Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests

ABSTRACT: Tropical ecosystems with high levels of endemism are under threat due to climate change and deforestation. The conservation actions are urgent and must rely on a clear understanding of landscape heterogeneity from transformed landscapes. Currently, passive acoustic monitoring uses the soun...

Full description

Autores:
Rendón Hurtado, Néstor David
Rodríguez Buriticá, Susana
Sanchez Giraldo, Camilo
Daza Rojas, Juan Manuel
Isaza Narváez, Claudia Victoria
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/35136
Acceso en línea:
https://hdl.handle.net/10495/35136
Palabra clave:
Protección del medio ambiente
Environmental protection
Colombia - Bosques secos tropicales
Colombia - Tropical dry forests
Cambios en el paisaje
Landscape changes
Aprendizaje automático
Machine learning
Acústica
Acoustics
http://id.loc.gov/authorities/subjects/sh85044203
http://id.loc.gov/authorities/subjects/sh2013001320
http://id.loc.gov/authorities/subjects/sh85074408
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UDEA2_dec52daaf440c8c72b135fcf13123102
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/35136
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests
title Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests
spellingShingle Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests
Protección del medio ambiente
Environmental protection
Colombia - Bosques secos tropicales
Colombia - Tropical dry forests
Cambios en el paisaje
Landscape changes
Aprendizaje automático
Machine learning
Acústica
Acoustics
http://id.loc.gov/authorities/subjects/sh85044203
http://id.loc.gov/authorities/subjects/sh2013001320
http://id.loc.gov/authorities/subjects/sh85074408
title_short Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests
title_full Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests
title_fullStr Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests
title_full_unstemmed Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests
title_sort Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests
dc.creator.fl_str_mv Rendón Hurtado, Néstor David
Rodríguez Buriticá, Susana
Sanchez Giraldo, Camilo
Daza Rojas, Juan Manuel
Isaza Narváez, Claudia Victoria
dc.contributor.author.none.fl_str_mv Rendón Hurtado, Néstor David
Rodríguez Buriticá, Susana
Sanchez Giraldo, Camilo
Daza Rojas, Juan Manuel
Isaza Narváez, Claudia Victoria
dc.contributor.researchgroup.spa.fl_str_mv Grupo Herpetológico de Antioquia
Sistemas Embebidos e Inteligencia Computacional (SISTEMIC)
dc.subject.lcsh.none.fl_str_mv Protección del medio ambiente
Environmental protection
Colombia - Bosques secos tropicales
Colombia - Tropical dry forests
Cambios en el paisaje
Landscape changes
topic Protección del medio ambiente
Environmental protection
Colombia - Bosques secos tropicales
Colombia - Tropical dry forests
Cambios en el paisaje
Landscape changes
Aprendizaje automático
Machine learning
Acústica
Acoustics
http://id.loc.gov/authorities/subjects/sh85044203
http://id.loc.gov/authorities/subjects/sh2013001320
http://id.loc.gov/authorities/subjects/sh85074408
dc.subject.decs.none.fl_str_mv Aprendizaje automático
Machine learning
Acústica
Acoustics
dc.subject.lcshuri.none.fl_str_mv http://id.loc.gov/authorities/subjects/sh85044203
http://id.loc.gov/authorities/subjects/sh2013001320
http://id.loc.gov/authorities/subjects/sh85074408
description ABSTRACT: Tropical ecosystems with high levels of endemism are under threat due to climate change and deforestation. The conservation actions are urgent and must rely on a clear understanding of landscape heterogeneity from transformed landscapes. Currently, passive acoustic monitoring uses the soundscape to understand the dynamics of biological communities and physical components of the sites and thus complement the information about the structures of landscape. However, the link between the analysis and quantification of ecosystem transformation based on acoustic methods and acoustic heterogeneity is just beginning to be analyzed. This document proposes a new beta Acoustic Heterogeneity Index (AHI) that quantifies the acoustic heterogeneity related to landscape transformation. AHI estimates the acoustic dissimilarity between sites