Effects of the Nozzle Configuration with and without an Internal Guide Vane on the Efficiency in Cross-Flow Small Hydro Turbines

ABSTRACT: In this work, an experimental analysis of the performance of a cross-flow turbine, commonly referred to as a Michell–Banki turbine (MBT), is carried out for small-scale hydropower production in rural areas located in developing countries to support their social and economic development act...

Full description

Autores:
Romero Menco, Fredys de Jesús
Pineda Aguirre, Juan
Velásquez García, Laura Isabel
Rubio Clemente, Ainhoa
Chica Arrieta, Edwin
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/41512
Acceso en línea:
https://hdl.handle.net/10495/41512
Palabra clave:
Cross-flow turbine
Michell–Banki turbine
Hydropower
Small hydro turbine
Nozzle
Turbine efficiency
Opening percentage
Rights
openAccess
License
http://creativecommons.org/licenses/by/2.5/co/
id UDEA2_e1f6566d8367e5d73949a56538b3c71d
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/41512
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Effects of the Nozzle Configuration with and without an Internal Guide Vane on the Efficiency in Cross-Flow Small Hydro Turbines
title Effects of the Nozzle Configuration with and without an Internal Guide Vane on the Efficiency in Cross-Flow Small Hydro Turbines
spellingShingle Effects of the Nozzle Configuration with and without an Internal Guide Vane on the Efficiency in Cross-Flow Small Hydro Turbines
Cross-flow turbine
Michell–Banki turbine
Hydropower
Small hydro turbine
Nozzle
Turbine efficiency
Opening percentage
title_short Effects of the Nozzle Configuration with and without an Internal Guide Vane on the Efficiency in Cross-Flow Small Hydro Turbines
title_full Effects of the Nozzle Configuration with and without an Internal Guide Vane on the Efficiency in Cross-Flow Small Hydro Turbines
title_fullStr Effects of the Nozzle Configuration with and without an Internal Guide Vane on the Efficiency in Cross-Flow Small Hydro Turbines
title_full_unstemmed Effects of the Nozzle Configuration with and without an Internal Guide Vane on the Efficiency in Cross-Flow Small Hydro Turbines
title_sort Effects of the Nozzle Configuration with and without an Internal Guide Vane on the Efficiency in Cross-Flow Small Hydro Turbines
dc.creator.fl_str_mv Romero Menco, Fredys de Jesús
Pineda Aguirre, Juan
Velásquez García, Laura Isabel
Rubio Clemente, Ainhoa
Chica Arrieta, Edwin
dc.contributor.author.none.fl_str_mv Romero Menco, Fredys de Jesús
Pineda Aguirre, Juan
Velásquez García, Laura Isabel
Rubio Clemente, Ainhoa
Chica Arrieta, Edwin
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Energía Alternativa
dc.subject.proposal.spa.fl_str_mv Cross-flow turbine
Michell–Banki turbine
Hydropower
Small hydro turbine
Nozzle
Turbine efficiency
Opening percentage
topic Cross-flow turbine
Michell–Banki turbine
Hydropower
Small hydro turbine
Nozzle
Turbine efficiency
Opening percentage
description ABSTRACT: In this work, an experimental analysis of the performance of a cross-flow turbine, commonly referred to as a Michell–Banki turbine (MBT), is carried out for small-scale hydropower production in rural areas located in developing countries to support their social and economic development activities. The study investigates how the efficiency of the MBT is influenced by the presence or absence of a nozzle, along with variations in the internal guide vane (GV) and its angle. The runner had 26 blades that were arranged symmetrically in the periphery between two circular plates. The designed MBT had the ability to generate a maximum of 100 W of power at a water flow rate and a head of 0.009 m3/s and 0.6311 m, respectively. The experimental tests were carried out using a hydraulic bench. The turbine efficiency without the inner GV was found to be higher than that of the turbine with the inner GV; i.e., it was found that the utilization of the GV did not enhance the efficiency of the MBT due to the occurrence of a choking effect. A maximum hydraulic efficiency of 85% was achieved in the turbine without an inner GV in comparison with the efficiency achieved (77%) with this device and an optimum opening angle of the GV of 24◦ (75% of opening). In this regard, the GV design should be carefully carried out to improve the MBT efficiency. Additionally, the effect of the GV shape on the MBT performance should be experimentally investigated to obtain a more general judgment regarding the role of this device.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-27T18:41:52Z
dc.date.available.none.fl_str_mv 2024-08-27T18:41:52Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/41512
dc.identifier.doi.none.fl_str_mv 10.3390/pr12050938
dc.identifier.eissn.none.fl_str_mv 2227-9717
url https://hdl.handle.net/10495/41512
identifier_str_mv 10.3390/pr12050938
2227-9717
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Processes
dc.relation.citationendpage.spa.fl_str_mv 13
dc.relation.citationissue.spa.fl_str_mv 5
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 12
dc.relation.ispartofjournal.spa.fl_str_mv Processes
