Electrodeposition of copper from triethanolamine as a complexing agent in alkaline solution
ABSTRACT: The use of triethanolamine (TEA) as a cyanide-free electrolyte for copper electrodeposition was studied. The effect of TEA concentration on electrodeposition rate and cathodic adsorption during 3D copper growth was investigated. Linear sweep voltammetry (LSV), electrochemical quartz crysta...
- Autores:
-
Ramírez Sánchez, Carolina
Bozzini, Benedetto
Calderón Gutiérrez, Jorge Andrés
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/29279
- Acceso en línea:
- http://hdl.handle.net/10495/29279
- Palabra clave:
- Copper
Cobre
Trietanolamina
Non-cyanide bath
Triethanolamine
Electrochemical quartz crystal microbalance (EQCM)
Surface-enhanced Raman spectroscopy (SERS)
Nucleation mechanism
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
| id |
UDEA2_e07da72a27e378cafee31bda332178d3 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/29279 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Electrodeposition of copper from triethanolamine as a complexing agent in alkaline solution |
| title |
Electrodeposition of copper from triethanolamine as a complexing agent in alkaline solution |
| spellingShingle |
Electrodeposition of copper from triethanolamine as a complexing agent in alkaline solution Copper Cobre Trietanolamina Non-cyanide bath Triethanolamine Electrochemical quartz crystal microbalance (EQCM) Surface-enhanced Raman spectroscopy (SERS) Nucleation mechanism |
| title_short |
Electrodeposition of copper from triethanolamine as a complexing agent in alkaline solution |
| title_full |
Electrodeposition of copper from triethanolamine as a complexing agent in alkaline solution |
| title_fullStr |
Electrodeposition of copper from triethanolamine as a complexing agent in alkaline solution |
| title_full_unstemmed |
Electrodeposition of copper from triethanolamine as a complexing agent in alkaline solution |
| title_sort |
Electrodeposition of copper from triethanolamine as a complexing agent in alkaline solution |
| dc.creator.fl_str_mv |
Ramírez Sánchez, Carolina Bozzini, Benedetto Calderón Gutiérrez, Jorge Andrés |
| dc.contributor.author.none.fl_str_mv |
Ramírez Sánchez, Carolina Bozzini, Benedetto Calderón Gutiérrez, Jorge Andrés |
| dc.contributor.researchgroup.spa.fl_str_mv |
Centro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT) |
| dc.subject.lemb.none.fl_str_mv |
Copper Cobre |
| topic |
Copper Cobre Trietanolamina Non-cyanide bath Triethanolamine Electrochemical quartz crystal microbalance (EQCM) Surface-enhanced Raman spectroscopy (SERS) Nucleation mechanism |
| dc.subject.proposal.spa.fl_str_mv |
Trietanolamina Non-cyanide bath Triethanolamine Electrochemical quartz crystal microbalance (EQCM) Surface-enhanced Raman spectroscopy (SERS) Nucleation mechanism |
| description |
ABSTRACT: The use of triethanolamine (TEA) as a cyanide-free electrolyte for copper electrodeposition was studied. The effect of TEA concentration on electrodeposition rate and cathodic adsorption during 3D copper growth was investigated. Linear sweep voltammetry (LSV), electrochemical quartz crystal microbalance (EQCM), scanning electron microscope (SEM), chronoamperometry and in situ surface-enhanced Raman scattering (SERS) were used to achieve a kinetic, thermodynamic, and mechanistic understanding. TEA forms stable complexes with copper, the most stable being Cu(TEA)(OH)3‾. Also, it acts as a surface modifier, promoting instantaneous nucleation and lower reduction rates to metallic copper. Thus, three-dimensional growth is controlled and, consequently, a smooth and homogeneous copper deposit is achieved. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-06-16T16:27:40Z |
| dc.date.available.none.fl_str_mv |
2022-06-16T16:27:40Z |
| dc.date.issued.none.fl_str_mv |
2022 |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Carolina Ramírez, Benedetto Bozzini, Jorge A. Calderon. Electrodeposition of copper from triethanolamine as a complexing agent in alkaline solution. Electrochimica Acta 425 (2022) 140654 |
| dc.identifier.issn.none.fl_str_mv |
0013-4686 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10495/29279 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.electacta.2022.140654 |
| identifier_str_mv |
Carolina Ramírez, Benedetto Bozzini, Jorge A. Calderon. Electrodeposition of copper from triethanolamine as a complexing agent in alkaline solution. Electrochimica Acta 425 (2022) 140654 0013-4686 10.1016/j.electacta.2022.140654 |