modeling membership degrees of mixture models in three transformation states: high, medium, and low. We hypothesized that if acoustic recordings of different habitats are analyzed looking for particular patterns, it is possible to quantify the landscape heterogeneity between sites using sound. To calculate the AHI we propose a methodology of five steps: (1) filtering out recordings with high noise levels, (2) estimating acoustics indices, (3) including temporal patterns, (4) using GMM classification models to recognize habitat transformation levels, and (5) calculating the proposed AHI. We tested the proposal with data collected from 2015 to 2017 for 22 tropical dry forests (TDF) sites in two watersheds of Colombian Caribbean region. The sites were labeled by the level of landscape transformation using forest degradation indicators with satellite imagery. We compared these labels with the predicted transformation of our method showing an F1 score of 92% and 90% in regions of La Guajira and Bolívar respectively. To use AHI interactively, we analized the soundscapes similarities on geographic maps in the study regions. We identified that AHI allows estimating the similarity of points with similar transformations, and where the soundscape provides information about the transition states. This proposal allows complementing landscape transformation studies with information on the acoustic heterogeneity between pairs of sites.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-05-29T13:27:27Z
dc.date.available.none.fl_str_mv 2023-05-29T13:27:27Z
dc.type.spa.fl_str_mv Artículo de investigación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/ART
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Nestor Rendon, N. Rendon, Susana Rodríguez-Buritica, S. Rodríguez-Buritica, Camilo Sanchez-Giraldo, C. Sanchez-Giraldo, Juan M. Daza, J. M. Daza, & Claudia Isaza, C. Isaza. (0000). Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests. Ecological indicators, 140, 109017. doi: 10.1016/j.ecolind.2022.109017
dc.identifier.issn.none.fl_str_mv 1470-160X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/35136
dc.identifier.doi.none.fl_str_mv 10.1016/j.ecolind.2022.109017
dc.identifier.eissn.none.fl_str_mv 1872-7034
identifier_str_mv Nestor Rendon, N. Rendon, Susana Rodríguez-Buritica, S. Rodríguez-Buritica, Camilo Sanchez-Giraldo, C. Sanchez-Giraldo, Juan M. Daza, J. M. Daza, & Claudia Isaza, C. Isaza. (0000). Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests. Ecological indicators, 140, 109017. doi: 10.1016/j.ecolind.2022.109017
1470-160X
10.1016/j.ecolind.2022.109017
1872-7034
url https://hdl.handle.net/10495/35136
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournalabbrev.spa.fl_str_mv Ecol. Indic.
dc.relation.citationendpage.spa.fl_str_mv 11
dc.relation.citationissue.spa.fl_str_mv 140
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.ispartofjournal.spa.fl_str_mv Ecological Indicators
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Nueva York, Estados Unidos
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/430347b0-d04f-44af-9b71-3e1d7246a93a/download
https://bibliotecadigital.udea.edu.co/bitstreams/3b4feac2-1ddd-470f-8726-62330039d081/download
https://bibliotecadigital.udea.edu.co/bitstreams/0f2a578b-56b1-4159-8390-5135b6bb2a6a/download
https://bibliotecadigital.udea.edu.co/bitstreams/22692b9d-7491-4d7c-b1ee-8f803c5b6d7a/download
https://bibliotecadigital.udea.edu.co/bitstreams/0be050e4-ab5d-48ff-961a-96ee953b3030/download
bitstream.checksum.fl_str_mv ce5094ee1dd27b28d913b5d4bc70fcd7
b88b088d9957e670ce3b3fbe2eedbc13
8a4605be74aa9ea9d79846c1fba20a33
1be976779552089ee35e5bb3a3bee6cf
d49f1eeb31079466a4a7ba02bd1ff9f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052184853020672
