Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests
ABSTRACT: Tropical ecosystems with high levels of endemism are under threat due to climate change and deforestation. The conservation actions are urgent and must rely on a clear understanding of landscape heterogeneity from transformed landscapes. Currently, passive acoustic monitoring uses the soun...
- Autores:
-
Rendón Hurtado, Néstor David
Rodríguez Buriticá, Susana
Sanchez Giraldo, Camilo
Daza Rojas, Juan Manuel
Isaza Narváez, Claudia Victoria
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad de Antioquia
- Repositorio:
- Repositorio UdeA
- Idioma:
- eng
- OAI Identifier:
- oai:bibliotecadigital.udea.edu.co:10495/35136
- Acceso en línea:
- https://hdl.handle.net/10495/35136
- Palabra clave:
- Protección del medio ambiente
Environmental protection
Colombia - Bosques secos tropicales
Colombia - Tropical dry forests
Cambios en el paisaje
Landscape changes
Aprendizaje automático
Machine learning
Acústica
Acoustics
http://id.loc.gov/authorities/subjects/sh85044203
http://id.loc.gov/authorities/subjects/sh2013001320
http://id.loc.gov/authorities/subjects/sh85074408
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
| id |
UDEA2_dec52daaf440c8c72b135fcf13123102 |
|---|---|
| oai_identifier_str |
oai:bibliotecadigital.udea.edu.co:10495/35136 |
| network_acronym_str |
UDEA2 |
| network_name_str |
Repositorio UdeA |
| repository_id_str |
|
| dc.title.spa.fl_str_mv |
Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests |
| title |
Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests |
| spellingShingle |
Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests Protección del medio ambiente Environmental protection Colombia - Bosques secos tropicales Colombia - Tropical dry forests Cambios en el paisaje Landscape changes Aprendizaje automático Machine learning Acústica Acoustics http://id.loc.gov/authorities/subjects/sh85044203 http://id.loc.gov/authorities/subjects/sh2013001320 http://id.loc.gov/authorities/subjects/sh85074408 |
| title_short |
Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests |
| title_full |
Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests |
| title_fullStr |
Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests |
| title_full_unstemmed |
Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests |
| title_sort |
Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests |
| dc.creator.fl_str_mv |
Rendón Hurtado, Néstor David Rodríguez Buriticá, Susana Sanchez Giraldo, Camilo Daza Rojas, Juan Manuel Isaza Narváez, Claudia Victoria |
| dc.contributor.author.none.fl_str_mv |
Rendón Hurtado, Néstor David Rodríguez Buriticá, Susana Sanchez Giraldo, Camilo Daza Rojas, Juan Manuel Isaza Narváez, Claudia Victoria |
| dc.contributor.researchgroup.spa.fl_str_mv |
Grupo Herpetológico de Antioquia Sistemas Embebidos e Inteligencia Computacional (SISTEMIC) |
| dc.subject.lcsh.none.fl_str_mv |
Protección del medio ambiente Environmental protection Colombia - Bosques secos tropicales Colombia - Tropical dry forests Cambios en el paisaje Landscape changes |
| topic |
Protección del medio ambiente Environmental protection Colombia - Bosques secos tropicales Colombia - Tropical dry forests Cambios en el paisaje Landscape changes Aprendizaje automático Machine learning Acústica Acoustics http://id.loc.gov/authorities/subjects/sh85044203 http://id.loc.gov/authorities/subjects/sh2013001320 http://id.loc.gov/authorities/subjects/sh85074408 |
| dc.subject.decs.none.fl_str_mv |
Aprendizaje automático Machine learning Acústica Acoustics |
| dc.subject.lcshuri.none.fl_str_mv |
http://id.loc.gov/authorities/subjects/sh85044203 http://id.loc.gov/authorities/subjects/sh2013001320 http://id.loc.gov/authorities/subjects/sh85074408 |
| description |
ABSTRACT: Tropical ecosystems with high levels of endemism are under threat due to climate change and deforestation. The conservation actions are urgent and must rely on a clear understanding of landscape heterogeneity from transformed landscapes. Currently, passive acoustic monitoring uses the soundscape to understand the dynamics of biological communities and physical components of the sites and thus complement the information about the structures of landscape. However, the link between the analysis and quantification of ecosystem transformation based on acoustic methods and acoustic heterogeneity is just beginning to be analyzed. This document proposes a new beta Acoustic Heterogeneity Index (AHI) that quantifies the acoustic heterogeneity related to landscape transformation. AHI estimates the acoustic dissimilarity between sites modeling membership degrees of mixture models in three transformation states: high, medium, and low. We hypothesized