A complexity fingerprint for the localization of the Epileptogenic Zone using machine learning and data-driven approaches

ABSTRACT : In this research, we sought to delineate the epileptogenic zone using a dataset from the Cleveland Clinic, encompassing 28 patients who successfully underwent resective surgery and had prior SEEG recordings from both ictal and interictal periods. From time-windowed segments of these recor...

Full description

Autores:
Mantilla Ramos, Yorguin José
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de Antioquia
Repositorio:
Repositorio UdeA
Idioma:
eng
OAI Identifier:
oai:bibliotecadigital.udea.edu.co:10495/37371
Acceso en línea:
https://hdl.handle.net/10495/37371
Palabra clave:
Epilepsia
Epilepsy
Electroencefalografía
Electroencephalography
Aprendizaje automático
Machine Learning
Modelos Logísticos
Logistic Models
Zona epileptogénica
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/2.5/co/
id UDEA2_de7f0901c51e95203325f390bcd72a2d
oai_identifier_str oai:bibliotecadigital.udea.edu.co:10495/37371
network_acronym_str UDEA2
network_name_str Repositorio UdeA
repository_id_str
dc.title.spa.fl_str_mv A complexity fingerprint for the localization of the Epileptogenic Zone using machine learning and data-driven approaches
dc.title.translated.spa.fl_str_mv Una huella de complejidad para la localización de la Zona Epileptogénica utilizando aprendizaje automático y enfoques basados en datos
title A complexity fingerprint for the localization of the Epileptogenic Zone using machine learning and data-driven approaches
spellingShingle A complexity fingerprint for the localization of the Epileptogenic Zone using machine learning and data-driven approaches
Epilepsia
Epilepsy
Electroencefalografía
Electroencephalography
Aprendizaje automático
Machine Learning
Modelos Logísticos
Logistic Models
Zona epileptogénica
title_short A complexity fingerprint for the localization of the Epileptogenic Zone using machine learning and data-driven approaches
title_full A complexity fingerprint for the localization of the Epileptogenic Zone using machine learning and data-driven approaches
title_fullStr A complexity fingerprint for the localization of the Epileptogenic Zone using machine learning and data-driven approaches
title_full_unstemmed A complexity fingerprint for the localization of the Epileptogenic Zone using machine learning and data-driven approaches
title_sort A complexity fingerprint for the localization of the Epileptogenic Zone using machine learning and data-driven approaches
dc.creator.fl_str_mv Mantilla Ramos, Yorguin José
dc.contributor.advisor.none.fl_str_mv Leahy, Richard
Jerbi, Karim
García Arias, Hernán Felipe
dc.contributor.author.none.fl_str_mv Mantilla Ramos, Yorguin José
dc.contributor.researchgroup.spa.fl_str_mv Grupo Neuropsicología y Conducta
dc.subject.decs.none.fl_str_mv Epilepsia
Epilepsy
Electroencefalografía
Electroencephalography
Aprendizaje automático
Machine Learning
Modelos Logísticos
Logistic Models
topic Epilepsia
Epilepsy
Electroencefalografía
Electroencephalography
Aprendizaje automático
Machine Learning
Modelos Logísticos
Logistic Models
Zona epileptogénica
dc.subject.proposal.spa.fl_str_mv Zona epileptogénica
description ABSTRACT : In this research, we sought to delineate the epileptogenic zone using a dataset from the Cleveland Clinic, encompassing 28 patients who successfully underwent resective surgery and had prior SEEG recordings from both ictal and interictal periods. From time-windowed segments of these recordings, we derived complexity features and characterized them using their mean and standard deviation. Our analysis incorporated features such as Lempel-Ziv complexity, various entropies, fractal dimensions, and the 1/f slope of the brain activity spectrum, among others. We trained three distinct Logistic Regression Models: one using only ictal data, another using only interictal data, and a hybrid model leveraging both periods. Additionally, we trained a model using the Bern-Barcelona dataset, a known benchmark in interictal