spelling Rendón Hurtado, Néstor DavidRodríguez Buriticá, SusanaSanchez Giraldo, CamiloDaza Rojas, Juan ManuelIsaza Narváez, Claudia VictoriaGrupo Herpetológico de AntioquiaSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2023-05-29T13:27:27Z2023-05-29T13:27:27Z2022Nestor Rendon, N. Rendon, Susana Rodríguez-Buritica, S. Rodríguez-Buritica, Camilo Sanchez-Giraldo, C. Sanchez-Giraldo, Juan M. Daza, J. M. Daza, & Claudia Isaza, C. Isaza. (0000). Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests. Ecological indicators, 140, 109017. doi: 10.1016/j.ecolind.2022.1090171470-160Xhttps://hdl.handle.net/10495/3513610.1016/j.ecolind.2022.1090171872-7034ABSTRACT: Tropical ecosystems with high levels of endemism are under threat due to climate change and deforestation. The conservation actions are urgent and must rely on a clear understanding of landscape heterogeneity from transformed landscapes. Currently, passive acoustic monitoring uses the soundscape to understand the dynamics of biological communities and physical components of the sites and thus complement the information about the structures of landscape. However, the link between the analysis and quantification of ecosystem transformation based on acoustic methods and acoustic heterogeneity is just beginning to be analyzed. This document proposes a new beta Acoustic Heterogeneity Index (AHI) that quantifies the acoustic heterogeneity related to landscape transformation. AHI estimates the acoustic dissimilarity between sites modeling membership degrees of mixture models in three transformation states: high, medium, and low. We hypothesized that if acoustic recordings of different habitats are analyzed looking for particular patterns, it is possible to quantify the landscape heterogeneity between sites using sound. To calculate the AHI we propose a methodology of five steps: (1) filtering out recordings with high noise levels, (2) estimating acoustics indices, (3) including temporal patterns, (4) using GMM classification models to recognize habitat transformation levels, and (5) calculating the proposed AHI. We tested the proposal with data collected from 2015 to 2017 for 22 tropical dry forests (TDF) sites in two watersheds of Colombian Caribbean region. The sites were labeled by the level of landscape transformation using forest degradation indicators with satellite imagery. We compared these labels with the predicted transformation of our method showing an F1 score of 92% and 90% in regions of La Guajira and Bolívar respectively. To use AHI interactively, we analized the soundscapes similarities on geographic maps in the study regions. We identified that AHI allows estimating the similarity of points with similar transformations, and where the soundscape provides information about the transition states. This proposal allows complementing landscape transformation studies with information on the acoustic heterogeneity between pairs of sites.COL0010717COL000737311application/pdfengElsevierNueva York, Estados Unidoshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Protección del medio ambienteEnvironmental protectionColombia - Bosques secos tropicalesColombia - Tropical dry forestsCambios en el paisajeLandscape changesAprendizaje automáticoMachine learningAcústicaAcousticshttp://id.loc.gov/authorities/subjects/sh85044203http://id.loc.gov/authorities/subjects/sh2013001320http://id.loc.gov/authorities/subjects/sh85074408Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forestsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionEcol. Indic.111401Ecological IndicatorsPublicationORIGINALRendonNestor_2022_AutomaticAcoustic.pdfRendonNestor_2022_AutomaticAcoustic.pdfArtículo de investigaciónapplication/pdf18037326https://bibliotecadigital.udea.edu.co/bitstreams/430347b0-d04f-44af-9b71-3e1d7246a93a/downloadce5094ee1dd27b28d913b5d4bc70fcd7MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/3b4feac2-1ddd-470f-8726-62330039d081/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/0f2a578b-56b1-4159-8390-5135b6bb2a6a/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTRendonNestor_2022_AutomaticAcoustic.pdf.txtRendonNestor_2022_AutomaticAcoustic.pdf.txtExtracted texttext/plain54215https://bibliotecadigital.udea.edu.co/bitstreams/22692b9d-7491-4d7c-b1ee-8f803c5b6d7a/download1be976779552089ee35e5bb3a3bee6cfMD56falseAnonymousREADTHUMBNAILRendonNestor_2022_AutomaticAcoustic.pdf.jpgRendonNestor_2022_AutomaticAcoustic.pdf.jpgGenerated Thumbnailimage/jpeg14062https://bibliotecadigital.udea.edu.co/bitstreams/0be050e4-ab5d-48ff-961a-96ee953b3030/downloadd49f1eeb31079466a4a7ba02bd1ff9f9MD57falseAnonymousREAD10495/35136oai:bibliotecadigital.udea.edu.co:10495/351362025-03-26 18:14:47.99http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=