that if acoustic recordings of different habitats are analyzed looking for particular patterns, it is possible to quantify the landscape heterogeneity between sites using sound. To calculate the AHI we propose a methodology of five steps: (1) filtering out recordings with high noise levels, (2) estimating acoustics indices, (3) including temporal patterns, (4) using GMM classification models to recognize habitat transformation levels, and (5) calculating the proposed AHI. We tested the proposal with data collected from 2015 to 2017 for 22 tropical dry forests (TDF) sites in two watersheds of Colombian Caribbean region. The sites were labeled by the level of landscape transformation using forest degradation indicators with satellite imagery. We compared these labels with the predicted transformation of our method showing an F1 score of 92% and 90% in regions of La Guajira and Bolívar respectively. To use AHI interactively, we analized the soundscapes similarities on geographic maps in the study regions. We identified that AHI allows estimating the similarity of points with similar transformations, and where the soundscape provides information about the transition states. This proposal allows complementing landscape transformation studies with information on the acoustic heterogeneity between pairs of sites. |
| publishDate |
2022 |
| dc.date.issued.none.fl_str_mv |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2023-05-29T13:27:27Z |
| dc.date.available.none.fl_str_mv |
2023-05-29T13:27:27Z |
| dc.type.spa.fl_str_mv |
Artículo de investigación |
| dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/ART |
| dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
| dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
| status_str |
publishedVersion |
| dc.identifier.citation.spa.fl_str_mv |
Nestor Rendon, N. Rendon, Susana Rodríguez-Buritica, S. Rodríguez-Buritica, Camilo Sanchez-Giraldo, C. Sanchez-Giraldo, Juan M. Daza, J. M. Daza, & Claudia Isaza, C. Isaza. (0000). Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests. Ecological indicators, 140, 109017. doi: 10.1016/j.ecolind.2022.109017 |
| dc.identifier.issn.none.fl_str_mv |
1470-160X |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10495/35136 |
| dc.identifier.doi.none.fl_str_mv |
10.1016/j.ecolind.2022.109017 |
| dc.identifier.eissn.none.fl_str_mv |
1872-7034 |
| identifier_str_mv |
Nestor Rendon, N. Rendon, Susana Rodríguez-Buritica, S. Rodríguez-Buritica, Camilo Sanchez-Giraldo, C. Sanchez-Giraldo, Juan M. Daza, J. M. Daza, & Claudia Isaza, C. Isaza. (0000). Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests. Ecological indicators, 140, 109017. doi: 10.1016/j.ecolind.2022.109017 1470-160X 10.1016/j.ecolind.2022.109017 1872-7034 |
| url |
https://hdl.handle.net/10495/35136 |
| dc.language.iso.spa.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
Ecol. Indic. |
| dc.relation.citationendpage.spa.fl_str_mv |
11 |
| dc.relation.citationissue.spa.fl_str_mv |
140 |
| dc.relation.citationstartpage.spa.fl_str_mv |
1 |
| dc.relation.ispartofjournal.spa.fl_str_mv |
Ecological Indicators |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
| dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
| eu_rights_str_mv |
openAccess |
| dc.format.extent.spa.fl_str_mv |
11 |
| dc.format.mimetype.spa.fl_str_mv |
application/pdf |
| dc.publisher.spa.fl_str_mv |
Elsevier |
| dc.publisher.place.spa.fl_str_mv |
Nueva York, Estados Unidos |
| institution |
Universidad de Antioquia |
| bitstream.url.fl_str_mv |
https://bibliotecadigital.udea.edu.co/bitstreams/430347b0-d04f-44af-9b71-3e1d7246a93a/download https://bibliotecadigital.udea.edu.co/bitstreams/3b4feac2-1ddd-470f-8726-62330039d081/download https://bibliotecadigital.udea.edu.co/bitstreams/0f2a578b-56b1-4159-8390-5135b6bb2a6a/download https://bibliotecadigital.udea.edu.co/bitstreams/22692b9d-7491-4d7c-b1ee-8f803c5b6d7a/download https://bibliotecadigital.udea.edu.co/bitstreams/0be050e4-ab5d-48ff-961a-96ee953b3030/download |
| bitstream.checksum.fl_str_mv |
ce5094ee1dd27b28d913b5d4bc70fcd7 b88b088d9957e670ce3b3fbe2eedbc13 8a4605be74aa9ea9d79846c1fba20a33 1be976779552089ee35e5bb3a3bee6cf d49f1eeb31079466a4a7ba02bd1ff9f9 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad de Antioquia |
| repository.mail.fl_str_mv |
aplicacionbibliotecadigitalbiblioteca@udea.edu.co |
| _version_ |
1851052184853020672 |
| spelling |
