullStr Desarrollo de resinas híbridas poliuretano/acrílicas para la preparación de Scaffolds vía estereolitografía
title_full_unstemmed Desarrollo de resinas híbridas poliuretano/acrílicas para la preparación de Scaffolds vía estereolitografía
title_sort Desarrollo de resinas híbridas poliuretano/acrílicas para la preparación de Scaffolds vía estereolitografía
dc.creator.fl_str_mv Cardona Cortés, Álvaro Antonio
dc.contributor.advisor.none.fl_str_mv Giraldo Cortés, Luis Fernando
Orozco López, Víctor Hugo
dc.contributor.author.none.fl_str_mv Cardona Cortés, Álvaro Antonio
dc.contributor.researchgroup.none.fl_str_mv Laboratorio de Investigación en Polímeros
dc.contributor.jury.none.fl_str_mv Martín Martínez, José Miguel
Monsalve Carmona, Yuliana
dc.subject.lcsh.none.fl_str_mv Impresión 3D
Three-dimensional printing
Resinas acrílicas
Acrylic resins
Espectroscopia infrarroja por transformada de Fourier
Fourier transform infrared spectroscopy
Materiales - Propiedades mecánicas
Materials - Mechanical properties
Fotopolimerización
Photopolymerization
Ingeniería de tejidos
Tissue engineering
topic Impresión 3D
Three-dimensional printing
Resinas acrílicas
Acrylic resins
Espectroscopia infrarroja por transformada de Fourier
Fourier transform infrared spectroscopy
Materiales - Propiedades mecánicas
Materials - Mechanical properties
Fotopolimerización
Photopolymerization
Ingeniería de tejidos
Tissue engineering
Estereolitografía
Stereolithography
Andamios del tejido
Tissue scaffolds
Materiales biocompatibles
Biocompatible materials
Poliuretano
Polyurethane
http://aims.fao.org/aos/agrovoc/c_28513
http://id.loc.gov/authorities/subjects/sh2009006799
http://id.loc.gov/authorities/subjects/sh85000675
http://id.loc.gov/authorities/subjects/sh88002426
http://id.loc.gov/authorities/subjects/sh2007002252
http://id.loc.gov/authorities/subjects/sh97005795
http://id.loc.gov/authorities/subjects/sh2003001133
https://id.nlm.nih.gov/mesh/D000076227
https://id.nlm.nih.gov/mesh/D054457
https://id.nlm.nih.gov/mesh/D001672
ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
dc.subject.decs.none.fl_str_mv Estereolitografía
Stereolithography
Andamios del tejido
Tissue scaffolds
Materiales biocompatibles
Biocompatible materials
dc.subject.agrovoc.none.fl_str_mv Poliuretano
Polyurethane
dc.subject.agrovocuri.none.fl_str_mv http://aims.fao.org/aos/agrovoc/c_28513
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh2009006799
http://id.loc.gov/authorities/subjects/sh85000675
http://id.loc.gov/authorities/subjects/sh88002426
http://id.loc.gov/authorities/subjects/sh2007002252
http://id.loc.gov/authorities/subjects/sh97005795
http://id.loc.gov/authorities/subjects/sh2003001133
dc.subject.meshuri.none.fl_str_mv https://id.nlm.nih.gov/mesh/D000076227
https://id.nlm.nih.gov/mesh/D054457
https://id.nlm.nih.gov/mesh/D001672
dc.subject.ods.none.fl_str_mv ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
description La estereolitografía (SLA) es una técnica de impresión 3D de alta resolución, capaz de fabricar andamios con geometrías complejas para aplicaciones biomédicas. Estos andamios requieren propiedades químicas, mecánicas y estructurales adecuadas para la adhesión, proliferación y diferenciación celular, así como para el transporte de nutrientes y metabolitos. La SLA exige el uso de materiales poliméricos adecuados que faciliten el proceso de curado mediante fotopolimerización por radiación UV. Sin embargo, la disponibilidad limitada de resinas fotocurables de bajo peso molecular, junto con problemas como alta rigidez, hidrofobicidad y baja biocompatibilidad en las opciones comerciales, además de los desafíos asociados a la eliminación de monómeros residuales, hace necesario desarrollar nuevas resinas con mejor biocompatibilidad y una mayor capacidad de adhesión celular para su uso en la fabricación de andamios. En este trabajo, se sintetizaron resinas híbridas de poli(uretano/acrilato) con control sobre su masa molar para obtener una resina de baja viscosidad. El nuevo sistema híbrido se sintetizó en tres etapas: la primera consistió en la síntesis de dos prepolímeros de poliéster poliólico diferentes, poli(adipato de butileno) (PBA) y poli(adipato-co-maleato de butileno) (PBAM). En el segundo paso, se utilizó diisocianato de isoforona (IPDI) como monómero para obtener el poliuretano. Finalmente, se empleó metacrilato de hidroxietilo (HEMA) en una tercera etapa para incorporar grupos metacrílicos en los extremos de la cadena del poliuretano, indispensables para la reacción de fotocurado durante su uso en impresión 3D. Al controlar el peso molecular del poliéster, se obtuvieron poliuretanos con pesos moleculares entre 3,000 y 3,500 g/mol. Los polímeros finales obtenidos se formularon como componentes base en prototipos de resina para impresión 3D, que incluyeron monómeros reactivos como HEMA, dimetacrilato de trietilenglicol (TEGMA) y metacrilato de glicidilo de bisfenol A (Bis GMA), junto con un sistema de fotoiniciación basado en óxido de fosfina de fenil bis(2,4,6-trimetilbenzóil) (BAPO). Estas formulaciones fueron optimizadas mediante la evaluación de la cinética de curado, utilizando un dispositivo de luz LED personalizado y monitoreando la conversión a lo largo del tiempo mediante espectros de infrarrojo por transformada de Fourier (FTIR).