prediction. Our findings underscored that while the interictal period might be less informative in isolation, it enhances the insights drawn from the ictal phase when combined. A pivotal aspect of our research was discerning a distinctive epileptogenic zone fingerprint. Feature importance analysis pinpointed the Mean Lempel-Ziv Complexity, the standard deviation of the 1/f Slope, and the standard deviation of specific fractal dimensions as the most significant characteristics differentiating resected locations. These results not only contribute to understanding the epileptogenic zone but also foster discussions about complexity in the brain, particularly in the context of the brain criticality hypothesis.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-20T15:53:15Z
dc.date.available.none.fl_str_mv 2023-11-20T15:53:15Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_7a1f
status_str draft
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10495/37371
url https://hdl.handle.net/10495/37371
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/co/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 119
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Antioquia
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería. Ingeniería Electrónica
institution Universidad de Antioquia
bitstream.url.fl_str_mv https://bibliotecadigital.udea.edu.co/bitstreams/a664b5db-3a68-4dd0-a548-066f9a3a1ed1/download
https://bibliotecadigital.udea.edu.co/bitstreams/990c809d-61ef-4c42-93cd-c7f9b8e9ba92/download
https://bibliotecadigital.udea.edu.co/bitstreams/20132247-bcec-4b86-b0d2-ee1b303ede9c/download
https://bibliotecadigital.udea.edu.co/bitstreams/9f1ed5c8-e098-471b-a9fa-f317320e9ae3/download
https://bibliotecadigital.udea.edu.co/bitstreams/cb53dca1-1d6d-4957-8e9b-5e640a113c89/download
bitstream.checksum.fl_str_mv 30bc04c60446da7ac844d53884e1b616
e2060682c9c70d4d30c83c51448f4eed
8a4605be74aa9ea9d79846c1fba20a33
99d2f5b07966ad251e1c83bea70a4e17
70b51299333bd8c5479e85c83db96177
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad de Antioquia
repository.mail.fl_str_mv aplicacionbibliotecadigitalbiblioteca@udea.edu.co
_version_ 1851052623673688064
spelling Leahy, RichardJerbi, KarimGarcía Arias, Hernán FelipeMantilla Ramos, Yorguin JoséGrupo Neuropsicología y Conducta2023-11-20T15:53:15Z2023-11-20T15:53:15Z2023https://hdl.handle.net/10495/37371ABSTRACT : In this research, we sought to delineate the epileptogenic zone using a dataset from the Cleveland Clinic, encompassing 28 patients who successfully underwent resective surgery and had prior SEEG recordings from both ictal and interictal periods. From time-windowed segments of these recordings, we derived complexity features and characterized them using their mean and standard deviation. Our analysis incorporated features such as Lempel-Ziv complexity, various entropies, fractal dimensions, and the 1/f slope of the brain activity spectrum, among others. We trained three distinct Logistic Regression Models: one using only ictal data, another using only interictal data, and a hybrid model leveraging both periods. Additionally, we trained a model using the Bern-Barcelona dataset, a known benchmark in interictal prediction. Our findings underscored that while the interictal period might be less informative in isolation, it enhances the insights drawn from the ictal phase when combined. A pivotal aspect of our research was discerning a distinctive epileptogenic zone fingerprint. Feature importance analysis pinpointed the Mean Lempel-Ziv Complexity, the standard deviation of the 1/f Slope, and the standard deviation of specific fractal dimensions as the most significant characteristics differentiating resected locations. These results not only contribute to understanding the epileptogenic zone but also foster discussions about complexity in the brain, particularly in the context of the brain criticality hypothesis.RESUMEN : En este trabajo, se buscó delimitar la zona epileptogénica utilizando un conjunto de datos de la clínica de Cleveland, la cual