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/co/
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
dc.publisher.place.spa.fl_str_mv Basilea, Suiza
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/5cc83692-0ebe-4019-bee9-8b704d867cfb/download
https://bibliotecadigital.udea.edu.co/bitstreams/2fcb2429-26b4-4910-8976-c17dfc91a68f/download
https://bibliotecadigital.udea.edu.co/bitstreams/ab010e85-069f-4ca1-a030-efebb0b47975/download
https://bibliotecadigital.udea.edu.co/bitstreams/12eabe07-aa28-40c9-ab04-383edeed6d6b/download
https://bibliotecadigital.udea.edu.co/bitstreams/93e3e384-d605-4622-80a2-72433da3e778/download
https://bibliotecadigital.udea.edu.co/bitstreams/4a42c0c7-1e4e-4184-a355-b1c4ca1bdb51/download
bitstream.checksum.fl_str_mv 494cb6b1959aab40b13934ccbfb27c2e
fb50d2c26f1edbaa9bc14f181c6b0bcf
1646d1f6b96dbbbc38035efc9239ac9c
8a4605be74aa9ea9d79846c1fba20a33
086b4d7f0228ecd40bd43c5b538ad5d3
a80a098528eb6882210316f6d9354e0c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052264576253952
spelling Romero Menco, Fredys de JesúsPineda Aguirre, JuanVelásquez García, Laura IsabelRubio Clemente, AinhoaChica Arrieta, EdwinGrupo de Energía Alternativa2024-08-27T18:41:52Z2024-08-27T18:41:52Z2024https://hdl.handle.net/10495/4151210.3390/pr120509382227-9717ABSTRACT: In this work, an experimental analysis of the performance of a cross-flow turbine, commonly referred to as a Michell–Banki turbine (MBT), is carried out for small-scale hydropower production in rural areas located in developing countries to support their social and economic development activities. The study investigates how the efficiency of the MBT is influenced by the presence or absence of a nozzle, along with variations in the internal guide vane (GV) and its angle. The runner had 26 blades that were arranged symmetrically in the periphery between two circular plates. The designed MBT had the ability to generate a maximum of 100 W of power at a water flow rate and a head of 0.009 m3/s and 0.6311 m, respectively. The experimental tests were carried out using a hydraulic bench. The turbine efficiency without the inner GV was found to be higher than that of the turbine with the inner GV; i.e., it was found that the utilization of the GV did not enhance the efficiency of the MBT due to the occurrence of a choking effect. A maximum hydraulic efficiency of 85% was achieved in the turbine without an inner GV in comparison with the efficiency achieved (77%) with this device and an optimum opening angle of the GV of 24◦ (75% of opening). In this regard, the GV design should be carefully carried out to improve the MBT efficiency. Additionally, the effect of the GV shape on the MBT performance should be experimentally investigated to obtain a more general judgment regarding the role of this device.Universidad de AntioquiaCOL000805813 páginasapplication/pdfengMDPIBasilea, Suizahttp://creativecommons.org/licenses/by/2.5/co/https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Effects of the Nozzle Configuration with and without an Internal Guide Vane on the Efficiency in Cross-Flow Small Hydro TurbinesArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionCross-flow turbineMichell–Banki turbineHydropowerSmall hydro turbineNozzleTurbine efficiencyOpening percentageProcesses135112ProcessesPrograma Nacional en Ingeniería2022-48250RoR:03bp5hc83PublicationORIGINALRomeroFredys_2024_Effects_Nozzle_Configuration.epubRomeroFredys_2024_Effects_Nozzle_Configuration.epubArtículo de investigaciónapplication/epub+zip9449369https://bibliotecadigital.udea.edu.co/bitstreams/5cc83692-0ebe-4019-bee9-8b704d867cfb/download494cb6b1959aab40b13934ccbfb27c2eMD51falseAnonymousREADRomeroFredys_2024_Effects_Nozzle_Configuration.pdfRomeroFredys_2024_Effects_Nozzle_Configuration.pdfArtículo de investigaciónapplication/pdf7837917https://bibliotecadigital.udea.edu.co/bitstreams/2fcb2429-26b4-4910-8976-c17dfc91a68f/downloadfb50d2c26f1edbaa9bc14f181c6b0bcfMD52trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8927https://bibliotecadigital.udea.edu.co/bitstreams/ab010e85-069f-4ca1-a030-efebb0b47975/download1646d1f6b96dbbbc38035efc9239ac9cMD53falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/12eabe07-aa28-40c9-ab04-383edeed6d6b/download8a4605be74aa9ea9d79846c1fba20a33MD54falseAnonymousREADTEXTRomeroFredys_2024_Effects_Nozzle_Configuration.pdf.txtRomeroFredys_2024_Effects_Nozzle_Configuration.pdf.txtExtracted texttext/plain44252https://bibliotecadigital.udea.edu.co/bitstreams/93e3e384-d605-4622-80a2-72433da3e778/download086b4d7f0228ecd40bd43c5b538ad5d3MD55falseAnonymousREADTHUMBNAILRomeroFredys_2024_Effects_Nozzle_Configuration.pdf.jpgRomeroFredys_2024_Effects_Nozzle_Configuration.pdf.jpgGenerated Thumbnailimage/jpeg15714https://bibliotecadigital.udea.edu.co/bitstreams/4a42c0c7-1e4e-4184-a355-b1c4ca1bdb51/downloada80a098528eb6882210316f6d9354e0cMD56falseAnonymousREAD10495/41512oai:bibliotecadigital.udea.edu.co:10495/415122025-03-26 19:33:56.067http://creativecommons.org/licenses/by/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=