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-05-28T14:41:29Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.content.none.fl_str_mv Text
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/draft
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/46141
url https://hdl.handle.net/10495/46141
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Alqutaibi, A. Y., Alghauli, M. A., Aljohani, M. H. A., & Zafar, M. S. (2024). Advanced additive manufacturing in implant dentistry: 3D printing technologies, printable materials, current applications and future requirements. In Bioprinting (Vol. 42). Elsevier B.V. https://doi.org/10.1016/j.bprint.2024.e00356
Anycubic. (2024, December 3). Anycubic Photon D2. https://www.anycubic.es/products/photon-d2
ASTM International. (2022). Test Method for Tensile Properties of Plastics. ASTM International. https://doi.org/10.1520/D0638-22
Bagheri, A., & Jin, J. (2019). Photopolymerization in 3D Printing. In ACS Applied Polymer Materials (Vol. 1, Issue 4, pp. 593–611). American Chemical Society. https://doi.org/10.1021/acsapm.8b00165
Barrioni, B. R., De Carvalho, S. M., Oréfice, R. L., De Oliveira, A. A. R., & Pereira, M. D. M. (2015). Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications. Materials Science and Engineering C, 52, 22–30. https://doi.org/10.1016/j.msec.2015.03.027
Bencherif, S. A., Braschler, T. M., & Renaud, P. (2013). Advances in the design of macroporous polymer scaffolds for potential applications in dentistry. In Journal of Periodontal and Implant Science (Vol. 43, Issue 6, pp. 251–261). https://doi.org/10.5051/jpis.2013.43.6.251
Bonardi, A. H., Dumur, F., Grant, T. M., Noirbent, G., Gigmes, D., Lessard, B. H., Fouassier, J. P., & Lalevée, J. (2018). High Performance Near-Infrared (NIR) Photoinitiating Systems Operating under Low Light Intensity and in the Presence of Oxygen. Macromolecules, 51(4), 1314–1324. https://doi.org/10.1021/acs.macromol.8b00051
Butscher, A., Bohner, M., Hofmann, S., Gauckler, L., & Müller, R. (2011). Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. In Acta Biomaterialia (Vol. 7, Issue 3, pp. 907–920). Elsevier Ltd. https://doi.org/10.1016/j.actbio.2010.09.039
Caracciolo, P. C., Lores, N. J., & Abraham, G. A. (2019). Polyurethane-based structures obtained by additive manufacturing technologies. In Materials for Biomedical Engineering: Hydrogels and Polymer-based Scaffolds (pp. 235–258). Elsevier. https://doi.org/10.1016/B978-0-12-816901-8.00008-0
Chung, H. J., & Park, T. G. (2007). Surface engineered and drug releasing prefabricated scaffolds for tissue engineering. In Advanced Drug Delivery Reviews (Vol. 59, Issues 4–5, pp. 249–262). https://doi.org/10.1016/j.addr.2007.03.015
Coenen, A. M. J., Bernaerts, K. V., Harings, J. A. W., Jockenhoevel, S., & Ghazanfari, S. (2018). Elastic materials for tissue engineering applications: Natural, synthetic, and hybrid polymers. In Acta Biomaterialia (Vol. 79, pp. 60–82). Acta Materialia Inc. https://doi.org/10.1016/j.actbio.2018.08.027
Cults. (2022, September 29). Generador de muestras de resistencia a la tracción ISO 527-2, ASTM D638-14. Cults. https://cults3d.com/es/modelo3d/variado/tensile-strength-test-specimen-generator-iso-527-2-astm-d638-14
Diaz, A. (2022, March 28). UltiMakers’s Thingiverse. Open-Source Library of Tissue Engineering Scaffolds. https://www.thingiverse.com/thing:5333296/files
Dizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. In Additive Manufacturing (Vol. 20, pp. 44–67). Elsevier B.V. https://doi.org/10.1016/j.addma.2017.12.002
Dumur, F. (2023). Recent Advances on Photobleachable Visible Light Photoinitiators of Polymerization. European Polymer Journal, 186. https://doi.org/10.1016/j.eurpolymj.2023.111874ï
El-Kady, A. M., Rizk, R. A., Abd El-Hady, B. M., Shafaa, M. W., & Ahmed, M. M. (2012). Characterization, and antibacterial properties of novel silver releasing nanocomposite scaffolds fabricated by the gas foaming/salt-leaching technique. Journal of Genetic Engineering and Biotechnology, 10(2), 229–238. https://doi.org/10.1016/j.jgeb.2012.07.002
Fabbri, M., Gigli, M., Gamberini, R., Lotti, N., Gazzano, M., Rimini, B., & Munari, A. (2014). Hydrolysable PBS-based poly(ester urethane)s thermoplastic elastomers. Polymer Degradation and Stability, 108, 223–231. https://doi.org/10.1016/j.polymdegradstab.2014.03.033
Farzan, A., Borandeh, S., Zanjanizadeh Ezazi, N., Lipponen, S., Santos, H. A., & Seppälä, J. (2020). 3D scaffolding of fast photocurable polyurethane for soft tissue engineering by stereolithography: Influence of materials and geometry on growth of fibroblast cells. European Polymer Journal, 139. https://doi.org/10.1016/j.eurpolymj.2020.109988
Fouassier, J. P., Allonas, X., Laleveé Jacques, & Dietlin, C. (2010). Photoinitiators for free radical polymerization reactions. In N. S. Allen (Ed.), Photochemistry and Photophysics of Polymer Materials (pp. 351–419). John Wiley & Sons, Inc.