| url |
http://hdl.handle.net/10495/29279 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Electrochim. Acta. |
| dc.relation.citationendpage.spa.fl_str_mv |
9 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.citationvolume.spa.fl_str_mv |
425 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Electrochimica Acta |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
9 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Pergamon Press Elsevier |
| dc.publisher.place.spa.fl_str_mv |
New York, Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/2449393b-3a85-4cd8-9f0e-e80e4fafe310/download https://bibliotecadigital.udea.edu.co/bitstreams/ad64fc10-7dea-4e3c-a026-8c6ee1a4b964/download https://bibliotecadigital.udea.edu.co/bitstreams/1b308361-1c5e-471b-99d3-b2ead61e1cd3/download https://bibliotecadigital.udea.edu.co/bitstreams/7660f30f-2ea4-4fe2-bdf2-f7fdb1334bd1/download https://bibliotecadigital.udea.edu.co/bitstreams/6ca5a9df-e795-4859-86b3-8fa8677ac198/download |
| bitstream.checksum.fl_str_mv |
e2060682c9c70d4d30c83c51448f4eed 8a4605be74aa9ea9d79846c1fba20a33 846eb6f0bbe3787cc6d9aa8e181d3ad0 da06a71cb835f6a719e48395e74d7551 25e3910811895fba8a7e4b249e0b5336 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052214282354688 |
| spelling |
Ramírez Sánchez, CarolinaBozzini, BenedettoCalderón Gutiérrez, Jorge AndrésCentro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)2022-06-16T16:27:40Z2022-06-16T16:27:40Z2022Carolina Ramírez, Benedetto Bozzini, Jorge A. Calderon. Electrodeposition of copper from triethanolamine as a complexing agent in alkaline solution. Electrochimica Acta 425 (2022) 1406540013-4686http://hdl.handle.net/10495/2927910.1016/j.electacta.2022.140654ABSTRACT: The use of triethanolamine (TEA) as a cyanide-free electrolyte for copper electrodeposition was studied. The effect of TEA concentration on electrodeposition rate and cathodic adsorption during 3D copper growth was investigated. Linear sweep voltammetry (LSV), electrochemical quartz crystal microbalance (EQCM), scanning electron microscope (SEM), chronoamperometry and in situ surface-enhanced Raman scattering (SERS) were used to achieve a kinetic, thermodynamic, and mechanistic understanding. TEA forms stable complexes with copper, the most stable being Cu(TEA)(OH)3‾. Also, it acts as a surface modifier, promoting instantaneous nucleation and lower reduction rates to metallic copper. Thus, three-dimensional growth is controlled and, consequently, a smooth and homogeneous copper deposit is achieved.COL00079279application/pdfengPergamon PressElsevierNew York, Estados Unidoshttps://creativecommons.org/licenses/by-nc-nd/4.0/https://creativecommons.org/licenses/by-nc-nd/2.5/co/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Electrodeposition of copper from triethanolamine as a complexing agent in alkaline solutionArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionCopperCobreTrietanolaminaNon-cyanide bathTriethanolamineElectrochemical quartz crystal microbalance (EQCM)Surface-enhanced Raman spectroscopy (SERS)Nucleation mechanismElectrochim. Acta.91425Electrochimica ActaPublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstreams/2449393b-3a85-4cd8-9f0e-e80e4fafe310/downloade2060682c9c70d4d30c83c51448f4eedMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/ad64fc10-7dea-4e3c-a026-8c6ee1a4b964/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADORIGINALRamirezCarolina_2022_ElectropositionCopperTriethanolamine.pdfRamirezCarolina_2022_ElectropositionCopperTriethanolamine.pdfArticulo de investigaciónapplication/pdf6187504https://bibliotecadigital.udea.edu.co/bitstreams/1b308361-1c5e-471b-99d3-b2ead61e1cd3/download846eb6f0bbe3787cc6d9aa8e181d3ad0MD51trueAnonymousREADTEXTRamirezCarolina_2022_ElectropositionCopperTriethanolamine.pdf.txtRamirezCarolina_2022_ElectropositionCopperTriethanolamine.pdf.txtExtracted texttext/plain53614https://bibliotecadigital.udea.edu.co/bitstreams/7660f30f-2ea4-4fe2-bdf2-f7fdb1334bd1/downloadda06a71cb835f6a719e48395e74d7551MD54falseAnonymousREADTHUMBNAILRamirezCarolina_2022_ElectropositionCopperTriethanolamine.pdf.jpgRamirezCarolina_2022_ElectropositionCopperTriethanolamine.pdf.jpgGenerated Thumbnailimage/jpeg15175https://bibliotecadigital.udea.edu.co/bitstreams/6ca5a9df-e795-4859-86b3-8fa8677ac198/download25e3910811895fba8a7e4b249e0b5336MD55falseAnonymousREAD10495/29279oai:bibliotecadigital.udea.edu.co:10495/292792025-03-26 18:43:29.366https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
