Periodic string complexes over string algebras

In this paper we develop combinatorial techniques for the case of string algebras with the aim to give a characterization of string complexes with infinite minimal projective resolution. These complexes will be called \textit{periodic string complexes}. As a consequence of this characterization, we...

Full description

Autores:
Franco Londoño, Andrés
Giraldo Salazar, Hernán Alonso
Hernandez Rizzo, Pedro Jesús
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/46928
Acceso en línea:
https://hdl.handle.net/10495/46928
Palabra clave:
Categorías derivadas (Matemáticas)
Derived categories (Mathematics)
Modelos de cuerdas
String models
String complexes
Projective resolutions
Infinite global dimension
http://id.loc.gov/authorities/subjects/sh2009000767
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
Description
Summary:In this paper we develop combinatorial techniques for the case of string algebras with the aim to give a characterization of string complexes with infinite minimal projective resolution. These complexes will be called \textit{periodic string complexes}. As a consequence of this characterization, we give two important applications. The first one, is a sufficient condition for a string algebra to have infinite global dimension. In the second one, we exhibit a class of indecomposable objects in the derived category for a special case of string algebras. Every construction, concept and consequence in this paper is followed by some illustrative examples