Green, A. (2010). Industrial Photoinitiators. A Technical Guide (CRC Press & Taylor & Francis Group, Eds.; 1st ed.). Taylor and Francis Group, LLC.
Guelcher, S. A., Gallagher, K. M., Didier, J. E., Klinedinst, D. B., Doctor, J. S., Goldstein, A. S., Wilkes, G. L., Beckman, E. J., & Hollinger, J. O. (2005). Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomaterialia, 1(4), 471– 484. https://doi.org/10.1016/j.actbio.2005.02.007
Jeong, Y. G., Yoo, J. J., Lee, S. J., & Kim, M. S. (2024). 3D digital light process bioprinting: Cutting-edge platforms for resolution of organ fabrication. In Materials Today Bio (Vol. 29). Elsevier B.V. https://doi.org/10.1016/j.mtbio.2024.101284
Kumar, R., Kumar, M., & Chohan, J. S. (2021). The role of additive manufacturing for biomedical applications: A critical review. In Journal of Manufacturing Processes (Vol. 64, pp. 828–850). Elsevier Ltd. https://doi.org/10.1016/j.jmapro.2021.02.022
Kupka, V., Vojtova, L., Fohlerova, Z., & Jancar, J. (2016). Solvent free synthesis and structural evaluation of polyurethane films based on poly(Ethylene glycol) and poly(caprolactone). Express Polymer Letters, 10(6), 479–492. https://doi.org/10.3144/expresspolymlett.2016.46
Lakkala, P., Munnangi, S. R., Bandari, S., & Repka, M. (2023). Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review. International Journal of Pharmaceutics: X, 5. https://doi.org/10.1016/j.ijpx.2023.100159
Lalwani, C. (2021, January 29). LCD 3D Printing vs. FDM 3D Printing. Phrozen 3d. https://phrozen3d.com/blogs/resin-3d-printing-latest-news/lcd-3d-printing-vsfdm-3d-printing
Lang, M., Hirner, S., Wiesbrock, F., & Fuchs, P. (2022). A Review on Modeling Cure Kinetics and Mechanisms of Photopolymerization. Polymers, 14(10). https://doi.org/10.3390/polym14102074
Ligon, S. C., Liska, R., Stampfl, J., Gurr, M., & Mülhaupt, R. (2017). Polymers for 3D Printing and Customized Additive Manufacturing. In Chemical Reviews (Vol. 117, Issue 15, pp. 10212–10290). American Chemical Society. https://doi.org/10.1021/acs.chemrev.7b00074
Lin, H., Zhang, D., Alexander, P. G., Yang, G., Tan, J., Cheng, A. W. M., & Tuan, R. S. (2013). Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials, 34(2), 331–339. https://doi.org/10.1016/j.biomaterials.2012.09.048
Liska, R., Schuster, M., Inführ, R., Turecek, C., Fritscher, C., Seidl, B., Schmidt, V., Kuna, L., Haase, A., Varga, F., Lichtenegger, H., & Stampfl, J. (2007). Photopolymers for rapid prototyping. Journal of Coatings Technology and Research, 4(4), 505–510. https://doi.org/10.1007/s11998-007-9059-3
Martínez Cendrero, A., Franco Martínez, F., Solórzano Requejo, W. G., & Díaz Lantada, A. (2022). Open-source library of tissue engineering scaffolds. Materials and Design, 223. https://doi.org/10.1016/j.matdes.2022.111154
Melchels, F. P. W., Feijen, J., & Grijpma, D. W. (2009). A poly(d,l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials, 30(23–24), 3801–3809. https://doi.org/10.1016/j.biomaterials.2009.03.055
Melchels, F. P. W., Feijen, J., & Grijpma, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. In Biomaterials (Vol. 31, Issue 24, pp. 6121–6130). https://doi.org/10.1016/j.biomaterials.2010.04.050
Navarro, L., Ceaglio, N., & Rintoul, I. (2017). Structure and properties of biocompatible poly(glycerol adipate) elastomers modified with ethylene glycol. Polymer Journal, 49(8), 625–632. https://doi.org/10.1038/pj.2017.30
Ospina, A. (2019). Estudio del tipo de poliol y la estrategia de hibridación en las propiedades fisicoquímicas y adhesivas de materiales Poliuretano/Acrílicos base agua [Tesis de Maestría]. Universidad de Antioquia.