Rendón Hurtado, Néstor DavidRodríguez Buriticá, SusanaSanchez Giraldo, CamiloDaza Rojas, Juan ManuelIsaza Narváez, Claudia VictoriaGrupo Herpetológico de AntioquiaSistemas Embebidos e Inteligencia Computacional (SISTEMIC)2023-05-29T13:27:27Z2023-05-29T13:27:27Z2022Nestor Rendon, N. Rendon, Susana Rodríguez-Buritica, S. Rodríguez-Buritica, Camilo Sanchez-Giraldo, C. Sanchez-Giraldo, Juan M. Daza, J. M. Daza, & Claudia Isaza, C. Isaza. (0000). Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forests. Ecological indicators, 140, 109017. doi: 10.1016/j.ecolind.2022.1090171470-160Xhttps://hdl.handle.net/10495/3513610.1016/j.ecolind.2022.1090171872-7034ABSTRACT: Tropical ecosystems with high levels of endemism are under threat due to climate change and deforestation. The conservation actions are urgent and must rely on a clear understanding of landscape heterogeneity from transformed landscapes. Currently, passive acoustic monitoring uses the soundscape to understand the dynamics of biological communities and physical components of the sites and thus complement the information about the structures of landscape. However, the link between the analysis and quantification of ecosystem transformation based on acoustic methods and acoustic heterogeneity is just beginning to be analyzed. This document proposes a new beta Acoustic Heterogeneity Index (AHI) that quantifies the acoustic heterogeneity related to landscape transformation. AHI estimates the acoustic dissimilarity between sites modeling membership degrees of mixture models in three transformation states: high, medium, and low. We hypothesized that if acoustic recordings of different habitats are analyzed looking for particular patterns, it is possible to quantify the landscape heterogeneity between sites using sound. To calculate the AHI we propose a methodology of five steps: (1) filtering out recordings with high noise levels, (2) estimating acoustics indices, (3) including temporal patterns, (4) using GMM classification models to recognize habitat transformation levels, and (5) calculating the proposed AHI. We tested the proposal with data collected from 2015 to 2017 for 22 tropical dry forests (TDF) sites in two watersheds of Colombian Caribbean region. The sites were labeled by the level of landscape transformation using forest degradation indicators with satellite imagery. We compared these labels with the predicted transformation of our method showing an F1 score of 92% and 90% in regions of La Guajira and Bolívar respectively. To use AHI interactively, we analized the soundscapes similarities on geographic maps in the study regions. We identified that AHI allows estimating the similarity of points with similar transformations, and where the soundscape provides information about the transition states. This proposal allows complementing landscape transformation studies with information on the acoustic heterogeneity between pairs of sites.COL0010717COL000737311application/pdfengElsevierNueva York, Estados Unidoshttp://creativecommons.org/licenses/by-nc-nd/2.5/co/https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Protección del medio ambienteEnvironmental protectionColombia - Bosques secos tropicalesColombia - Tropical dry forestsCambios en el paisajeLandscape changesAprendizaje automáticoMachine learningAcústicaAcousticshttp://id.loc.gov/authorities/subjects/sh85044203http://id.loc.gov/authorities/subjects/sh2013001320http://id.loc.gov/authorities/subjects/sh85074408Automatic acoustic heterogeneity identification in transformed landscapes from Colombian tropical dry forestsArtículo de investigaciónhttp://purl.org/coar/resource_type/c_2df8fbb1https://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionEcol. Indic.111401Ecological IndicatorsPublicationORIGINALRendonNestor_2022_AutomaticAcoustic.pdfRendonNestor_2022_AutomaticAcoustic.pdfArtículo de investigaciónapplication/pdf18037326https://bibliotecadigital.udea.edu.co/bitstreams/430347b0-d04f-44af-9b71-3e1d7246a93a/downloadce5094ee1dd27b28d913b5d4bc70fcd7MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8823https://bibliotecadigital.udea.edu.co/bitstreams/3b4feac2-1ddd-470f-8726-62330039d081/downloadb88b088d9957e670ce3b3fbe2eedbc13MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/0f2a578b-56b1-4159-8390-5135b6bb2a6a/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTRendonNestor_2022_AutomaticAcoustic.pdf.txtRendonNestor_2022_AutomaticAcoustic.pdf.txtExtracted texttext/plain54215https://bibliotecadigital.udea.edu.co/bitstreams/22692b9d-7491-4d7c-b1ee-8f803c5b6d7a/download1be976779552089ee35e5bb3a3bee6cfMD56falseAnonymousREADTHUMBNAILRendonNestor_2022_AutomaticAcoustic.pdf.jpgRendonNestor_2022_AutomaticAcoustic.pdf.jpgGenerated Thumbnailimage/jpeg14062https://bibliotecadigital.udea.edu.co/bitstreams/0be050e4-ab5d-48ff-961a-96ee953b3030/downloadd49f1eeb31079466a4a7ba02bd1ff9f9MD57falseAnonymousREAD10495/35136oai:bibliotecadigital.udea.edu.co:10495/351362025-03-26 18:14:47.99http://creativecommons.org/licenses/by-nc-nd/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