abarca 28 pacientes que se sometieron con éxito a cirugía resectiva. A dichos pacientes se les adquirieron registros intracraneales de EEG durante períodos ictales e interictales. A partir de segmentos de estas grabaciones, derivamos características de complejidad y las caracterizamos utilizando su media y desviación estándar. Nuestro análisis incorporó características como la complejidad de Lempel-Ziv, varias entropías, dimensiones fractales y la pendiente 1/f del espectro de actividad cerebral, entre otros. Entrenamos tres modelos distintos de Regresión Logística: uno utilizando solo datos ictales, otro utilizando solo datos interictales y un modelo híbrido que aprovecha ambos períodos. Además, se entrenó un modelo utilizando el conjunto de datos "Bern-Barcelona", el cual es un punto de referencia conocido en la predicción interictal. Nuestros hallazgos subrayaron que, a pesar de que el período interictal es menos informativo de forma aislada, puede potenciar las predicciones obtenidas de la fase ictal cuando se combinan. Un aspecto importante de la investigación fue discernir una huella electrofisiológica de la zona epileptogénica. El análisis de importancia de las características que se llevó a cabo señaló la complejidad media de Lempel-Ziv, la desviación estándar de la pendiente 1/f y la desviación estándar de dimensiones fractales específicas como las características más significativas que diferencian las ubicaciones extirpadas. Estos resultados no solo contribuyen a la comprensión de la zona epileptogénica, sino que también fomentan discusiones sobre la complejidad en el cerebro, particularmente en el contexto de la hipótesis de la criticalidad cerebral.PregradoIngeniero Electrónico119application/pdfengUniversidad de AntioquiaMedellín, ColombiaFacultad de Ingeniería. Ingeniería Electrónicahttp://creativecommons.org/licenses/by-nc-sa/2.5/co/https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2A complexity fingerprint for the localization of the Epileptogenic Zone using machine learning and data-driven approachesUna huella de complejidad para la localización de la Zona Epileptogénica utilizando aprendizaje automático y enfoques basados en datosTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_b1a7d7d4d402bcceinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/draftEpilepsiaEpilepsyElectroencefalografíaElectroencephalographyAprendizaje automáticoMachine LearningModelos LogísticosLogistic ModelsZona epileptogénicaPublicationORIGINALMantillaYorguin_2023_LearningEpilepsyComplexity.pdfMantillaYorguin_2023_LearningEpilepsyComplexity.pdfTrabajo de grado de pregradoapplication/pdf10004290https://bibliotecadigital.udea.edu.co/bitstreams/a664b5db-3a68-4dd0-a548-066f9a3a1ed1/download30bc04c60446da7ac844d53884e1b616MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81051https://bibliotecadigital.udea.edu.co/bitstreams/990c809d-61ef-4c42-93cd-c7f9b8e9ba92/downloade2060682c9c70d4d30c83c51448f4eedMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bibliotecadigital.udea.edu.co/bitstreams/20132247-bcec-4b86-b0d2-ee1b303ede9c/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTMantillaYorguin_2023_LearningEpilepsyComplexity.pdf.txtMantillaYorguin_2023_LearningEpilepsyComplexity.pdf.txtExtracted texttext/plain100635https://bibliotecadigital.udea.edu.co/bitstreams/9f1ed5c8-e098-471b-a9fa-f317320e9ae3/download99d2f5b07966ad251e1c83bea70a4e17MD54falseAnonymousREADTHUMBNAILMantillaYorguin_2023_LearningEpilepsyComplexity.pdf.jpgMantillaYorguin_2023_LearningEpilepsyComplexity.pdf.jpgGenerated Thumbnailimage/jpeg6237https://bibliotecadigital.udea.edu.co/bitstreams/cb53dca1-1d6d-4957-8e9b-5e640a113c89/download70b51299333bd8c5479e85c83db96177MD55falseAnonymousREAD10495/37371oai:bibliotecadigital.udea.edu.co:10495/373712025-03-27 01:13:27.061http://creativecommons.org/licenses/by-nc-sa/2.5/co/open.accesshttps://bibliotecadigital.udea.edu.coRepositorio Institucional de la Universidad de Antioquiaaplicacionbibliotecadigitalbiblioteca@udea.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=