Parupelli, S. K., & Desai, S. (2019). A Comprehensive Review of Additive Manufacturing (3D Printing): Processes, Applications and Future Potential. American Journal of Applied Sciences, 16(8), 244–272. https://doi.org/10.3844/ajassp.2019.244.272
Revilla-León, M., Meyers, M. J., Zandinejad, A., & Özcan, M. (2019). A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. In Journal of Esthetic and Restorative Dentistry (Vol. 31, Issue 1, pp. 51–57). Blackwell Publishing Ltd. https://doi.org/10.1111/jerd.12438
Shalaby, W. S., & Ulrich, S. (2007). Polymers for dental and orthopedic applications (W. S. Shalaby & S. Ulrich, Eds.; First). Taylor & Francis Group, LLC.
Sideridou, I., Tserki, V., & Papanastasiou, G. (2002). Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. In Biomaterials (Vol. 23).
Voet, V. S. D., Strating, T., Schnelting, G. H. M., Dijkstra, P., Tietema, M., Xu, J., Woortman, A. J. J., Loos, K., Jager, J., & Folkersma, R. (2018). Biobased Acrylate Photocurable Resin Formulation for Stereolithography 3D Printing. ACS Omega, 3(2), 1403–1408. https://doi.org/10.1021/acsomega.7b01648
Yilmaz, B., Al Rashid, A., Mou, Y. A., Evis, Z., & Koç, M. (2021). Bioprinting: A review of processes, materials and applications. In Bioprinting (Vol. 23). Elsevier B.V. https://doi.org/10.1016/j.bprint.2021.e00148
Young, R. J., & Lovell, P. A. (2011). Introduction to Polymers (Taylor & Francis Group, Ed.; 3rd ed.). CRC Press.
Zakeri, S., Vippola, M., & Levänen, E. (2020). A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. In Additive Manufacturing (Vol. 35). Elsevier B.V. https://doi.org/10.1016/j.addma.2020.101177
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 111 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Antioquia
dc.publisher.program.none.fl_str_mv Maestría en Ciencias Químicas
dc.publisher.place.none.fl_str_mv Medellín, Colombia
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Exactas y Naturales
dc.publisher.branch.none.fl_str_mv Campus Medellín - Ciudad Universitaria
publisher.none.fl_str_mv Universidad de Antioquia
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/5466c17e-18b9-4c80-b913-ed2a18a079d3/download
https://bibliotecadigital.udea.edu.co/bitstreams/cf1fc9f9-7632-42b5-ab3b-7112a5c70156/download
https://bibliotecadigital.udea.edu.co/bitstreams/e30783c6-3a92-4132-96eb-fc338dd1655b/download
https://bibliotecadigital.udea.edu.co/bitstreams/f67ca7fb-f034-47b2-81f5-63472d0441f9/download
https://bibliotecadigital.udea.edu.co/bitstreams/6cc765e1-cbfa-4327-90b1-a884df57d3a1/download
bitstream.checksum.fl_str_mv c4bae0d20d8f6c9b0e30d7a3a926ea2c
b76e7a76e24cf2f94b3ce0ae5ed275d0
5643bfd9bcf29d560eeec56d584edaa9
354e5de003012122b0b91bfd4afb8f0e
83aa852e23579ea04ed42f5db6f98548
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052347417952256
spelling Giraldo Cortés, Luis FernandoOrozco López, Víctor HugoCardona Cortés, Álvaro AntonioLaboratorio de Investigación en PolímerosMartín Martínez, José MiguelMonsalve Carmona, Yuliana2025-05-28T14:41:29Z2025https://hdl.handle.net/10495/46141La estereolitografía (SLA) es una técnica de impresión 3D de alta resolución, capaz de fabricar andamios con geometrías complejas para aplicaciones biomédicas. Estos andamios requieren propiedades químicas, mecánicas y estructurales adecuadas para la adhesión, proliferación y diferenciación celular, así como para el transporte de nutrientes y metabolitos. La SLA exige el uso de materiales poliméricos adecuados que faciliten el proceso de curado mediante fotopolimerización por radiación UV. Sin embargo, la disponibilidad limitada de resinas fotocurables de bajo peso molecular, junto con problemas como alta rigidez, hidrofobicidad y baja biocompatibilidad en las opciones comerciales, además de los desafíos asociados a la eliminación de monómeros residuales, hace necesario desarrollar nuevas resinas con mejor biocompatibilidad y una mayor capacidad de adhesión celular para su uso en la fabricación de andamios. En este trabajo, se sintetizaron resinas híbridas de poli(uretano/acrilato) con control sobre su masa molar para obtener una resina de baja viscosidad. El nuevo sistema híbrido se sintetizó en tres etapas: la primera consistió en la síntesis de dos prepolímeros de poliéster poliólico diferentes, poli(adipato de butileno) (PBA) y poli(adipato-co-maleato de butileno) (PBAM). En el segundo paso, se utilizó diisocianato de isoforona (IPDI) como monómero para obtener el poliuretano. Finalmente, se empleó metacrilato de hidroxietilo (HEMA) en una tercera etapa para incorporar grupos metacrílicos en los extremos de la cadena del poliuretano, indispensables para la reacción de fotocurado durante su uso en impresión 3D. Al controlar el peso molecular del poliéster, se obtuvieron poliuretanos con pesos moleculares entre 3,000 y 3,500 g/mol. Los polímeros finales obtenidos se formularon como componentes base en prototipos de resina para impresión 3D, que incluyeron monómeros reactivos como HEMA, dimetacrilato de trietilenglicol (TEGMA) y metacrilato de glicidilo de bisfenol A (Bis GMA), junto con un sistema de fotoiniciación basado en óxido de fosfina de fenil bis(2,4,6-trimetilbenzóil) (BAPO). Estas formulaciones fueron optimizadas mediante la evaluación de la cinética de curado, utilizando un dispositivo de luz LED personalizado y monitoreando la conversión a lo largo del tiempo mediante espectros de infrarrojo por transformada de Fourier (FTIR).Síntesis de polímerosCOL0167869MaestríaMagíster en Ciencias Químicas111 páginasapplication/pdfspaUniversidad de AntioquiaMaestría en Ciencias QuímicasMedellín, ColombiaFacultad de Ciencias Exactas y NaturalesCampus Medellín - Ciudad Universitariahttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Impresión 3DThree-dimensional printingResinas acrílicasAcrylic resinsEspectroscopia infrarroja por transformada de FourierFourier transform infrared spectroscopyMateriales - Propiedades mecánicasMaterials - Mechanical propertiesFotopolimerizaciónPhotopolymerizationIngeniería de tejidosTissue engineeringEstereolitografíaStereolithographyAndamios del tejidoTissue scaffoldsMateriales biocompatiblesBiocompatible materialsPoliuretanoPolyurethanehttp://aims.fao.org/aos/agrovoc/c_28513http://id.loc.gov/authorities/subjects/sh2009006799http://id.loc.gov/authorities/subjects/sh85000675http://id.loc.gov/authorities/subjects/sh88002426http://id.loc.gov/authorities/subjects/sh2007002252http://id.loc.gov/authorities/subjects/sh97005795http://id.loc.gov/authorities/subjects/sh2003001133https://id.nlm.nih.gov/mesh/D000076227https://id.nlm.nih.gov/mesh/D054457https://id.nlm.nih.gov/mesh/D001672ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edadesODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovaciónDesarrollo de resinas híbridas poliuretano/acrílicas para la preparación de Scaffolds vía estereolitografíaTrabajo de grado - Maestríahttp://purl.org/redcol/resource_type/TMTexthttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/draftAlqutaibi, A. Y., Alghauli, M. A., Aljohani, M. H. A., & Zafar, M. S. (2024). Advanced additive manufacturing in implant dentistry: 3D printing technologies, printable materials, current applications and future requirements. In Bioprinting (Vol. 42). Elsevier B.V. https://doi.org/10.1016/j.bprint.2024.e00356Anycubic. (2024, December 3). Anycubic Photon D2. https://www.anycubic.es/products/photon-d2ASTM International. (2022). Test Method for Tensile Properties of Plastics. ASTM International. https://doi.org/10.1520/D0638-22Bagheri, A., & Jin, J. (2019). Photopolymerization in 3D Printing. In ACS Applied Polymer Materials (Vol. 1, Issue 4, pp. 593–611). American Chemical Society. https://doi.org/10.1021/acsapm.8b00165Barrioni, B. R., De Carvalho, S. M., Oréfice, R. L., De Oliveira, A. A. R., & Pereira, M. D. M. (2015). Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications. Materials Science and Engineering C, 52, 22–30. https://doi.org/10.1016/j.msec.2015.03.027Bencherif, S. A., Braschler, T. M., & Renaud, P. (2013). Advances in the design of macroporous polymer scaffolds for potential applications in dentistry. In Journal of Periodontal and Implant Science (Vol. 43, Issue 6, pp. 251–261). https://doi.org/10.5051/jpis.2013.43.6.251Bonardi, A. H., Dumur, F., Grant, T. M., Noirbent, G., Gigmes, D., Lessard, B. H., Fouassier, J. P., & Lalevée, J. (2018). High Performance Near-Infrared (NIR) Photoinitiating Systems Operating under Low Light Intensity and in the Presence of Oxygen. Macromolecules, 51(4), 1314–1324. https://doi.org/10.1021/acs.macromol.8b00051Butscher, A., Bohner, M., Hofmann, S., Gauckler, L., & Müller, R. (2011). Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. In Acta Biomaterialia (Vol. 7, Issue 3, pp. 907–920). Elsevier Ltd. https://doi.org/10.1016/j.actbio.2010.09.039Caracciolo, P. C., Lores, N. J., & Abraham, G. A. (2019). Polyurethane-based structures obtained by additive manufacturing technologies. In Materials for Biomedical Engineering: Hydrogels and Polymer-based Scaffolds (pp. 235–258). Elsevier. https://doi.org/10.1016/B978-0-12-816901-8.00008-0Chung, H. J., & Park, T. G. (2007). Surface engineered and drug releasing prefabricated scaffolds for tissue engineering. In Advanced Drug Delivery Reviews (Vol. 59, Issues 4–5, pp. 249–262). https://doi.org/10.1016/j.addr.2007.03.015Coenen, A. M. J., Bernaerts, K. V., Harings, J. A. W., Jockenhoevel, S., & Ghazanfari, S. (2018). Elastic materials for tissue engineering applications: Natural, synthetic, and hybrid polymers. In Acta Biomaterialia (Vol. 79, pp. 60–82). Acta Materialia Inc. https://doi.org/10.1016/j.actbio.2018.08.027Cults. (2022, September 29). Generador de muestras de resistencia a la tracción ISO 527-2, ASTM D638-14. Cults. https://cults3d.com/es/modelo3d/variado/tensile-strength-test-specimen-generator-iso-527-2-astm-d638-14Diaz, A. (2022, March 28). UltiMakers’s Thingiverse. Open-Source Library of Tissue Engineering Scaffolds. https://www.thingiverse.com/thing:5333296/filesDizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. In Additive Manufacturing (Vol. 20, pp. 44–67). Elsevier B.V. https://doi.org/10.1016/j.addma.2017.12.002Dumur, F. (2023). Recent Advances on Photobleachable Visible Light Photoinitiators of Polymerization. European Polymer Journal, 186. https://doi.org/10.1016/j.eurpolymj.2023.111874ïEl-Kady, A. M., Rizk, R. A., Abd El-Hady, B. M., Shafaa, M. W., & Ahmed, M. M. (2012). Characterization, and antibacterial properties of novel silver releasing nanocomposite scaffolds fabricated by the gas foaming/salt-leaching technique. Journal of Genetic Engineering and Biotechnology, 10(2), 229–238. https://doi.org/10.1016/j.jgeb.2012.07.002Fabbri, M., Gigli, M., Gamberini, R., Lotti, N., Gazzano, M., Rimini, B., & Munari, A. (2014). Hydrolysable PBS-based poly(ester urethane)s thermoplastic elastomers. Polymer Degradation and Stability, 108, 223–231. https://doi.org/10.1016/j.polymdegradstab.2014.03.033Farzan, A., Borandeh, S., Zanjanizadeh Ezazi, N., Lipponen, S., Santos, H. A., & Seppälä, J. (2020). 3D scaffolding of fast photocurable polyurethane for soft tissue engineering by stereolithography: Influence of materials and geometry on growth of fibroblast cells. European Polymer Journal, 139. https://doi.org/10.1016/j.eurpolymj.2020.109988Fouassier, J. P., Allonas, X., Laleveé Jacques, & Dietlin, C. (2010). Photoinitiators for free radical polymerization reactions. In N. S. Allen (Ed.), Photochemistry and Photophysics of Polymer Materials (pp. 351–419). John Wiley & Sons, Inc.Green, A. (2010). Industrial Photoinitiators. A Technical Guide (CRC Press & Taylor & Francis Group, Eds.; 1st ed.). Taylor and Francis Group, LLC.Guelcher, S. A., Gallagher, K. M., Didier, J. E., Klinedinst, D. B., Doctor, J. S., Goldstein, A. S., Wilkes, G. L., Beckman, E. J., & Hollinger, J. O. (2005). Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomaterialia, 1(4), 471– 484. https://doi.org/10.1016/j.actbio.2005.02.007Jeong, Y. G., Yoo, J. J., Lee, S. J., & Kim, M. S. (2024). 3D digital light process bioprinting: Cutting-edge platforms for resolution of organ fabrication. In Materials Today Bio (Vol. 29). Elsevier B.V. https://doi.org/10.1016/j.mtbio.2024.101284Kumar, R., Kumar, M., & Chohan, J. S. (2021). The role of additive manufacturing for biomedical applications: A critical review. In Journal of Manufacturing Processes (Vol. 64, pp. 828–850). Elsevier Ltd. https://doi.org/10.1016/j.jmapro.2021.02.022Kupka, V., Vojtova, L., Fohlerova, Z., & Jancar, J. (2016). Solvent free synthesis and structural evaluation of polyurethane films based on poly(Ethylene glycol) and poly(caprolactone). Express Polymer Letters, 10(6), 479–492. https://doi.org/10.3144/expresspolymlett.2016.46Lakkala, P., Munnangi, S. R., Bandari, S., & Repka, M. (2023). Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review. International Journal of Pharmaceutics: X, 5. https://doi.org/10.1016/j.ijpx.2023.100159Lalwani, C. (2021, January 29). LCD 3D Printing vs. FDM 3D Printing. Phrozen 3d. https://phrozen3d.com/blogs/resin-3d-printing-latest-news/lcd-3d-printing-vsfdm-3d-printingLang, M., Hirner, S., Wiesbrock, F., & Fuchs, P. (2022). A Review on Modeling Cure Kinetics and Mechanisms of Photopolymerization. Polymers, 14(10). https://doi.org/10.3390/polym14102074Ligon, S. C., Liska, R., Stampfl, J., Gurr, M., & Mülhaupt, R. (2017). Polymers for 3D Printing and Customized Additive Manufacturing. In Chemical Reviews (Vol. 117, Issue 15, pp. 10212–10290). American Chemical Society. https://doi.org/10.1021/acs.chemrev.7b00074Lin, H., Zhang, D., Alexander, P. G., Yang, G., Tan, J., Cheng, A. W. M., & Tuan, R. S. (2013). Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials, 34(2), 331–339. https://doi.org/10.1016/j.biomaterials.2012.09.048Liska, R., Schuster, M., Inführ, R., Turecek, C., Fritscher, C., Seidl, B., Schmidt, V., Kuna, L., Haase, A., Varga, F., Lichtenegger, H., & Stampfl, J. (2007). Photopolymers for rapid prototyping. Journal of Coatings Technology and Research, 4(4), 505–510. https://doi.org/10.1007/s11998-007-9059-3Martínez Cendrero, A., Franco Martínez, F., Solórzano Requejo, W. G., & Díaz Lantada, A. (2022). Open-source library of tissue engineering scaffolds. Materials and Design, 223. https://doi.org/10.1016/j.matdes.2022.111154Melchels, F. P. W., Feijen, J., & Grijpma, D. W. (2009). A poly(d,l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials, 30(23–24), 3801–3809. https://doi.org/10.1016/j.biomaterials.2009.03.055Melchels, F. P. W., Feijen, J., & Grijpma, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. In Biomaterials (Vol. 31, Issue 24, pp. 6121–6130). https://doi.org/10.1016/j.biomaterials.2010.04.050Navarro, L., Ceaglio, N., & Rintoul, I. (2017). Structure and properties of biocompatible poly(glycerol adipate) elastomers modified with ethylene glycol. Polymer Journal, 49(8), 625–632. https://doi.org/10.1038/pj.2017.30Ospina, A. (2019). Estudio del tipo de poliol y la estrategia de hibridación en las propiedades fisicoquímicas y adhesivas de materiales Poliuretano/Acrílicos base agua [Tesis de Maestría]. Universidad de Antioquia.Parupelli, S. K., & Desai, S. (2019). A Comprehensive Review of Additive Manufacturing (3D Printing): Processes, Applications and Future Potential. American Journal of Applied Sciences, 16(8), 244–272. https://doi.org/10.3844/ajassp.2019.244.272Revilla-León, M., Meyers, M. J., Zandinejad, A., & Özcan, M. (2019). A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. In Journal of Esthetic and Restorative Dentistry (Vol. 31, Issue 1, pp. 51–57). Blackwell Publishing Ltd. https://doi.org/10.1111/jerd.12438Shalaby, W. S., & Ulrich, S. (2007). Polymers for dental and orthopedic applications (W. S. Shalaby & S. Ulrich, Eds.; First). Taylor & Francis Group, LLC.Sideridou, I., Tserki, V., & Papanastasiou, G. (2002). Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. In Biomaterials (Vol. 23).Voet, V. S. D., Strating, T., Schnelting, G. H. M., Dijkstra, P., Tietema, M., Xu, J., Woortman, A. J. J., Loos, K., Jager, J., & Folkersma, R. (2018). Biobased Acrylate Photocurable Resin Formulation for Stereolithography 3D Printing. ACS Omega, 3(2), 1403–1408. https://doi.org/10.1021/acsomega.7b01648Yilmaz, B., Al Rashid, A., Mou, Y. A., Evis, Z., & Koç, M. (2021). Bioprinting: A review of processes, materials and applications. In Bioprinting (Vol. 23). Elsevier B.V. https://doi.org/10.1016/j.bprint.2021.e00148Young, R. J., & Lovell, P. A. (2011). Introduction to Polymers (Taylor & Francis Group, Ed.; 3rd ed.). CRC Press.Zakeri, S., Vippola, M., & Levänen, E. (2020). A comprehensive review of the photopolymerization of ceramic resins used in stereolithography. In Additive Manufacturing (Vol. 35). Elsevier B.V. https://doi.org/10.1016/j.addma.2020.101177PublicationORIGINALCardonaAlvaro_2025_Scaffold3DPoliuretanos.pdfCardonaAlvaro_2025_Scaffold3DPoliuretanos.pdfapplication/pdf8919303https://bibliotecadigital.udea.edu.co/bitstreams/5466c17e-18b9-4c80-b913-ed2a18a079d3/downloadc4bae0d20d8f6c9b0e30d7a3a926ea2cMD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-814837https://bibliotecadigital.udea.edu.co/bitstreams/cf1fc9f9-7632-42b5-ab3b-7112a5c70156/downloadb76e7a76e24cf2f94b3ce0ae5ed275d0MD53falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://bibliotecadigital.udea.edu.co/bitstreams/e30783c6-3a92-4132-96eb-fc338dd1655b/download5643bfd9bcf29d560eeec56d584edaa9MD54falseAnonymousREADTEXTCardonaAlvaro_2025_Scaffold3DPoliuretanos.pdf.txtCardonaAlvaro_2025_Scaffold3DPoliuretanos.pdf.txtExtracted texttext/plain101919https://bibliotecadigital.udea.edu.co/bitstreams/f67ca7fb-f034-47b2-81f5-63472d0441f9/download354e5de003012122b0b91bfd4afb8f0eMD55falseAnonymousREADTHUMBNAILCardonaAlvaro_2025_Scaffold3DPoliuretanos.pdf.jpgCardonaAlvaro_2025_Scaffold3DPoliuretanos.pdf.jpgGenerated Thumbnailimage/jpeg7254https://bibliotecadigital.udea.edu.co/bitstreams/6cc765e1-cbfa-4327-90b1-a884df57d3a1/download83aa852e23579ea04ed42f5db6f98548MD56falseAnonymousREAD10495/46141oai:bibliotecadigital.udea.edu.co:10495/461412025-05-29 04:05:20.047http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuIAoKMS4gRGVmaW5pY2lvbmVzCmEuIE9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4gT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLiBMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLiBBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLiBPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuIFVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoJICAKMi4gRGVyZWNob3MgZGUgVXNvcyBIb25yYWRvcyB5IGV4Y2VwY2lvbmVzIExlZ2FsZXMuCk5hZGEgZW4gZXN0YSBMaWNlbmNpYSBwb2Ryw6Egc2VyIGludGVycHJldGFkbyBjb21vIHVuYSBkaXNtaW51Y2nDs24sIGxpbWl0YWNpw7NuIG8gcmVzdHJpY2Npw7NuIGRlIGxvcyBkZXJlY2hvcyBkZXJpdmFkb3MgZGVsIHVzbyBob25yYWRvIHkgb3RyYXMgbGltaXRhY2lvbmVzIG8gZXhjZXBjaW9uZXMgYSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIGJham8gZWwgcsOpZ2ltZW4gbGVnYWwgdmlnZW50ZSBvIGRlcml2YWRvIGRlIGN1YWxxdWllciBvdHJhIG5vcm1hIHF1ZSBzZSBsZSBhcGxpcXVlLgogIAozLiBDb25jZXNpw7NuIGRlIGxhIExpY2VuY2lhLgpCYWpvIGxvcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCBlbCBMaWNlbmNpYW50ZSBvdG9yZ2EgYSBVc3RlZCB1bmEgbGljZW5jaWEgbXVuZGlhbCwgbGlicmUgZGUgcmVnYWzDrWFzLCBubyBleGNsdXNpdmEgeSBwZXJwZXR1YSAoZHVyYW50ZSB0b2RvIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvcikgcGFyYSBlamVyY2VyIGVzdG9zIGRlcmVjaG9zIHNvYnJlIGxhIE9icmEgdGFsIHkgY29tbyBzZSBpbmRpY2EgYSBjb250aW51YWNpw7NuOgphLiBSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgpiLiBEaXN0cmlidWlyIGNvcGlhcyBvIGZvbm9ncmFtYXMgZGUgbGFzIE9icmFzLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLCBpbmNsdXnDqW5kb2xhcyBjb21vIGluY29ycG9yYWRhcyBlbiBPYnJhcyBDb2xlY3RpdmFzLCBzZWfDum4gY29ycmVzcG9uZGEuCmMuIERpc3RyaWJ1aXIgY29waWFzIGRlIGxhcyBPYnJhcyBEZXJpdmFkYXMgcXVlIHNlIGdlbmVyZW4sIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuCgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KICAgIAo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKYS4gVXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLgpiLiBVc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuCmMuIFNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLiAgCmQuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgoKaS4gUmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KaWkuIFJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgICAgIAplLiBHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCiAgCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgogIAo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCiAgCjcuIFTDqXJtaW5vLgkKYS4gRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuIFN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgogIAo4LiBWYXJpb3MuCmEuIENhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuIFNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLiBOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4gRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=